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Abstract—Deep Learning based on Remote Sensing has become
a powerful tool to increase agricultural productivity, mitigate the
effects of climate change, and monitor deforestation. However,
there is a lack of standardization and appropriate taxonomic
classification of the literature available in the context of infor-
matics. Against this background, this survey provides an overview
of the relevant literature categorized into five main applications:
Parcel Segmentation, Crop Mapping, Crop Yielding, Land Use
and Land Cover, and Change Detection. We address notable
trends, including transitioning from traditional to deep learning,
convolutional models, recurrent and attention-based models,
generative strategies, and self-supervised pre-training. The sup-
plementary material also includes a comprehensive review of
publicly available datasets for these applications. We hope that
our work can be useful as a guide for future work in this context.

Index Terms—Agricultural Remote Sensing, Deep Learning,
Crop Mapping, Crop Yielding, Parcel Segmentation, Land Use,
Land Cover, Change Detection

I. INTRODUCTION

The Green Revolution (1960s and 1970s) led to a consid-
erable increase in agricultural production through technolo-
gies such as pesticides, fungicides, herbicides, and geneti-
cally modified crops. This development was coupled with
the widespread establishment of monocultures and improved
machinery for practically all agricultural processes. Today, the
population continues to grow, so another leap in agricultural
productivity is needed [1]. This leap will be even harder to
achieve, as it is essential to mitigate the negative impact of
agribusiness on the environment. Moreover, such a leap must
be implemented during climatic problems that are already
occurring both passively (rising temperatures, drought) and
actively (floods, hurricanes, etc.).

In this context, Remote Sensing (RS) is a candidate tool
to help accomplish this new “green revolution” [2]. With RS,
it’s possible to check whether crops are being planted and
harvested in the most suitable conditions and enables the use
of precision agriculture [3]. In addition, RS makes it possible
to actively monitor deforestation and check which use or
cover has been identified in the deforested area [4]. It is also
possible to anticipate food shortages predicting productivity

The authors would like to thank FAPESP (grants #2015/22308-2,
#2017/50236-1, #2020/06744-5), Serrapilheira Institute (grant #R-2011-
37776), CNPq, LNCC/MCTIC, IBGE/MPO, and CAPES for their financial
support for this research.

for different regions and products [5]. A graphical depiction
of some applications related to agricultural RS can be seen in
Figure 1.

However, for large-scale crop monitoring, the price of expert
data labeling can be prohibitive. The existence of different
types of RS data makes the labeling process even more
expensive. Therefore, machine learning (ML) is a relevant tool
for speeding up large-scale RS tasks. The ability to extract
deep correlations of variables and various modeling techniques
allow the use of heterogeneous data [6], and it is possible to
scale these methods for near real-time global monitoring. In
this work, we focus on Deep Learning (DL) methods applied
in agriculture. We also emphasize applications that enable
more sustainable or productive agricultural management in
addition to those that focus on preventing deforestation.

Further reviews have been produced on research areas
that complement the areas covered in this review. The work
conducted by Yuan et al. [7], for instance, serves as good in-
troductory material for the field, with a focus on environmental
applications. In contrast, Ma et al. [8] covered both urban and
agricultural RS, but focuses on urban applications. The most
cited application is Land Use and Land Cover (LULC), with
Convolution Neural Networks (CNNs) being the most used
architecture, five times more than the second-ranked model,
AEs (autoencoders).

However, due to its release date, this review did not cover
the current rapid growth of attention-based architectures in
agricultural remote sensing applications.

Li et al. (2022) conducted a study on multimodal Data
Fusion (DF) in remote sensing, focusing on tasks like Clas-
sification, Cloud Removal, and Object Detection. The study
utilized various types of data, including Medium Resolution
(MR) images, High Resolution (HR) images, Light Detection
and Ranging (LiDAR), and Synthetic Aperture Radar (SAR)
data. The authors noted a rapid increase in publications on this
topic but pointed out the absence of datasets for agricultural
applications in their work.

