
Developing Morphological Building Blocks: From Design to Implementation

MARCOS CORDEIRO D’ORNELLAS1, REIN VAN DEN BOOMGAARD1

1ISIS - Intelligent Sensory Information Systems
University of Amsterdam, Faculty WINS

Kruislaan, 403 - 1098 SJ
Amsterdam, The Netherlands

fornellas,rein g@wins.uva.nl

Abstract. Mathematical morphology has become a widely used technique for image processing and com-
puter vision. Initially designed as a set theory, it was generalized to the set of grayscale images and to the
complete lattice framework. Despite this accredited theoretical evolution, contemporary practice in morpho-
logical algorithm development still lacks of a standardized, mathematically rigorous algebraic structure that
is specifically designed for image handling. The purpose of this paper is twofold: first, it is intended to give
rise to a new morphological framework that overcomes the combinatorial explosion of algorithms needed
to deal with all possible types of lattices and structuring functions. Second, it provides us with the essential
tools in order to design and implement generic building blocks for morphological image operators.

1 Introduction

Many times, people involved in software development
for image processing and computer vision are confronted
with questions concerning the design and implementation
of algorithms. The reason for these questions is that the
developers as well as end users rarely communicate in
the same language and in turn, what an algorithm pre-
cisely does is somewhat unclear. Particular features and
pixel configurations, not taken into account in the origi-
nal implementation, are some of the problems that often
occur. Moreover, very often the answer for such ques-
tions are not straightforward and what developers do is to
show how toprogram aroundthat particular feature.

No doubt, that much of these problems is showed up
because in the past no one paid attention to specify and
design the method of working of the algorithms. Unfor-
tunately, an algorithm that is hacked this way is nearly
impossible to define afterwards. One of the reasons is
that program developers still do not make the most of
the functionality provided by the available programming
tools.

For instance, current released morphological soft-
ware packages likeMicromorph 1 and theMMach
Toolbox 2 for the KHOROSenvironment are still facing
these problems which has led to a entire reformulation in
such systems and in some cases, to the development of
a complete new software, with the intention to continue
standing as an useful tool. Sometimes, slightly different
formulations for one particular issue in one of the afore-
mentioned systems arrive at a different algorithm repre-

1 cCentre de Morphologie Math´ematique, École Nationale
Supérieure des Mines de Paris.

2 cKhoral Research, Inc.

sentation, which in turn leads to a distinct implementa-
tion. Moreover, having distinct implementations in prac-
tice for the same morphological operator in theory, gener-
ates more documentation, make the software difficult to
understand, and to use in an appropriate way.

Serra [18] was the first to observe that a general
framework for morphology was necessary. He noticed
that it could be achieved if one starts from the assump-
tion that the object space is a complete lattice. This idea
has been carried further by various people, in particular
Matheron [12], Heijmans [9], and Heijmans and Ronse
[10]. In the last few years, this idea has been extended
to multi-valued morphology (e.g. color images or image
sequences) in the works of Serra [19] and Goutsias et al.
[8].

In this paper, the essential algebraic theory from
image algebra and lattice representation is used in or-
der to build a morphological framework that overcomes
the combinatorial explosion of algorithms needed to deal
with all possible types of lattices (image types) and struc-
turing functions. The important point with respect to this
theory is that it gives a concrete system for the repre-
sentation of translation-invariant image processing algo-
rithms. Even if an algorithm such as erosion is formu-
lated in terms of minima and subtractions, these binary
operations must be implemented in a proper way.

In addition, we propose useful and elegant algo-
rithm implementations for morphological image opera-
tors based on the building block design approach. We
explore the functionality presented in theHorus library
to model the building blocks within the proposed mor-
phological framework.

The organization of the rest of this paper is as fol-

Proceedings of XII SIBGRAPI (1999) 1–?

2 D’ORNELLAS, M.C. AND BOOMGAARD, R. V.D

lows: Section 2 introduce the essentials of mathematical
morphology and image algebra. In section 3, we present
the modern way of constructing a morphological frame-
work based on pixel lattice, image lattice, and the op-
erator lattice. Section 4, addresses the design of mor-
phological building blocks and the set of rules attached
to them. In section 5, we move the building blocks de-
sign into practice by using theHorus library to represent
template and neighborhood operations. Section 6, shows
some of our experimental results and evaluation and we
conclude with section 7, summarizing the results and fur-
ther research.

