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Abstract. In this work, a morphological representation of a template matching algorithm for gray–scale
images is presented. The algorithm is the composition of the so–called template matching operator with the
maximum gray–level location operator, which can be both expressed in terms of the following classes of
mathematical  morphology elementary operators: dilations, erosions and anti–dilations. Moreover, the algo-
rithm is applied to remote sensing images.
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1 Introduction

The template matching problem consists of finding out in
a search image the location of a template (pattern). In
some applications, for example in image registration, this
template is extracted from a reference image.

In literature, we can find many techniques to per-
form template matching (Ballard & Brown, 1982; Gosh-
tasby, 1985; Li & Dubes, 1985; Lemmens, 1988). These
techniques can be classified in three groups: area–based
(Barnea & Silverman, 1972; Moik, 1980), feature–based
(Medioni & Nevatia, 1984; Hannah, 1988; Toth &
Schenk, 1992; Flusser & Suk, 1994) and structural (Bins,
1988; Ventura et al., 1990; Haala & Vosselman, 1992).

The classical technique, among the area–based
ones, derives from the normed vector space theory
(Luenberger, 1969). In this approach, the images or tem-
plates are seen as vectors.

When the Euclidian norm is used, we get the well
known correlation method (Barnea & Silverman, 1972)
and the best fit is defined in terms of maximal correlation
between two vectors. In this approach, the correlation is a
sum of products.

When the so called l 1 norm is used, Maragos (1988)
showed that minimizing it is equivalent to maximizing a
nonlinear correlation, a sum of minima, which he called
morphological correlation.

Following the nonlinear approach, Ronse (1996)
characterized the template extraction by three require-
ments: the so called “overcondensation”, anti–extensiv-
ity and idempotence. It is shown that an operator having
these properties is the composition of an inf–separable
operator (Banon & Barrera, 1993) followed by a dilation.

Moreover, Khosravi and Schafer (1996) used the
sum of a gray–scale erosion and a gray–scale anti–dila-
tion (both vertically invariant) with the same structuring

function to perform a template matching within a signal
corrupted by Gaussian or impulsive noises.

Our main objective in this paper is to introduce a
simple template matching algorithm based on area and
defined within the framework of the lattice theory and,
more specifically, the mathematical morphology. In our
approach the correlation is a sum of intersections of thre-
sholdings.

More precisely, we use some elementary morpho-
logical operators (dilations, erosions and anti–dilations)
to construct a template matching algorithm. This is an
important issue because it can unify the way we process
images.

Different from Maragos, we do not assume the vec-
tor space structure and different from Ronse, we do not
include a dilation for template reconstruction at the end
of the matching procedure. Finally, different from Khos-
ravi and Schafer we use pairs of erosion and anti–dilation
with distinct structuring functions.

In Section 2, we recall some basic definitions from
mathematical morphology. In Section 3, we present our
template matching algorithm in terms of some elemen-
tary morphological operators and, finally, in Section 4 we
show an application to remote sensing images.

2 Mathematical Morphology

Originally, mathematical morphology was developed in
the context of image analysis (Serra, 1982). Nowadays,
an important part of it belongs to the lattice theory (Serra,
1988; Heijmans & Ronse, 1990).

A lattice is a partially ordered set in which the supre-
mum and the infimum of two elements exist (Birkhoff,
1967). We denote as a� b and a� b, respectively, the
supremum and the infimum of two elements a and b in the



lattice. If the lattice is finite then it has a least and a great-
est element that we denote, respectively, as o and i.

Let (L1,�) and (L2,�) be two finite lattices. Let �
be a mapping from (L1,�) to (L2,�). We will call � an
operator.

By definition,
� is a dilation iff

�(a� b) � �(a)� �(b) and �(o) � o;
� is an erosion iff

�(a� b) � �(a)� �(b) and �(i) � i;
� is an anti–dilation iff

�(a� b) � �(a)� �(b) and �(o) � i;
� is an anti–erosion iff

�(a� b) � �(a)� �(b) and �(i) � o;
for any a and b in L1. For the general case of complete lat-
tice see Serra (1988), Heijmans & Ronse (1990), Banon
& Barrera (1993).

These operators are called elementary operators of
the mathematical morphology because from them, it is
possible to represent any operators from (L1,�) to

(L2,�) (Banon & Barrera, 1991, 1993).