Aleissaee et al. [9] mapped the use of Vision Transformers
(ViTs) in RS. Primarily Very High Resolution (VHR) hy-
perspectral images are used, sometimes in combination with
SAR data. The survey also noted that pre-training using RS
data instead of natural images shows better results. However,
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Fig. 1: This figure shows illustrative examples of the applica-
tions covered in this work. In Figure 1a, we can observe parcel
segmentation and crop mapping/yielding prediction illustrated
over multitemporal images. In Figure 1b, two timestamps are
used to compute land cover/usage and change detection. Most
agricultural-related applications rely on multitemporal data
across a range T of acquisition dates (a) or a pair t0 and
t1 of dates (b).

this did not include unsupervised pre-training, also known as
Self-Supervised Learning (SSL), and methods that operate on
Satellite Image Time Series (SITS).

As noted in previous efforts [10], following the trend of
traditional computer vision literature, RS researchers have
started to adopt diffusion models, especially since 2023.
Although the first applications were for data synthesis (i.e.,
Super Resolution and Cloud Removal), there are already
applications for image interpretation. However, the authors did
not specifically address agricultural applications.

Joshi et al. [11] reviewed Crop Mapping and Yield. In

contrast to the previously mentioned surveys, mainly Low-
Resolution (LR) and MR data are used here. Sentinel1 data
(optical and radar data) are usually used for crop mapping,
while the most commonly used satellite for crop yield is
MODIS2, often in conjunction with weather and ground data.
The most commonly applied methods are adaptations of CNNs
and Recurrent Neural Networks (RNNs), with an emphasis on
methods that explicitly deal with SITS. In addition, attention
mechanisms are often built into these architectures.

Most recently, Kamilaris and Prenafeta-Boldú [12] pub-
lished the latest survey on DL in agricultural RS. It mentions
that there are few public agricultural remote sensing datasets,
which continue to this day. However, due to the timing of the
publication, no new techniques are presented.

We provide a comprehensive overview of publicly available
datasets for agricultural RS for the mapped applications, in
addition to the datasets made for SSL pretraining as separate
Complementary Materials3 due to space constraints. We also
provide a taxonomy to organize the articles presented in this
work in Figure 2.

The remaining sections of this paper discuss applications
directly related to agriculture, such as Parcel Segmentation
(Section II), Crop Mapping/Classification (Section III), and
Crop Yielding (Section IV). This is followed by a review
of related applications to agricultural settings, such as Land
Cover/Use (Section V) and Change Detection (Section VI).
Finally, Section VII presents concluding remarks.

II. PARCEL SEGMENTATION

Parcel segmentation, also known as cropland delineation, is
the application that separates a given region into agricultural
plots. This application operates over an image or time series
of images, aiming to output a list of polygons circumventing
agricultural tiles.

In general, authors used primarily CNNs or variations for
agricultural parcel segmentation. Xu et al. [13] used a U-Net
with depthwise separable convolution layers called DSCUnet
to raw segment and classify the agricultural areas then a
Richer Convolutional Features Network was employed to
fine delineate the boundaries of the parcels from agricultural
classified regions obtained by the former step, using single
VHR images from the Gaofen-2 satellite. The authors pointed
to misclassification issues when the study area contains small
buildings near the agricultural parcels. Xie et al. [14] pro-
pose a High-Resolution Network (HRNet), a CNN integrated
with an attention module that retains feature information
at different scales through parallel multiresolution branches.
These branches are merged and fed into two modules: an
object-contextual module, which enhances the representation
of contextual information and outputs parcel edge results, and
a connectivity attention module, designed to extract connection

1https://sentinels.copernicus.eu/web/sentinel/home
2https://modis.gsfc.nasa.gov/
3https://github.com/mateuspinto/rs-agri-survey, also in the IEEE Supple-

mentary Materials
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Fig. 2: Classification of the selected articles under the proposed categories of the taxonomy presented in this work. Each
category can be further divided into more refined groups according to the methods’ characteristics. Each method may fall
under more than one group, as they are not mutually exclusive.

and directional information. The outputted parcels are post-
processed to merge erroneously over-segmented plots.