2 Mathematical Morphology within Image Algebra

The development of algebraic frameworks in the context
of algorithm development for image processing has been
strongly influenced by image algebra. This term was first
used in reference to mathematical morphology, whose bi-
nary theory had been developed by Serra [17] in a precise
an well-designed algebra for image analysis.

Let us recall briefly the algebraic framework in
which a general characterization for mathematical mor-
phology and its elementary operators and properties
are possible. We refer to Heijmans and Ronse [10],
Ronse and Heijmans [16], Heijmans [9], Ronse [15], and
Dougherty and Sinha [5] [6].

We take a setL on which we have a partial order
relation4 andV as the set of all values onL. ThenL is
called a partially ordered set, or in brief a poset. For any
subsetS of L, we define its supremumg and infimum
f as respectively the least upper bound and the greatest
lower bound ofS andL. It is clear that the supremum
and infimum ofS are unique, provided that they exist.

Definition 2.1 (Complete Lattice) A complete lattice is
a setL = (V ;4), if every non-void subsetS ofL (even a
finite one) has a supremumgS and infimumfS defined
in L. Then it has a least and greatest element written by
gL andfL.

Definition 2.2 (Dilation and Erosion) LetL andM be
complete lattices. A dilation is an operator� : M) L
such that for any family of signalsfyi j i 2 Sg �M:

"(
_

i2S

yi) =
_

i2S

"(yi): (1)

By duality, an erosion is an operator" : L) M
such that for any family of signalsfxi j i 2 Sg � L:

"(
^

i2S

xi) =
^

i2S

"(xi): (2)

The recognition that the original binary and ex-
tended grayscale morphological theories are properly de-
veloped in the context of complete lattices is essential to

the algebraic theory of image operators as proposed by
Sternberg [20]. If we view algebraic operator theory as
representation of operators between lattices, then, a com-
plete theory has been developed by Banon and Barrera [1]
[2]. Since� is the only embedded operation on lattices, it
seems natural to expect that other lattices operations can
be expressed in terms of�.

Image algebra is essentially acceptable as a mathe-
matical necessary circumstance in which to represent al-
gorithms. These algorithms should appear as a sequence
of operators and images into a well designed framework,
where each operator can finally be expressed as a se-
quence composed of some collection of elementary op-
erators. One of the main issues of image algebra is to
produce statements in terms of low-level operations that
are tied to the algebraic representation of the fundamen-
tal structures upon which images and image operators are
designed as proposed by Ritter and Wilson [13].

Therefore, our goal is to obtain direct expressions
for lattice operators and relate these expressions to ef-
ficient algorithm implementations. This can be accom-
plished by supporting a collection of fundamental opera-
tors that can be grouped together, leading to more elabo-
rated compositions.

3 Constructing the Morphological Framework

The modern way of constructing the morphological
framework is a three-step process based on pixel lattice,
image lattice, and the operator lattice. It is indeed possi-
ble to make a distinction between scalar and non-scalar
pixel lattices whether or not the ordering relation is im-
plied or imposed. In this section, we will explain the
scalar pixel lattice. We refer to Ornellas et al. [4] for
the details about non-scalar pixel lattices and its use with
color images.

3.1 The Pixel Lattice

At the first level, we do not need to work with images at
all and only look at a complete latticeL that represents
the set of all values that a pixel can have (V), together
with a partial ordering relation4. For computational rea-
sons we also assume that the infimumf and supremum
g operators are explicitly defined (Implicitly, the order-
ing defines the notions of supremum and infimum). Fur-
thermore, we assume that the infimumfL and supremum
gL of L are known explicitly.

Definition 3.1 (Pixel Lattice) A pixel valued lattice is
the tuple:L = (V ;4;g;f;gL;fL) where:

V (value set): the set of all values;

4 (ordering): the orderings relationL � L !
(true,false);

Proceedings of the XII SIBGRAPI, october 1999

DEVELOPING MORPHOLOGICAL BUILDING BLOCKS: FROM DESIGN TOIMPLEMENTATION 3

g (supremum):L � L � � � � � L ! L (for discrete
images we only need a finite number of arguments);

f (infimum):L� L � � � � � L ! L;

gL (lattice supremum): the largest value in the value
set;

fL (lattice infimum): the smallest value in the value set.