3 Template Matching Algorithm
Exact template matching is useless in most of the practi-
cal applications. For example, in remote sensing two
images of the same scene at different times or from differ-
ent sensors are almost never equal. A template matching
algorithm must be based on inexact matching (Shapiro &
Haralick, 1981; Bins, 1988; Lemmens, 1988). From the
mathematical  morphology point of view, inexact match-
ing can be achieved by defining intervals around refer-
ence values and by testing if all the values of interest are
falling into them. Nevertheless, the requirement that all
the conditions are satisfied is not reasonable in practice,
and what we suggest here is to look for the situations
where a maximum number of conditions are satisfied.

The template matching algorithm proposed is
shown in Figure 1. In this figure, f is the reference image
and g the search image. The template matching algorithm
is composed of several operators, one in each block. In
order to present each of them, we are now introducing
some mathematical notations.

Fig. 1 – Template matching algorithm. 
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Let Z be the set of integer numbers, we denote as Z 2

the Cartesian product Z � Z. Let E be a finite rectangle

of Z 2, i.e., E �

� I 1� I 2, where I 1 and I 2 are two intervals
of Z; and let Km be the interval [0,m] of Z. We denote the

set of mappings from E to Km as Km
E. Actually, Km

E repre-
sents the set of images with domain E and range Km. In
this work, we will need to deal with images having differ-
ent domains, for this reason, we introduce one more finite
rectangle of Z 2 that we call D.

In Figure 1, the so–called measure� is a mapping
from E (or D) to Z, defined by,

�(f) �

��.5� (1�#E)(�
x  E

f (x))�,

for any f in Km
E, where #E is the number of elements of

E. Actually, �(f) is an approximation of the average of
the image f.

The template matching algorithm is aimed at
searching for a given template fW in the search image g.
The template fW is a subimage of f in the sense that W is a
rectangle of Z 2 called window.

In this section, for the sake of simplicity and without
lose of generality we assume that W has a center (in other
words, its number of rows and columns is odd) and this
center is located at the origin of Z 2, i.e., the point (0, 0).

(1)



The template fW can be chosen manually or through
an automatic procedure. In Figure 1, this procedure is
represented by the operator �1. In this work, we will not
go into details about it.

The operator �2 produces a pair of templates

(f�W, f�W) from the template fW in Km
W. This pair of tem-

plates is defined in the following way:

f�W(x) �

�max {0, min {m, fW(x)� c1}}

f�W(x) �

�max {0, min {m, fW(x)� c2}}
for any x in W, where c1 and c2 (c1� c2) are two integers
depending on the averages �(f) and �(g), and a parameter
F.

The two integers c1 and c2 are calculated in the fol-
lowing way:

c1� d�� F�2   and   c2� d�� F�2
where,

d�� �(g)� �(f).
The parameter F defines the length of the interval
[c1, c2] centered at d�.

The parameter d� is intended for reducing the image
brightness difference. If f and g have the same average,
then d� is zero and no first order adjust is needed. Fur-
thermore, we assume that both images have the same
standard deviation, so no second order adjust is needed.

The search image g is looked over in order to find
out the location of the best fit with the template fW. This
is done through the so called template matching operator
� (Figure 1). At this stage, we need to introduce some
new notations.

Let G be the subset of Z 2, given by G� D�W,
where the symbol � represents the Minkowski sub-
traction (Banon & Barrera, 1994), and let l be an inte-
ger number between 0 and m. The subset G, i.e., the dif-
ference of D and W, is a smaller rectangle compared to
D, as shown in Figure 2. It will correspond to a reduce
domain for further processed images.

D

Fig. 2 – Domain reduction.
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If  n is the number of window elements, in other

words n� #W, then we denote as n �

� {1,...,n} the set
of integer numbers between 1 and n. For any integer

number i in n, we denote as � l
i and � l

ai
 the operators

from Km
D to K1

G defined by:

� l
i(g)(x) �

��1 if g(x� wi) � l
0 otherwise

� l

ai
(g)(x) �

��1 if g(x� wi) � l
0 otherwise

for any g Km
D and x G; where i � wi�is a bijec-

tion from n to W, just for numbering the elements of W.
The pixel of the binary image � l

i(g) (the transformed

of g Km
D through � l

i), at position x has value 1 when-
ever the pixel of g at the neighborhood position x� wi

has a value greater than or equal to l. For the operator � l

ai
,

we just reverse the binary relation �.
By construction, the thresholding operators � l

i and

� l

ai
 are, respectively, erosions and anti–dilations from

(Km
D, �) to (K1

G, �), where � is the pointwise order-
ing derived from the ordering between gray–levels
(Banon & Barrera, 1993; Faria, 1997).

