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Abstract—In recent years, the volume of multimedia data
has been rapidly increasing across various applications. Conse-
quently, classification methods capable of handling scenarios with
limited labeled data (e.g., semi-supervised, weakly supervised)
have become critically important, particularly because acquiring
labeled data is often expensive and time-consuming. Regarding
image data, feature extraction approaches are commonly em-
ployed in many tasks. Feature extraction involves identifying
and extracting key characteristics or patterns, such as edges,
textures, shapes, and colors. Nowadays, most extractors consider
deep learning strategies, such as Convolutional Neural Networks
(CNNs) and Vision Transformers (ViT). With various feature
extractors available in the literature, there is a wide diversity
of features that can be considered. The features extracted from
an image depend on the application, the extractor used, and its
configuration. Therefore, combining different extractors can be a
promising strategy to exploit complementary information. Graph
Convolutional Networks (GCNs) are fundamental and promising
strategies in the scenario of semi-supervised image classification,
being able to leverage labeled and unlabeled data, and exploiting
the graph structures that offer valuable information. This work
proposes an approach for GCNs in scenarios where labeled data
is scarce, combining sets of features and graphs considering
different extraction approaches. Among the main contributions,
the experimental results reveal that these combinations and the
use of manifold learning to process these graphs improve the
classification results in most cases.

I. INTRODUCTION

Over the past few years, the volume of multimedia data
has been increasing exponentially. Images, videos, and audio
are shared daily on various platforms by millions of people.
Due to the enormous amount of available material, tasks that
were previously done manually have become unfeasible to be
carried out by humans due to financial costs, labor, and time
constraints [1].

Due to the difficulty in keeping up with the current pace of
multimedia content creation, machine learning methods have
proven to be very promising in classification tasks. Supervised
approaches can save a lot of time but present a challenge: the
need for a large amount of labeled data. In large datasets with
millions of images, this becomes a significant challenge. This
is a central issue, which constitutes one of the main advantages
of semi-supervised and unsupervised strategies: the ability to
operate with few or no labels.

In general terms, Semi-Supervised Learning [2] (SSL) can
be defined as something that lies halfway between supervised
and unsupervised learning. In addition to unlabeled data, the
algorithm is provided with some supervised information - but
not necessarily for all examples. Frequently, this information

will be the labels associated with some of the examples [2].
This strategy drastically reduces the need for manual work,
as only a few data points need to be classified manually.
Therefore, semi-supervised and unsupervised techniques can
save a lot of time and labor in activities that, in the past, would
have needed to be done manually [3].

The applications of such tasks are diverse and can involve
audio, video, and images. Image datasets with millions of
items and frequent new entries can greatly benefit from
semi-supervised and unsupervised classification, for instance,
databases with images of different flower species [4], various
dog breeds [5], car brands [6], among others. These datasets
simulate real-world problems and enable the evaluation of
different classification strategies. Currently, applications in-
volving these strategies are increasingly common in everyday
life. An example includes photo organizing apps that automat-
ically identify people, animals, places, and objects in images,
catering to millions of users with thousands of new entries
every day. Social media applications can also benefit from
neural networks [7].

The diversity of applications has led to the development
of many models and feature extractors. Convolutional Neural
Networks (CNNs) [8], which use various types of layers,
including convolutional layers, non-linear layers, and pooling
layers, among others, have been frequently employed. Re-
cently, Transformer-based models have also been applied for
feature extraction. Examples include ResNet [9], ViT-b16 [10],
and Swin-tf [11]. Combining different extractors might be a
strategy to obtain complementary information from the same
dataset because the mentioned extractors evaluate the dataset
and extract the most relevant characteristics for their model,
potentially having discrepancies among themselves.

From another perspective, graph-based models and convo-
lutional networks have been proposed, achieving remarkable
results. For instance, Graph Convolutional Networks (GCNs)
[12], [13] have the ability to perform convolutions in the non-
Euclidean domain defined by graphs and have achieved high
effectiveness in semi-supervised classification scenarios.

Different from most classifiers, besides the input features,
GCNs also require a graph for learning. Graphs have a wide
range of applications, as they facilitate the identification and
analysis of patterns and relationships among items. GCNs
can provide significant results in semi-supervised classification
scenarios since they can exploit both labeled and unlabeled
data considering the graph structure and neighborhood infor-
mation, which provide valuable information for learning.



These methods were originally proposed for datasets where
the graph is readily available (e.g., citation networks) [12],
[14]. However, for image datasets, in most cases, the graph
needs to be computed. There are still not many approaches
that use GCNs in image classification [15]–[17]. Therefore,
proposing effective strategies to define and improve these
graphs in image scenarios is crucial.