The operations on and between pixel elements of a
given value setV are the usual elementary operations as-
sociated withV . V may vary according to the application.
Possible examples forV areR = R [f�1;+1g,
Z = Z [f�1;+1g, a closed segment[vo; vi], or a
discrete intervalf0; 1; � � � ; Ng. We can also takeV not
contained inR as in the case of color images, represented
by tuples (R,G,B).

A dilation in the context of the pixel lattice is any
mapping� : L ! L that distributes over the supremum
and preserves the lattice supremum (i.e.�(_L) = _L).
Equivalently, an erosion is any mapping" : L ! L that
distributes over the infimum and preserves the lattice in-
fimum (i.e."(^L) = ^L).

For example, consider the latticeL = (R [
f�1;+1g;6;_;^;�1;+1). This is evidently the
example that explains the choice of the symbols in the
abstract case. Infinitely many dilations and erosions can
be defined on this lattice. For example, let us consider the
erosion:

"(x) = x� a (3)

wherea is also an element from�R = R [f�1;+1g.
This is obviously an erosion since this operation dis-
tributes over the infimum and�1 � a = �1 for all
a. Strangely enough the above operation is also dilation.

A dilation is defined as:

�(x) = x+ a (4)

wherea is the same scalar used in the erosion. Note that
dilation and erosion are inverse operators in this case,
something that is very rare in morphological image pro-
cessing. Nevertheless the above defined dilation and ero-
sion form the basis of the classical dilations and erosions
on image lattices.

In the previous example, we defined a parameterized
family of dilations and erosions, where the parameter is
the valuea. Once we have defined them in a complete lat-
tice, many tools that are often used (like openings, clos-
ings, granulometries, alternating sequential filters, etc.)
follow automatically from this framework.

Again, we would like to stress the fact that even
in the familiar latticeL = (R [f�1;+1g;6
;_;^;�1;+1) the above definitions of dilations and

erosions are just examples and we can define many more.
For instance, consider the operator:

"(x) =
x

a
(5)

wherea is a positivereal value. It is indeed an erosion.
The dilation in this case is:

�(x) = ax: (6)

3.2 The Image Lattice

Let an image be defined as a map from some domainE
onto the complete latticeL. The space of all these images
will be denoted asEL. We construct a complete lattice on
this set of values and embed the ordering relation fromL
into EL. Let f andg be two images (i.e. elements from
EL), then we define an ordering relation4 on the new
complete latticeL0 = EL as:

f 4 g , 8y 2 E : f(y) 4 g(y): (7)

We also define the embedded operator� that takes
a valuea from L and makes an image that has the value
a elsewhere:�a(y) = a;8y 2 E. In addition, the infi-
mum and supremum operators are embedded inEL using
a pixelwise definition. For instance for the infimum oper-
ator we have:

(f f g)(y) = f(y)f g(y): (8)

The meaning of the symbols4, g andf is over-
loaded since it depends on the context whether we are
referring to the operators on the pixel values or to the op-
erator working on the entire image. We refer to Ronse
and Heijmans [16] for the proof that

L0 = (EL;4;g;f;�gL ;�fL) (9)

is indeed a complete lattice.
Defining dilations and erosions on the image lattice

is particularly simple. The following theorem proposed
by Goutsias et al. [8] provides us with a simple and el-
egant construction for image dilations and erosions. Let
�x;y and"x;y be a parameterized family of dilations and
erosions in the pixel lattice respectively. Any dilation on
the image lattice can now be written as the supremum
over dilations in the pixel lattice. In turn, any erosion
on the image lattice can be written as the infimum over
erosions in the pixel lattice:

�(f)(y) =
_

x2E

�x;y(f(x)) (10)

"(f)(y) =
^

x2E

"x;y(f(x)) (11)

Proceedings the XII SIBGRAPI, october 1999

4 D’ORNELLAS, M.C. AND BOOMGAARD, R. V.D

In case we take the simplest dilation and erosion in
the pixel lattice, that is translation invariant, we come
with:

�x;y(f(x)) = f(x) + g(x� y) (12)

"x;y(f(x)) = f(x)� g(x� y) (13)

The notion of template as used in image algebra
unifies and generalizes the usual concepts of templates,
masks, windows, and neighborhood operations into one
general mathematical entity. Furthermore, templates gen-
eralize the notion of structuring functions used in mathe-
matical morphology as proposed by Ritter et al. [14]. In
this way, it seems natural to represent the respective dila-
tion and erosion definitions in terms of templates having
B as a support.