We are now ready to introduce the template match-
ing operator. We call template matching operator the

operator ��from Km
D to Kn

G, given by:

�
�

� �
i  n

� i

where the � i’s are n operators from Km
D to K1

G, given
by:

� i �

� �i
f�W (wi)

� �ai
f�
W

(wi)
.

Actually, the operators, like the� i’s, which are the
intersections of an erosion and an anti–dilation, are
important in operator decomposition and are called sup–
generating operators (Banon & Barrera, 1993). These
operators for binary images are similar to the well
known Hit–or–Miss operators (Serra, 1982).

Figure 3 shows the operator �.

�1

�

�

�n

Fig. 3 – Template matching operator.
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The pixel of the image � i(g) (the transformed of

g Km
D through � i), at position x G, has the value

� i(g)(x). This value is called the matching condition.
From Equations (6) and (7), the matching condition

is 1 (i.e., satisfied) whenever g(x� wi) falls in the inter-
val [f�W(wi), f�W(wi)] and 0 (i.e., not satisfied) otherwise.
Hence, we can see that �(g)(x) simply indicates the num-
ber of satisfied conditions among n possible ones.

The operation of sum, appearing in the definition of
�, is an extension to operators of the sum of n numbers 0
or 1 which returns simply the number of 1’s.

In other words, � can be defined in an equivalent
way by:
�(g)(x) � #{ i  n : g(x� wi)  [f�W(wi), f�W(wi)]},

for any g Km
D and x G. We can see that “behind”

this expression we have a sum of n sup–generating opera-
tors.

Furthermore, we observe that the operator � is the
sum of intersections of thresholding operators.

In the next step, the image g� produced by � is

looked over through an operator � which locates its max-
imum pixel value and produces the image h (Figure 1). In
order to present it we need to introduce some more nota-
tions.

For any integer number l between 0 and n, we
denote as � l and � l the operators from Kn

G to K1
G

defined by:

� l(f)(x) �

��1 if f (x)� l
0 otherwise

� l(f)(x) �

��1 if f (x)� l
0 otherwise

for any f  Kn
G and x G.

Like the operators of Equations (6), � l and � l are
thresholding operators, but on the other hand, they are
not neighborhood operators.

Furthermore, we denote as �G

a
 the operator from

K1
G to K1

G defined by:

�G

a
(f) �

��1G if f � 0G

0G otherwise

for any f  K1
G, where 0G and 1G are mappings from

G to K1 assuming, respectively, the constant values 0
and 1.

Finally, for any integer number l between 0 and n,

we denote as �a
l the operator from Kn

G to K1
G defined by

the composition:

�a
l

�

� �G

a
	 � l.

By construction, the operators � l, � l and �a
l are,

respectively, dilations, erosions and anti–dilations

from (Kn
G, �) to (K1

G, �), and �G

a
 is an anti–dilation

from (K1
G, �) to (K1

G, �) (Banon & Barrera, 1993;
Faria, 1997).

We are now ready to introduce the operator for max-
imum gray–level location. We call maximum gray–level

location operator the operator � from Kn
G to K1

G, given
by:

�� �
l � 0, ���, n

� l

where the � l’s are n� 1 operators from Kn
G to K1

G,
given by:

� l
�

� �l � �a
l.

For the same reason that we have seen above, the
operators � l’s are sup–generating operators. Figure 4

shows the operator �.

�0

�

�

�n

Fig. 4 – Maximum gray–level location operator.

The pixel of the binary image �(g�) (the transformed

of g�  Kn
G through �), at position x G, has value 1

whenever the pixel of g� at this position has the greatest
value among all the pixel values, i.e., has the value
maxg�(G).

In other words, � can be defined in an equivalent
way by:

�(g�)(x) � �1 if g�(y)� g�(x) (y G)
0 otherwise

,

for any g�  Kn
G e x G.

