<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>sibgrapi.sid.inpe.br 802</site>
		<identifier>83LX3pFwXQZW44Lb/cMRki</identifier>
		<repository>dpi.inpe.br/ambro/1998/04.17.15.20</repository>
		<lastupdate>1998:06.17.03.00.00 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/banon/2001/03.30.15.55.08</metadatarepository>
		<metadatalastupdate>2013:04.19.14.14.54 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 1996}</metadatalastupdate>
		<isbn>85-244-0103-6</isbn>
		<citationkey>MascarenhasSantCruv:1996:UsMAEs</citationkey>
		<title>The use of MAP estimation techniques in the tomographic reconstruction of Poisson noise corrupted images</title>
		<format>Impresso, On-line.</format>
		<year>1996</year>
		<numberoffiles>1</numberoffiles>
		<size>106 KiB</size>
		<author>Mascarenhas, Nelson Delfino d'Ávila,</author>
		<author>Santos, Saulo Savio Leite,</author>
		<author>Cruvinel, Paulo Estevão,</author>
		<editor>Velho, Luiz,</editor>
		<editor>Albuquerque, Arnaldo de,</editor>
		<editor>Lotufo, Roberto A.,</editor>
		<conferencename>Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, 9 (SIBGRAPI)</conferencename>
		<conferencelocation>Caxambu</conferencelocation>
		<date>29 out. - 1 nov. 1996</date>
		<publisher>Sociedade Brasileira de Computação</publisher>
		<publisheraddress>Porto Alegre</publisheraddress>
		<pages>197-204</pages>
		<booktitle>Anais</booktitle>
		<tertiarytype>Artigo</tertiarytype>
		<organization>SBC - Sociedade Brasileira de Computação; UFMG - Universidade Federal de Minas Gerais</organization>
		<transferableflag>1</transferableflag>
		<abstract>This work presents new methods for the tomographic reconstruction of images with Poisson noise corrupted projections. The reconstruction method is performed by first filtering the noisy projections under the Maximum a Posteriori criterion and subsequently reconstructing the images through conventional filtering-backprojection methods using the ramp filter. The "a priori" knowledge is incorporated by using several densities, including the Gaussian and densities defined on the non-negative real line. These densities were used to denote the fact that the rates of counting on the projections are non-negative quantities. Experimental results, both simulated and real, indicate that, by using the MAP criterion, it is possible to obtain better performance, as compared to conventional methods of reconstruction, with a very small increase in computational effort.</abstract>
		<type>Aplicações em Medicina</type>
		<language>en</language>
		<targetfile>a17.pdf</targetfile>
		<usergroup>administrator</usergroup>
		<usergroup>banon</usergroup>
		<visibility>shown</visibility>
		<mirrorrepository>sid.inpe.br/sibgrapi@80/2007/08.02.16.22</mirrorrepository>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<username>banon</username>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/dpi.inpe.br/ambro/1998/04.17.15.20</url>
	</metadata>
</metadatalist>