�x;y(f(x)) = f(x) + ty(x); (14)

ty(x) =

�
g(x� y) if (x� y) 2 B

�1 otherwise

"x;y(f(x)) = f(x) + t
�

y(x); (15)

t
�

y(x) =

�
�g(x� y) if (x� y) 2 B

+1 otherwise

Note that several types of template operations might
be more easily implemented in terms of neighborhood
operations. Typically, neighborhood operations replace
template operations whenever the values in the support of
a template consist only of the unit elements of the value
set associated with the template.

By using the template representation, we arrive at:

�(fg)(y) =
_

x2E

f(x) + ty(x) (16)

"(fg)(y) =
^

x2E

f(x) + t�y(x): (17)

This leads to the classical dilation and erosion of an
imagef with respect to the structuring functiong:

�(fg)(y) =
_

x2E

f(x) + g(x� y) (18)

"(fg)(y) =
^

x2E

f(x)� g(x� y): (19)

Take due notice of the fact that the general definition
of dilations in equation 10 and erosions in equation 11
are not dependent on the classical image border problem.
Only elements from the image domainE are used. The
translation invariant formulation is more error prone. As
it is stated in equations 18 and 19, the translation invari-
ant dilation and erosion are not dependent on the domain

E. Classically the functiong(x � y) is interpreted as an
image, and in that case it is evident thatx� y is not nec-
essarily in the domainE. It is only thatx � y visits all
points inE for any constant valuex asy visitsE, when
E is an infinite domain. Because in practiceE must be
bounded, we are bound to run in all sorts of conceptual
problems when we insist on interpretingE as the domain
of f andg.

3.3 The Operator Lattice

The third and last step in the morphological theoretical
framework is to consider the set of all increasing image
operators. Indeed, it can be shown that the partial or-
dering relation introduced for images can be extended to
work on operators as well. This last step is perhaps the
most interesting one because it allows us to deal with the
property of image operators, regardless of what images
they actually work. Consider an imageI and its corre-
sponding dilation�I and erosion"I outputs. It is clear
that these images adhere to the"I � I � �I ordering
relation in the operator lattice.

4 The Design of Morphological Building Blocks

Design methods vary in how they ease abstraction and
reuse to make complexity and change manageable in a
given situation. The notion of scale will give us a deeper
understanding of these differences. The discussion of
scale will be the basis for the fundamental definitions of
a building block that is the main concept presented in this
section.

4.1 Scales and Building Blocks

The notion of scale in software development has received
considerable attention recently. It was resulted that many
serious software mistakes have been made because the
relationship between scale of the problem and the scale of
the solution was poorly understood or applied. Cockburn
[3] defines scale as a means of hiding things that are not
relevant at the current stage of development. As if a group
of code lines will become an algorithm at a coarser scale,
a group of related classes might become a module or a
component.

Scales are classified by the nature of the abstractions
that are typically implemented at each level:

� Algorithms and Data Structures: This is the low-
est software level. Consider an image: when the im-
age is implemented so that it can hold any value set,
its operations can be easily described. Of course,
efficiency is a major concern at this level, because
performance given away here can not be retrieved
at higher levels. Generic programming approach is

Proceedings of the XII SIBGRAPI, october 1999

DEVELOPING MORPHOLOGICAL BUILDING BLOCKS: FROM DESIGN TOIMPLEMENTATION 5

especially suited to achieve flexibility and speed si-
multaneously.

� Modules and Packages:It is used to set up bound-
aries between different parts of the system. Bound-
aries divide the system into clearly identifiable sub-
systems that can be handled and used separately. In
this sense, modules have been the origin of the inter-
face concept as a means to cross subsystem bound-
aries in an appropriate manner.