Since learning effective representations is at the core of
many machine learning applications [18], different feature
extractors have been proposed in the last decade, from hand-
crafted (e.g., color, texture, shape) to deep learning ones (e.g.,
CNNs and Vision Transformers). They can be used to compute
a feature vector that represents the most relevant and discrim-
inative information in an image. It is known that different
extractors can provide complementary information [19], i.e.,
they can provide better results when combined in certain
circumstances. However, how to combine different extractors
is one of the key challenges. Strategies in the literature involve
both early and late fusion approaches [19]. While early fusion
combines features directly, late fusion involves combinations
from higher-level structures, such as matrices, graphs, or
ranked lists.

This work proposes an approach that combines different
feature extractors considering the inherent properties of GCN
models. Since these models receive two different inputs (e.g. a
set of features and a graph), we use this characteristic to com-
bine graphs and features from different extractors to leverage
their complementarity. This work presents many contributions
to the scenario of semi-supervised image classification using
GCNs, among them, the key ones are:

• An investigation reveals that combining graphs and fea-
ture sets from different feature extractors can improve
classification results by leveraging the complementary
information of each extractor.

• Manifold learning re-ranking approaches can be used to
improve the input graph of GCNs even further, especially
when different graphs and features are used.

• The investigation also shows that the GCNs are more
sensitive and there is a higher impact related to the input
graph than the features, evincing that computing a highly
effective graph is crucial in these applications.

• The experimental evaluation reveals better classification
results in most cases, evincing the capacity of our ap-
proach to deal with scenarios where labeled data is
limited.

The remainder of this paper is organized as follows: Section
II presents the proposed approach. Section III reports and dis-
cusses the experimental results. Finally, Section IV concludes
this work and discusses potential future work.

II. PROPOSED APPROACH

In this paper, we propose an approach and investigation
that combines different feature extractors through graphs and
feature sets using the inherent characteristics and properties of
GCN models. The GCN models enable modeling information
in terms of vector representations and graphs. Our proposed
approach considers different methods for representations and
graphs, aiming to combine complementary information. Since

different extractors can encode various numerical characteris-
tics from each image based on the technique and configuration
parameters, we aim to combine the information from each
extractor. By doing so, we intend to observe the behavior of
the GCN and investigate how the accuracy is affected.

Additionally, we investigate the hypothesis that manifold
learning methods can improve the effectiveness of the graph
generated for semi-supervised classification tasks. Figure 1
illustrates the proposed method and its steps from A to E,
which are described in the following subsections.

A. Feature Extraction

From the initial dataset, features are extracted using two
extractors, 1 and 2. For each image in the dataset, the extractor
processes the image and generates a feature vector encoding
its relevant characteristics and patterns. A feature matrix is
created for the set, where each row of the matrix is the feature
vector of an image in the dataset. In this matrix, each element
fi,j represents a numerical value, where row i represents an
image and j represents a specific feature.

Among the great diversity of extractors available, this work
considered three recent deep learning ones, contemplating both
CNNs and ViT. The networks were all pre-trained in the
ImageNet [20] dataset with features extracted from the last
linear layer. The extraction models utilized in this work are
described as follows:

• ResNet [21]: ResNet is a convolutional neural network
that uses residual blocks. The activation functions for
some layers are connected, and the model has shortcuts
that allow some layers to be skipped. ResNet learns
by combining these residual blocks. So, the network is
adjusted only in the residual mapping [21]. This work
considers the implementation with 152 layers.

• Vision Transformer (ViT) [10]: A Transformer pre-
trained on large amounts of data and transferred to
various image recognition benchmarks. First, the image
is divided into patches, which are flattened and mapped
so that they all have the same dimensions. Then, lower-
dimensional linear embeddings are produced from the
flattened patches. Positional embeddings are added, and
the input sequence is fed as it would be for a standard
transformer encoder. Finally, the model is pre-trained
with image labels in a supervised manner using a very
large dataset. Afterward, transfer learning is performed on
the target dataset for feature extraction. The base version
with a patch size equal to 16 was used in this work.

• Shifted windows Transformer (Swin-tf) [11]: It uses
a Vision Transformer called Swin Transformer, which
serves as a general-purpose backbone for computer vi-
sion. The Transformer is hierarchical, and its representa-
tion is calculated with Shifted windows [11]. The shifted
windows scheme allows to achieve great efficiency by
limiting self-attention computation to non-overlapping
local windows while allowing connections between win-
dows. This hierarchical architecture is flexible for mod-
eling at various scales and has linear computational
complexity with respect to the image size.
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Fig. 1. Proposed method for combinations between different extractors using manifold learning.