Actually, in the above representation of the operator
for maximum gray–level location, there is an implicit
thresholding decomposition of the input image (Banon,
1997).

The domain of the resulting image h� �(g�) is G.
In order to return to the original domain D of the search
image, which is larger than G (actually, D � G
W),
we need one more step. Processing h through the last
operator �D, we get the image h� showing where the tem-
plate matching occurs in the proper domain of the search

(9)



image (Figure 1). To achieve this expansion effect, while
preserving the information contained in h, the operator

�D from K1
G to K1

D must be define in this way:

�D(h)(x)� �h(x) if x G
0 otherwise

for any h K1
G and x D. Furthermore, we observe

that �D distributes over the union, i.e., it is a dilation from

(K1
G, �) to (K1

D, �).
Figure 5 shows a numerical example where the

images and the template are reduced to one–dimensional
signals. In this example, w2 coincides with the origin of
Z 2.

g

Fig. 5 – Numerical example.
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4 Application to Remote Sensing Images

The template matching algorithm of Section 3 was used
on remote sensing images (Faria, 1997). We present now
the result of its application to a scene acquired from the
Thematic Mapper (TM) sensor of the LANDSAT–5 satel-
lite (path=220, row=77, quadrant=A, band=5), of a
region near Itapeva in São Paulo State. We have used two

TM subimages of size 360 by 360, one taken in Septem-
ber 09, 1990, as the reference image, and the other taken
in July 18, 1994, as the search image.

In our experiment, we have chosen three different
templates of size 51� 51 in the reference image. The
first column in Table 1 shows the position of the center of
these templates. For each one, we have used three differ-
ent values for the parameter F. For each of these values,
Table 1 shows the maximum gray–level in g�(G) and its
position in the search image domain. The last column of
Table 1 shows for each template its visual location
obtained by a human operator.

TABLE 1 – EXPERIMENTAL RESULTS

Parameters of the
Experiment

Result of the
Algorithm

Visual
Location

Template
Center in
the Refer-

ence Image
f (col., row)

F

Maxi-
mum
value

in
g’(G)

Position of
the

Maximum
Value

 (col., row)

Template
Location in
the Search
Image g

(col., row)

(241 37)
15 580 (240,37)

(240 37)(241,37)
30 1151 (240,37)

(240,37)

45 1528 (240,37)

(284 120)
15 571 (283,120)

(283 120)(284,120)
30 1057 (283,120)

(283,120)

45 1440 (283,120)

(37 243)
15 657 (37,243)

(37 242)(37,243)
30 1250 (36,242)

(37,242)

45 1648 (36,242)

In this experiment, the maximum gray–level in
g�(G) is unique. This is generally the case in remote sens-
ing images. If it is not unique, some decision should be
made depending on the final objective of the template
matching.

Although the correct matching depends on the
parameter F, we have observed that it can be achieved
within a fairly large interval of values. For example, from
Table 1, we observe that the result is not affected so much
by a change in F.

Figure 6 shows the reference image f and the search
image g used in the experiment. The small square in the
domain of the reference image contains the second tem-
plate of Table 1, i.e., the template of size 51� 51 cen-
tered at position (284,120) as indicated by the small
cross. The small square in the domain of the search image
indicates the template visual location. Moreover, Figure
6 shows the images g� and h� obtained by running the
algorithm with F equal to 15. The first one is a gray–level
image which displays at each position the number of
satisfied conditions in the matching process, and the last

(10)



one is a binary image of one black point marking the
place of the best matching.

Fig. 6 – Application of the template matching algorithm to TM/LANDSAT images. 
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We observe that the output image g� of the template
matching operator is very much like a correlation image,
the brighter the pixel, the better the fit.

In this experiment, we see that the template match-
ing algorithm was able to find out, in the search image,
the right location of the template.

5 Conclusion

The template matching algorithm presented in this paper
is the composition of three operators which have been
defined in terms of dilations, erosions, and anti–dilations,



that is, in terms of some mathematical morphology ele-
mentary operators.

Different from other techniques, our template
matching operator is the sum of intersections of thresh-
olding operators.

The algorithm has been successfully applied to a
pair of remote sensing images of the same scene. Three
different templates from the reference images have been
encountered at the right location in the search image.

In this way, we have shown that a simple template
matching operator can be defined in terms of the elemen-
tary morphological operators.
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