� Architecture: The architecture determines how the
modules are put together. It communicates the struc-
ture of the application to the developers and main-
tainers so that changes and extensions can be made
without destroying the underlying abstractions. Ar-
chitecture thus acts as a design center that supports
system evolution by defining a stable core that pre-
serves system integrity.

It is interesting to observe in the above discussion
of scales the need for a balance between flexibility and
encapsulation, accomplished by the module level. There-
fore, it seems a natural conclusion to generalize the no-
tion of a module to any scale level. This is the purpose of
building blocks.

A building block establishes the necessary bound-
aries that facilitate reuse. It encapsulates some reusable
functionality and provides well-defined mechanisms to
adapt this functionality to the requirements of a larger
whole. A building block containing a detailed functional-
ity will be easier to learn, to maintain, and to transfer into
a new context. Moreover, if changes are required, only a
single building block must be modified or exchanged.

In this paper, we will restrict ourselves to the design
of morphological building blocks for scalar lattices at the
algorithms and data structures (lowest level). These ba-
sic modules are constructed based on the morphological
framework already stated.

4.2 Design Details of Building Blocks

The design of the morphological building blocks may
comply with a small set of rules. These rules are intended
to specify the kind of lattice we are working with, the
support type related to the shape of the structuring func-
tion, the reduce and lattice operation within pixel lattice
respectively, and the support size.

4.2.1 Lattice Type

The lattice type can be one of the lattices associated with
the pixel types in the image. The lattice type deter-
mines the lattice values in the structure. In this way, we
have a list of scalar lattices associated withbyte, short,

int, float, anddouble types. The same holds for two-
dimensional and three-dimensional vector representation
of scalar lattices likevec2int andvec3double.

Lattice type set in the concepts of lattice supremum
and infimum. They can be defined by the user or by de-
fault. When defined by default, it follows the pre-fixed
limits included in the programming language definition.
As an example, a scalar lattice of integers has its infimum
assigned toINT MIN + 1 and its supremum assigned to
INT MAX.

4.2.2 Support Type

The Support type can be specified for flat and non-flat
operations and is associated to the shape of the sup-
port. Support types are usually two-dimensional and flat.
When referring to two-dimensional flat operations, the
support acts as a characteristic function in that it do not
weigh a pixel but simply note which pixels are in its sup-
port and which are not.

Flat support types can have one of the following
shapes:

� Square - square shape with dimensions defined by
thesupport size; If support size= 3, we have the
classical3� 3 representation;

� Cross - cross shape with dimensions defined bysup-
port size;

� Disk - disk shape with dimensions defined insup-
port size anddisk metric. Here,disk metric as-
sumes one of the metrics:city-block, chessboard,
Euclidean, andround;

� Line - line shape with length and angle defined by
line length andline angle;

Non-flat support is more complex since we are not
dealing with characteristic functions anymore. From that
account, it may be possible for the user to define a con-
stant value for all pixels in the support, a set of values for
the pixels in the support, or to make use of a function that
generates the values within the support.

4.2.3 Support Size

The support size defines the size of the support type and
helps allocate a scratch image with a border, handling the
border problem.

4.2.4 Reduce Operation Type

The Reduce operation type is represented as the pixel lat-
tice operation ofinfimum or supremum for flat or non-
flat dilations and erosions respectively. These operations
should be defined for every pixel lattice.

Proceedings the XII SIBGRAPI, october 1999

6 D’ORNELLAS, M.C. AND BOOMGAARD, R. V.D

4.2.5 Lattice Operation Type

The lattice operation type is meant to be one of the triv-
ial operations performed in the pixel lattice that gives rise
to dilations and erosions in the pixel lattice. The set of
operations (e.g.,+;�; �; =; � � �), should embed a range
checking test routine in order to bound the values within
the lattice extrema. The lattice operation type is only nec-
essary when a non-flat operation is performed, using the
template representation from image algebra.

Addition/Subtraction
Multiplication/Division
Floor/Ceiling

1D Data Representation
2D Data Representation
3D Data Representation

Infimum
Supremum

Square
Cross
Disk
Line
[Support Size]

Scalar Lattice Type

Support Type

Reduce Op Type

Lattice Op Type

Figure 1: Basic Building Blocks Representation.

Figure 1 gives the building block representation and
its components.

5 From Design to Implementation

The design of morphological building blocks is firmly
established in the structure provided by theHorus li-
brary as proposed by Koelma et al. [11].Horus is
a multi-platform library, including a concise separation
between semantics, representation, and implementation
of Horus objects. Semantics, representation, and im-
plementation are defined and implemented by different
classes. The most important class in theHorus library
is HxImageRep which defines images and image pro-
cessing functionality grounded on image algebra.HxIm-
ageRep is an abstract data type in that its interface hides
all details of the implementation (data storage and manip-
ulation) from the class user. The methods defined in the
HxImageRep interface become the only access path to
the actual pixels in an image. The functionality is actu-
ally implemented byHxImageData. Binary, grayscale,
and color images are used to associate semantics with the
pixel values, i.e. what does the numerical value of a pixel
actually represent.

The implementation of theHxImageData aims at
efficiency and makes use of the template mechanism of
C++ to implement operations independent of the lat-
tice type. Furthermore, the value setV may assume
different types according to the application in theHo-
rus library and determines the respective values for
g;f;gL; and fL.

With the intention to use the functionality provided
by the building blocks representation, we apply function
objects by means of template (non-flat) and neighbor-
hood (flat) operations:

� Template operations: The result is obtained by
sliding the support type overthis image and, at each
position, combining the values of the support type
with the underlying values ofthis image through the
lattice operation type and reducing this set of values
to a single one by means of the reduce operation type
function objectf .

� Neighborhood operations: The result is obtained
by sliding the support type overthis image and, at
each position, reducing the underlying values ofthis
image by means of the reduce operation type func-
tion objectg.

The inner loops for these two operations are im-
plemented through a non-mutating sequence algorithm
for each included in the Standard Template Library
(STL), which traverses a sequence of relevant elements
contained in the support type. The algorithmic repre-
sentations for template and neighborhood operations are
shown in figure 2 and 3. Dilations and erosions are
mapped depending on whether the operation is non-flat
or flat.

It is also meaningful to give the reader a graphical
overview of the design of morphological building blocks
used to implement flat operations within theHorus li-
brary. For this purpose, we decided to use the Unified
Modeling Language (UML) mentioned by Fowler and
Scott [7].

The Unified Modeling Language (UML) is a lan-
guage for specifying, visualizing, constructing, and doc-
umenting the artifacts of software systems, as well as for
business modeling and other non-software systems. The
UML represents a collection of best engineering practices
that have proven successful in the modeling of large and
complex systems and consolidates a set of core modeling
concepts that are generally accepted across many current
methods and modeling tools.

Whenever an operation is called,HxMorphFunc-
tor searches for a function object key inHxMorphFunc-
torTable with its respective parameters. Once a key has
been found, it goes through the derived classesHxFlat-
MorphLatticeFunctor and HxFlatMorphLatticeFunc-
Spec in the hierarchical structure with the intention to

Proceedings of the XII SIBGRAPI, october 1999

DEVELOPING MORPHOLOGICAL BUILDING BLOCKS: FROM DESIGN TOIMPLEMENTATION 7

find the appropriate method that will actually perform the
operation. This is done through the pure virtual function
mechanism, included in C++. The UML class represen-
tation is expressed in figure 5.

Get LatticeType information from the input image;
Call support.setSize(supportSize);

Allocate scratch image (border handling);
For every pixel (p in this, result) f

Set result to ReduceOpType::initval;
For every pixel (q in the SupportType) f

result = ReduceOpType(LatticeOpType(this(p+ q),
q.value()),result);

g
g
Copy result to the output;
Deletescratch image;

Figure 2: Non-flat Operation Pseudo-code.

Get LatticeType information from the input image;
Call support.setSize(supportSize);

Allocate scratch image (border handling);
For every pixel (p in this, result) f

Set result to ReduceOpType::initval;
For every pixel (q in the SupportType) f

If (q.value() == 1)
result = ReduceOpType(this(p+ q),result);

g
g
Copy result to the output;
Deletescratch image;

Figure 3: flat Operation Pseudo-code.

