Identity statement area
Reference TypeConference Paper (Conference Proceedings)
Last Update2005: (UTC) administrator
Metadata Last Update2020: (UTC) administrator
Citation KeyLewinerCrLoPeVeMe:2005:GeCoAr
TitleGEncode: Geometry-driven compression in arbitrary dimension and co-dimension
Access Date2021, Dec. 07
Number of Files1
Size675 KiB
Context area
Author1 Lewiner, Thomas
2 Craizer, Marcos
3 Lopes, Hélio
4 Pesco, Sinésio
5 Velho, Luiz
6 Medeiros, Esdras
Affiliation1 PUC–Rio — Departamento de Matemática — Matmídia Project — Rio de Janeiro — Brazil
2 INRIA — Géométrica Project — Sophia Antipolis — France
3 IMPA— Visgraf Project — Rio de Janeiro — Brazil
EditorRodrigues, Maria Andréia Formico
Frery, Alejandro César
Conference NameBrazilian Symposium on Computer Graphics and Image Processing, 18 (SIBGRAPI)
Conference LocationNatal
Date9-12 Oct. 2005
PublisherIEEE Computer Society
Publisher CityLos Alamitos
Book TitleProceedings
Tertiary TypeFull Paper
History (UTC)2005-07-06 12:22:30 :: tomlew -> banon ::
2005-07-13 15:47:31 :: banon -> tomlew ::
2008-07-17 14:10:59 :: tomlew -> banon ::
2008-08-26 15:17:01 :: banon -> administrator ::
2009-08-13 20:37:45 :: administrator -> banon ::
2010-08-28 20:01:17 :: banon -> administrator ::
2020-02-19 03:19:09 :: administrator -> :: 2005
Content and structure area
Is the master or a copy?is the master
Content Stagecompleted
Content TypeExternal Contribution
KeywordsGeometric compression
Mesh compression
Arbitrary dimensional meshes
AbstractAmong the mesh compression algorithms, different schemes compress better specific categories of model. In particular, geometrydriven approaches have shown outstanding performances on isosurfaces. It would be expected these algorithm to also encode well meshes reconstructed from the geometry, or optimized by a geometric remeshing. GEncode is a new singlerate compression scheme that compresses the connectivity of these meshes at almost zerocost. It improves existing geometrydriven schemes for general meshes on both geometry and connectivity compression. This scheme extends naturally to meshes of arbitrary dimensions in arbitrary ambient space, and deals gracefully with nonmanifold meshes. Compression results for surfaces are competitive with existing schemes.
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Contentthere are no files
Conditions of access and use area
data URL
zipped data URL
Target FileGEncode_Sibgrapi_final.pdf
User Grouptomlew
Allied materials area
Notes area
Empty Fieldsaccessionnumber archivingpolicy archivist area callnumber copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group holdercode isbn issn label lineage mark mirrorrepository nextedition nexthigherunit notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume