Close
Metadata

Identity statement area
Reference TypeConference Paper (Conference Proceedings)
Sitesibgrapi.sid.inpe.br
Identifier83LX3pFwXQZW44Lb/cMJwi
Repositorydpi.inpe.br/ambro/1998/04.17.10.02
Last Update1998:05.25.03.00.00 (UTC) administrator
Metadatasid.inpe.br/banon/2001/03.30.15.55.02
Metadata Last Update2013:04.19.14.14.54 (UTC) administrator
ISBN85-244-0103-6
Citation KeyWalterFour:1996:ApArLe
TitleApproximate arc length parametrization
FormatImpresso, On-line.
Year1996
Access Date2021, Dec. 03
Number of Files1
Size188 KiB
Context area
Author1 Walter, Marcelo
2 Fournier, Alain
EditorVelho, Luiz
Albuquerque, Arnaldo de
Lotufo, Roberto A.
Conference NameSimpósio Brasileiro de Computação Gráfica e Processamento de Imagens, 9 (SIBGRAPI)
Conference LocationCaxambu
Date29 out. - 1 nov. 1996
PublisherSociedade Brasileira de Computação
Publisher CityPorto Alegre
Pages143-150
Book TitleAnais
Tertiary TypeArtigo
OrganizationSBC - Sociedade Brasileira de Computação; UFMG - Universidade Federal de Minas Gerais
History (UTC)2008-07-17 14:17:55 :: administrator -> banon ::
2010-08-28 20:04:48 :: banon -> administrator ::
2013-04-05 16:31:16 :: administrator -> banon :: 1996
2013-04-05 16:51:52 :: banon -> administrator :: 1996
2013-04-19 14:14:54 :: administrator -> banon :: 1996
Content and structure area
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Keywordsarc-length parametrization
approximation
curve design
bezier parametric curves
AbstractCurrent approaches to compute the arc length of a parametric curve rely on table lookup schemes. We present an approximate closed-form solution to the problem of computing an arc length parametrization for any given parametric curve. Our solution outputs a one or two-span Bezier curve which relates the length of the curve to the parametric variable. The main advantage of our approach is that we obtain a simple continuous function relating the length of the curve and the parametric variable. This allows the length to be easily computed given the parametric values. Tests with our algorithm show that the maximum error in our approximation is 8.7% and that the average of maximum errors is 1.9%. Our algorithm is fast enough to compute the closed-form solution in a fraction of a second. After that a user can interactively get an approximation of the arc length for an arbitrary parameter value.
TypeModelagem Geométrica
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Contentthere are no files
Conditions of access and use area
data URLhttp://urlib.net/ibi/83LX3pFwXQZW44Lb/cMJwi
zipped data URLhttp://urlib.net/zip/83LX3pFwXQZW44Lb/cMJwi
Languageen
Target Filea14.pdf
User Groupadministrator
banon
Visibilityshown
Allied materials area
Mirror Repositorysid.inpe.br/sibgrapi@80/2007/08.02.16.22
Host Collectionsid.inpe.br/banon/2001/03.30.15.38
Notes area
Empty Fieldsaccessionnumber affiliation archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi e-mailaddress edition electronicmailaddress group holdercode issn label lineage mark nextedition nexthigherunit notes numberofvolumes orcid parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark url versiontype volume
Description control area
e-Mail (login)banon
update 

Close