6 Experimental Results and Evaluation

The design and implementation of morphological build-
ing blocks put its main emphasize on flexible algorithms,
because algorithms represent the principle expertise of
this field. Algorithm Implementations are consequently
built using generic programming and STL. By writing
adapters (image iterators and accessors), one can use the
algorithms on top of his/her own data structures, within
his/her own environment. Alternatively, one can also use
the data structures provided byHorus , which can be eas-
ily adapted to a wide range of applications. Algorithm
flexibility and functionality come almost for free since
the design uses compile-time polymorphism (templates).

Table 1 shows the processing time for flat dila-
tions with respect to the support type when applied to
a grayscale and color image of size512 � 512 with lat-
tice type set todouble andvec3double respectively. The
support size was set to 5 (e.g.5� 5 mask). All the algo-

rithms were tested with a Pentium-II 300 MHz, running
Windows NT 4.01, and using Visual C++ compiler 5.0
with optimizations enabled. Figure 5 shows some of the
outputs obtained when processing both the test image in
its grayscale and color versions.

square cross Euclidean disk line

Dilation 0.206 0.158 0.238 0.116
Color Dilation 0.529 0.412 0.623 0.307

Table 1: Processing Time (seconds).

It is important to mention that the algorithms pro-
posed in this paper do not exploit machine dependent
properties, which speed up computations. By using those
properties, algorithms are hard-coded and consequently,
the required generality can not be fulfilled anymore.

7 Conclusions and Further Research

In this paper, we described a modern way of construct-
ing the morphological framework based on image alge-
bra representations whose family of operators can be ex-
tended in accordance with the application needs. It is im-
portant to stress the strong relationship between theory
and practice, since the available functionality presented
in theory is freely mapped into the design and implemen-
tation of the morphological building blocks. The pro-
posed Building blocks are computationally simple, pro-
ducing very close representations within the lattice the-
ory.

In order to map mathematical representations from
the morphological framework into the design level, we
made use of theHorus environment.Horus provides
a set of image processing functionality firmly established
on image algebra concepts and gives the possibility to
combine the fundamental operators into more specialized
ones. The morphological framework proved very useful
in reducing the time lag between the formulation of an
algorithm and its implementation, relieving the developer
from many time-consuming programming tasks.

We have attempted to design the morphological
building blocks in such a way that only those responsi-
bilities that definitely must be taken on by the morpho-
logical framework and theHorus classes are imposed
upon them. Likewise, the underlying representation of
most objects is abstract. This allows the building blocks
to be expanded with the intention to support new and pos-
sibly more efficient representations. However, we may
have to balance these design criteria against the need for
efficiency.

The subject of our research is in an early but very
interesting stage. The subject is important and in need of

Proceedings the XII SIBGRAPI, october 1999

8 D’ORNELLAS, M.C. AND BOOMGAARD, R. V.D

HxFlatMorphLatticeFuncSpec

attributes

ctor (HxFlatMorphFuncSpecKey);
doIt (ImgSigT ,ImgSigT ,int
SupportSize);

ImageSigT ,LatticeT ,
SupportT ,ReduceOpT

HxFlatMorphLatticeFunctor

attributes

ctor (HxFlatMorphFuncKey);
doIt (ImgSigT ,ImgSigT ,int
SupportSize) = 0;

ImageSigT

HxMorphFunctorTableTem

attributes

FuncT * find(funcT ::keytype);

FuncT

HxMorphFunctorTable

attributes

insert(HxFunctor *,HxFuncKey);
HxFunctor * find(HxFuncKey);

HxMorphFunctor

attributes

ctor (HxFuncKey);

HxFlatMorphLatticeFuncKey

attributes

operations

HxMorphFunctorKey

attributes

operations

Dependency

Inheritance

Class Name

attribute:Type = initialValue

operation(arg list):return type

Figure 4: UML Class Representation for Flat Operations.

additional work. Extra care should be reserved to speed
up computations by designing more elegant and efficient
non-mutating sequence algorithms for structuring func-
tion decomposition wherever possible.

Acknowledgements

The authors would like to thank Edo Poll for his valu-
able suggestions and expertise with respect to the low-
level implementation ofHorus library. This work is
partially supported by CAPES Foundation under grant
BEX2780/95-0.