B. Indexing Algorithm

The similarities between images are computed based on
the features obtained in step A. For each feature extractor, a
corresponding ranked list is generated. This can be efficiently
performed by optimized indexing algorithms, such as the Ball-
Tree [22]. There is a great variety of indexing approaches [23],
and a discussion about them is beyond the scope of this work.
For this work, this process is used to obtain a ranked list, which
is a list that contains the nearest elements for each element in
the set, ranked from closest to the most distant one (i.e., in
descending order of similarity). This list is generated using
the Euclidean distance, which calculates the distance between
each image and every other image in the set.

C. Manifold Learning (Re-Ranking)

The ranked lists obtained in step B are processed by
an unsupervised similarity learning method aimed at post-
processing and improving the effectiveness of these lists. There
are different methods in the literature that perform unsuper-
vised similarity learning considering different strategies (e.g.,
graphs, diffusion processes, and others). Manifold learning
approaches aim to capture and exploit the intrinsic mani-
fold structure to compute a more effective distance/similarity
measure [24]. In this work, we consider four unsupervised
manifold learning methods to provide more effective similarity
measures using rank-based formulations. They are all part of
the Unsupervised Distance Learning Framework (UDLF) [25],
which is an open-source framework that provides different
approaches in this category:

• Breadth-First Search Tree (BFSTree) [26]: Utilizes
a breadth-first tree to represent similarity information
provided by ranking references. This tree is exploited to
discover underlying similarity relationships, enabling a
more effective similarity measure to be computed.

• Correlation Graph (CORGRAPH) [27]: The dataset
structure is modeled as a graph, where nodes are images
and correlations define the edges based on a thresh-

old. The method analyzes the Strongly Connected Com-
ponents (SCCs) of this graph. The manifold learning
approach defines a more effective similarity between
images, which is used to enhance the effectiveness of
ranked lists.

• Rank-Based Diffusion Process with Assured Conver-
gence (RDPAC) [28]: An efficient rank-based diffusion
process combining diffusion approaches and ranking-
based strategies. It approximates a diffusion process by
leveraging rank-based information while ensuring conver-
gence. It is a low asymptotic complexity algorithm and
can be computed regionally.

• Ranked Lists Similarity (RLSIM) [29]: This method
computes the correlation between ranked lists, which can
be done by employing different rank correlation mea-
sures. The ranked lists are iteratively reordered according
to the computed correlations.

D. Graph modeling

Such a step is essential since, in most image datasets, the
graph is not readily available and an approach to generate
it is crucial. Using the ranked lists obtained in step C, pre-
processed by manifold learning approaches, we build a kNN
graph to serve as input for the GCN. This kNN graph is
constructed based on the ranked lists, where each image is
represented as a node. The edges of each node connect to
its top-k neighbors, which are the k most similar elements
according to the ranked list.

E. Graph Convolutional Network (GCN)

A Graph Convolutional Network (GCN) [12] is a neural
network classifier based on graphs, whose implementation is
available in PyTorch Geometric [30]1 framework. It is a semi-
supervised transductive classifier that enables learning from
graph structures. Two different GCN models were considered:

1PyTorch Geometric: https://github.com/pyg-team/pytorch geometric.



• Graph Convolution Network (GCN) [12]: The pio-
neering GCN that introduced the concept of applying
convolutions to graph structures, commonly referred to
as GCN-Net.

• Approximate Personalized Propagation of Neural Pre-
dictions (APPNP) [31]: A model that integrates a GCN
with the PageRank algorithm, utilizing a propagation
strategy derived from a modified PageRank approach.

In this work, the GCN model is trained considering the
following inputs: (i) the set of feature vectors computed by
extractor 1; and (ii) a graph computed on the ranked lists
processed by manifold learning based on the features obtained
from extractor 2.

III. EXPERIMENTAL EVALUATION

The experimental protocol is divided into two subsections.
While Section III-A presents the dataset, parameters, and other
experimental settings; Section III-B reports and discusses the
obtained results.

A. Experimental Protocol

In this work, we utilized the Oxford17Flowers [4] dataset,
a widely used resource for various research scenarios. The
dataset comprises 1,360 images categorized into 17 classes,
with each class representing a distinct flower species. Each
species is represented by 80 images, providing a balanced
dataset for analysis.

The GCNs were trained considering a learning rate of 10−3

and 300 epochs with 500 neurons for each layer. For the
manifold learning approaches, the default parameters of the
UDLF framework2 were used. The only parameter that was
modified was the neighborhood size, defined by k. We set
k = 15 in all cases, except for CORGRAPH [27], where
k = 40 was used. The top-k neighbors for constructing the
GCN kNN graph also used the same k value as the manifold
learning approaches.