A growing trend in parcel segmentation is the use of
siamese/multi-stream architectures. Li et al. [15] used a two-
branched convolutional architecture (TSANet): the first branch
was responsible for drawing parcels, and the second one was to
fine-delimit their boundaries. The two pieces of information
were combined using a multitask loss formed by a Binary
Cross-Entropy and a Dice Loss to deal with class imbalance
and training instability. The method was tested for single-
image segmentation using Gaofen-2 and Sentinel-2 satellites.
Yan et al. [16] also used a dual-stream architecture with each
branch using the same idea as the former paper but with SITS
as input and weighting joining the same losses instead of
a simple sum, which allows choosing between better pixel-
level metrics or more consistent parcels. This approach is
very similar to TSANet, and both were tested in the same
study region (almost the whole Netherlands) with Sentinel-2,
although on different Datasets, achieving similar results.

At last, Kerner et al. [17] showed that datasets do not gen-
eralize well to different regions and presented the possibility
of simple Transfer Learning of a dataset from a different
geographic region or satellite to a different target dataset
improves the metrics in the target dataset. The authors showed
that this approach works best for datasets with little labeled
data, achieving an F1 Score improvement of up to 6%.

CNNs [14] seem to have reached their limit in this task,
and researchers have begun testing new architectures, the most
prominent of which focus on dual stream and/or multitasking
[15], [16], removing noise from non-existent plots. The lit-
erature reports a great variety of available datasets for parcel
segmentation, although there is little geographical variety [17].

III. CROP MAPPING

Crop mapping is the application in which, given a parcel or a
map, a classification per parcel or pixel is generated for certain
crops, usually using a time series of RS images. Datasets from

a given region may not generalize well to other areas due to
climatic or agricultural calendar differences [48].

CNNs are one of the most used strategies for Crop Mapping,
as in Gallo et al. [18] used a 3D CNN Features Pyramid
Network (FPN) to classify SITS crops pixel-wise using multi-
spectral images from Sentinel-2, using a CELoss to construct
the Crop Parcels and an MSELoss to determine in which time
interval it is more probable to be Crop Season. Integrating
attention mechanisms in a CNN is the strategy adopted by
Farmonov et al. [19] to extract long-term features and classify
crops at the pixel level, achieving 97.89% of Overall Accuracy
(OA) with hyperspectral images. The method proposed by
Yaramasu et al. [20] used a bidirectional ConvLSTM as a
temporal encoder with a pre-trained ImageNet VGG11 as a
spatial encoder to predict crop mapping using crop rotation
from previous years with Landsat SITS as training.

Transformers have recently gained popularity due to their
ability to learn representations of data from any position within
a sequence, handling effectively varied sizes of time series.
Yuan et al. [21] leverage generative pretraining for Bidi-
rectional Encoder Representations for Transformers (BERT)
models via masking a pixel SITS with high-value pixels to
simulate clouds and training the network for reconstructing it,
followed by fine-tuning to incorporate semantic information
about crop types, and it used the Positional Encoder (PE)
of the Transformer with the Day Of the Year (DOY) to
integrate information from the agricultural calendar. Xu et al.
[22] surpassed the performance of this masking-based strategy
by pretraining using a similarity-based contrastive SSL Loss
and using an NDVI Seq2Vec instead of a max-pooling to
reduce the temporal dimension to obtain a representation
vector, achieving an improvement of 1% in OA. Abbas et
al. [23] proposed a temporal AE capable of learning a crop
mapping representation from a given region, then retrained
in another area with a different agricultural calendar, done by
transformers PE output computed on the source region is used
as a proxy to quantify the temporal shift concerning the PE
output obtained on the target region.



Russwurm et al. [24] presented a classification head that
can be attached to any SITS crop mapping model, enabling
In-Season Crop Mapping. This classification head outputs the
probability of the classification being correct given the number
of timestamps compared to the full season, trained with an
Earliness-Rewarded Loss, turning the model into a multimodal
approach. The methodology was tested with an LSTM model,
being able to predict the Crops using from 16% to 40% of the
SITS.

Crop Mapping is a task that involves SITS from one or
more different data sensors. Thus, CNNs [18] and LSTMs [20]
have been gradually being replaced by Transformers [22], [23],
given their ability to learn representations of data from long
distances in a sequence. Furthermore, due to the abundance of
unlabeled RS data, SSL [21], [22] began to be adopted and
brought significant results, including the need for less labeled
data.