References

[1] G. J. F. Banon and J. Barrera. Minimal representa-
tions for translation invariant set mappings by math-
ematical morphology. SIAM Journal of Applied
Mathematics, 51(6):1782–1798, 1991.

[2] G. J. F. Banon and J. Barrera. Decomposition of
mappings between complete lattices by mathemati-
cal morphology part 1: General lattices.Signal Pro-
cessing, 30:299–327, 1993.

[3] A. Cockburn. Surviving Object-Oriented Projects.
Addison-Wesley, London, 1998.

[4] M. C. d’Ornellas, R. v.d. Boomgaard, and J. Geuse-
broek. Morphological algorithms for color images

based on a generic-programming approach. InPro-
ceedings of the Brazilian Conference on Computer
Graphics and Image Processing (SIBGRAPI’98),
pages 323–330, Rio de Janeiro, 1998. IEEE Press.

[5] E. R. Dougherty and D. Sinha. Computational
gray-scale mathematical morphology on lattices (a
comparator-based image algebra) part 1: Architec-
ture. Real-Time Imaging, 1(1):69–85, 1995.

[6] E. R. Dougherty and D. Sinha. Computational
gray-scale mathematical morphology on lattices (a
comparator-based image algebra) part 2: Image op-
erators.Real-Time Imaging, 1:283–295, 1995.

[7] M. Fowler and K. Scott.UML Distilled - Applying
the Standard Object Modeling Language. Addison-
Wesley Object Technology Series, New York, 1997.

[8] J. Goutsias, H. J. A. M. Heijmans, and K. Sivaku-
mar. Morphological operators for image se-
quences.Computer Vision and Image Understand-
ing, 62:326–346, 1995.

[9] H. J. A. M. Heijmans.Morphological Image Oper-
ators. Academic Press, Boston, 1994.

[10] H. J. A. M. Heijmans and C. Ronse. The algebraic
basis of mathematical morphology – part I: Dila-
tions and erosions.Computer Vision, Graphics and
Image Processing, 50:245–295, 1990.

Proceedings of the XII SIBGRAPI, october 1999

DEVELOPING MORPHOLOGICAL BUILDING BLOCKS: FROM DESIGN TOIMPLEMENTATION 9

Figure 5: (a) greyscale input, (b) dilation, (c) erosion, (d) opening, (e) closing, (f) color input, (g) color dilation, (h)
color erosion, (i) color opening, and (j) color closing.Pollard Willows With Setting Sun, Vincent van Gogh, 1888,
Kroller-Müller Museum - The Netherlands.

[11] D. Koelma, E. Poll, and F. Seinstra. Horus release
0.6. Research report, University of Amsterdam,
Amsterdam, 1998.

[12] G. Matheron. Filters and lattices. In J. Serra, edi-
tor, Image Analysis and Mathematical Morphology,
Vol. 2: Theoretical Advances, chapter 6. Academic
Press, London, 1988.

[13] G. X. Ritter and J. N. Wilson.Handbook of Com-
puter Vision Algorithms in Image Algebra. CRC
Press, New York, 1996.

[14] G. X. Ritter, J. N. Wilson, and J. L. Davidson.
Image algebra: An overview.Computer Vision,
Graphics and Image Processing, 49:297–331, 1990.

[15] C. Ronse. Why mathematical morphology needs
complete lattices.Signal Processing, 21:129–154,
1990.

[16] C. Ronse and H. J. A. M. Heijmans. The algebraic
basis of mathematical morphology – part II: Open-
ings and closings.Computer Vision, Graphics and
Image Processing: Image Understanding, 54:74–
97, 1991.

[17] J. Serra. Image Analysis and Mathematical Mor-
phology. Academic Press, London, 1982.

[18] J. Serra, editor.Image Analysis and Mathematical
Morphology. II: Theoretical Advances. Academic
Press, London, 1988.

[19] J. Serra. Anamorphoses and function lattices (mul-
tivalued morphology). In E. R. Dougherty, edi-
tor, Mathematical Morphology in Image Process-
ing, chapter 13, pages 483–523. Marcel Dekker,
New York, 1993.

[20] S. R. Sternberg. Grayscale morphology.Computer
Vision, Graphics and Image Processing, 35:333–
355, 1986.

Proceedings the XII SIBGRAPI, october 1999