IV. CROP YIELDING

Crop yield prediction is a regression application that typ-
ically uses the geometry of a crop region and growth cycle
dates to forecast production. Several methods combine satellite
images with other sources of information, such as weather data
and soil information. Regarding data availability, there are a
few datasets, some with a limited data volume, and most are
private.

Shallow Learning methods are still widely used. Sabo et al.
[25] compared DL and shallow methods for crop yielding,
concluding that the former is the best-performing method,
suggesting that, for larger data sets, deep learning methods
should perform better. Lang et al. [26] conclude that the LSTM
model performed better than shallow methods.

CNN BiGRU network with attention layers proposed by Lu
et al. [27] to predict soybeans production using RS, climate
data, and photosynthetic-related parameters. Leveraging train-
ing data from the USA and using it in Argentina, Huber et al.
[28] presented Deep Transfer Learning techniques to overcome
catastrophic forgetting and negative transfer problems.

Jeong et al. [29] used an LSTM forwarded by 1D CNN
architecture on MODIS SITS and meteorological data time
series, fused with geographic data (such as coordinates and
country identifiers) processed by a Dense Network for early
South and North Korea rice yield prediction achieving a RMSE
of 0.61Mg ha−1.

Improving temporal dependencies, Liu et al. [30] presented
a Transformer architecture followed by a convolutional layer
using satellite and environmental data, also presenting a graph-
ical analysis of the explainability of attention mechanisms,
predicting rice yield two months before harvest. Lin et al.
[31] used a Multi-modal ViT with Sentinel 2 and weather data,
claiming that the method is climate-aware and presented better
results than the Convolutional LSTM hybrid models, also com-
paring SimCLR pre-training and a multi-modal pre-training.
The first type of pre-training presented an improvement of less
than 0.3 in RMSE (since SimCLR can not process climate

data), and the second presented a significant improvement
greater than 1.2 in the same metric.

The literature indicates that complementary data can be used
in addition to RS, such as weather/climate data, soil data,
and crop species information. According to Sabo et al. [25],
shallow models are better suited and capable of producing
good results with less data than DL models. DL tackles
temporal dependencies better, and architectures like LSTM and
Transformers are gaining traction in the community [29], [30].
Transfer learning and generation of synthetic data are trends
[28].

V. LAND USE AND LAND COVER

Land use and land cover (LULC) is a segmentation task
that provides information to help understand the landscape.
Producing LULC maps is one of the most common tasks using
RS data. We can identify several possible uses in agriculture,
such as checking changes in water bodies, mapping natural
vegetation, soil deterioration, deforestation, or artificial struc-
tures.

SL methods are still used for LULC, especially for LR/MR
multispectral satellite imagery. Dou et al. [32] argued that the
limited quantity of multispectral bands in Landsat Satellites
leads CNNs to problems in stable features from the spectral
domain, using CNNs to generate Deep Features to use as the
input to Shallow Learning Classifiers producing probabilities
to use as the input to another CNN and finally producing
LULC predictions with OA of 88.95%.

Sun et al. [33] introduced an end-to-end FCN for hyperspec-
tral image (HSI) segmentation that classifies all pixels in an
HSI cube simultaneously. Zhan et al. [34] enhanced accuracy
through multiscale feature reconstruction and interclass atten-
tion weighting, tackling issues like ambiguous boundaries and
intraclass variance. Zhu et al. [35] added a Global Joint At-
tention to enhance spectral and spatial feature discrimination.
Similarly, Farmonov et al. [36] applied a Wavelet-Attention on
a CNN with a spectral attention mechanism to improve crop
type mapping accuracy.

Sun et al. [37] combined CNN and Transformer models,
using 3D and 2D convolutions for low-level feature extraction,
a Gaussian-weighted tokenizer for feature transformation, and
a transformer encoder for learning deep feature representa-
tions. Yao et al. [38] used Transformers in a multimodal
approach to include heterogeneous RS data, using parallel
branches of position-shared ViTs extended with separable
convolution modules, each branch made to process a type of
data. Achieving 88.95% of OA using hyperspectral and LiDAR
data and balancing the weights of each branch, and 87.71%
using hyperspectral data only.

LULC studies large and heterogeneous area datasets, and the
target mapping labels usually include natural or anthropized
classes. Even considering only farms, one can identify several
classes, such as water bodies, buildings, roads, farmlands,
and forests. The application has been using SL for LR/MR
or multispectral satellites due to the low number of features
possible to be generated [32]. As for HR/VHR or hyperspectral



satellites, the research area has been following closely the area
of computer vision, replacing traditional CNNs [33] with ver-
sions with attention modules [49] or even using Transformers
[37], [38].

VI. CHANGE DETECTION

In RS, Change Detection is the classification of dissimilari-
ties in a given region, given two (or more) timestamps as input
[50]. Such a task is vital for active monitoring in near real-
time. Amongst CNN models, Ye et al. [39] used symmetric
and siamese networks to compare different timestamps. U-Net-
like architectures [40] tend to perform well, but transformer-
based models perform better and take advantage of large
volumes of data. In addition to optical data, Deep Cascade
Network for Change Detection [41] uses SAR data and enables
the method to avoid clouds.

Transformers were used in Change Detection due to their
ability to function as a global and generic feature extractor.
Chen et al. [42] used a symmetric architecture that mixes a
ResNet without as the backbone and a Transformer as an en-
coder/decoder to highlight the most relevant semantic features
of each image underlying modified objects in each dataset.
Yan et al. [43] achieved better results using a symmetric Swin
Transformer as the backbone with a Progressive Attention
Module method for pixel-wise classification of image changes.

More recently, diffusion models like Bandara et al. [44]
used a U-Net pre-trained in SSL way to remove synthetic
noise added to RGB Sentinel-2 images and finetuned a simple
classifier that uses features generated for a before and after
image to predict the Change Detection map. The authors ar-
gued that such generative pre-training makes the methodology
more invariant both to problems in data generation and storage
(noise/blur in image capture, etc) and to variations inherent
to the environment (such as seasonal change). Jia et al. [45]
a diffusion U-Net is trained end-to-end fashion to generate
the Change Detection map, achieving a slight improvement of
0.06% OA.

Other architectures and paradigms used, like unsupervised
methods by Du et al. [46] that used a symmetric network
model for pseudo-label generation, or Tang et al. [47] that
used Graph Neural Networks (GNN) and Metric Learning.

Change Detection is widely explored in the literature and
has several large and well-known datasets enabling the com-
parison between models. Diffusion Models [44], [45] have
more recently appeared as an attempt to create more general
models than transformer-based models [42], [43] that are
gradually replacing CNN ones [39], [40].

VII. CONCLUSION

In this survey, we have presented a new taxonomy to catego-
rize DL Techniques for agricultural RS. We have provided an
overview of the applications of Crop Mapping, Crop Yielding,
LULC, and Parcel Segmentation and discussed the methods
used in each. We show that there have been many changes
in the research field, such as the introduction of DL [13]
instead of SL models [25], confirming the statements of [12].

This is partly due to the greater availability of data from
HR/VHR or Hieperspectral satellites, as the increase in infor-
mation collected by SL models [26] is not well accounted for.
Although the literature generally seems to be moving towards
Transformer models [9] to deal with time series, CNNs [19]
fitted with attention modules have been widely used for this
and some diffusion models [44], [45] are appearing on the
horizon.

SSL also appears to be a new trend. Of the five mapped ap-
plications, three already represent adaptations of this method-
ology (Crop Mapping [21], [22], Crop Yielding [31] and
Change Detection [44], [45]), with the use of generative and
contrastive pre-training, both based on techniques already used
in the field of computer vision, as well as more specific
techniques developed to solve RS problems. It is also worth
noting that, according to our research, no LULC work uses
SSL pretraining, although this seems to be possible due to the
type of architecture used in the latest methods in the field [38].

However, some problems have also been identified in the
literature. The datasets of most of the applications illustrated
here (Crop Mapping, Crop Yielding, and Parcel Segmentation)
do not generalize well between regions or are sparse [17],
[28], which makes direct comparisons between the methods
difficult. In addition, the satellites are very different, with
different sensor types and resolutions, and a method that works
well for one region may not work well for another [32].
We expect the community’s interest in RS Deep Learning
to increase, considering that it can help increase agricultural
production while having less or no impact on the environment.
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