All the experiments employed a 10-fold cross-validation
protocol, where each execution considered one fold as the
training set and the others as the testing set, such that each
fold is used as the training set at least once. This setting is
important because it uses only 10% of the data for training and
90% for testing, creating a challenging scenario with limited
labeled data and few labeled samples per class (i.e., 8 per
class). In all cases, the average of executions is reported along
with the standard deviation.

B. Results

The first set of experiments evaluated the impact of con-
sidering different extraction models for computing the set of
features and the graph without manifold learning, which is step
C in the diagram of the proposed approach. Table I presents the
accuracy results in this scenario for both GCN-Net [12] and
GCN-APPNP [31]. To assist the reader, we have standardized
the highlighting of results as follows: the best result for each
graph is marked in bold, results involving a combination of

2Version 1.60 of UDLF was used: https://github.com/UDLF/UDLF.

different extractors are highlighted with a gray background,
and the best overall result in the table is colored in blue.

Notice that the best result of each graph consists of a
combination of different extractors, except for Swin-tf [11].
The highest average accuracy in the table (highlighted in
blue) is 87.20%, achieved by combining the ViT-b16 graph
with features from Swin-tf. This demonstrates the potential
of feature combination while also highlighting the distinct
behavior of each extraction model.

TABLE I
ACCURACY (%) RESULTS FOR GCN MODELS COMBINING FEATURES AND

GRAPHS GENERATED BY DIFFERENT EXTRACTORS.

GCN Model Graph Features Accuracy (%)

GCN-N
ET

ViT-
b1

6 ViT-b16 85.5662 ± 0.0989
Swin-tf 87.2059 ± 0.0735
ResNet 85.1324 ± 0.1995

Swin-
tf ViT-b16 86.6691 ± 0.0739

Swin-tf 86.7353 ± 0.1364
ResNet 82.5000 ± 0.2568

ResN
et ViT-b16 79.5809 ± 0.4068

Swin-tf 80.6397 ± 0.1233
ResNet 72.8015 ± 0.2894

GCN-A
PPNP ViT-

b1
6 ViT-b16 85.1471 ± 0.2712

Swin-tf 86.7353 ± 0.1324
ResNet 85.6838 ± 0.2960

Swin-
tf ViT-b16 86.1765 ± 0.2790

Swin-tf 86.7574 ± 0.1250
ResNet 83.4559 ± 0.5453

ResN
et ViT-b16 78.5882 ± 0.5187

Swin-tf 80.5882 ± 0.4674
ResNet 73.1691 ± 0.9906

Legend:
Bold: Best result for a given graph.
Gray Background: Best result in bold is a combination
of graph and features from different extractors.
Blue: Best result in the table.

Given the potential of combinations, the same set of exper-
iments was repeated but now considering the use of manifold
learning (i.e., unsupervised similarity learning) approaches.
Table II presents the results of experiments combining dif-
ferent extractors considering the GCN-NET network. The
experiments revealed that manifold learning improved the
results in all cases, except when ResNet [21] is used as a graph.
In most cases, the best result is given by the combination of
graphs and features from different extraction models.

It is also interesting to note that, despite the gains achieved
through manifold learning, the optimal choice of manifold
learning technique varies significantly depending on the spe-
cific combination of graph and features. There is no single
method that consistently yields the best results in all cases,
but all of them provide close results in most cases.

Similarly, Table III presents the results for the GCN-
APPNP [31] model. In this case, manifold learning provided
gains in all cases, for all features and graphs. Different from
GCN-Net, the best result (colored in blue) consists of the
combination of Swin-tf graph and ViT-b16 features. Also, no-
tice that there are many results marked with gray background



TABLE II
COMBINATIONS BETWEEN DIFFERENT EXTRACTORS, WITH DISTANCE

MATRICES, WITH THE GCN-NET NETWORK.

Graph Features Method Accuracy (%)

ViT-
b1

6

ViT-b16 — 85.5662 ± 0.0989
ViT-b16 BFSTREE 87.1544 ± 0.0574
ViT-b16 RDPAC 87.1176 ± 0.0550
ViT-b16 RLSIM 87.5294 ± 0.0488
ViT-b16 CORGRAPH 86.9485 ± 0.1952
Swin-tf — 87.2059 ± 0.0735
Swin-tf BFSTREE 87.6103 ± 0.0753
Swin-tf RDPAC 87.5368 ± 0.0753
Swin-tf RLSIM 87.6471 ± 0.0000
Swin-tf CORGRAPH 87.2500 ± 0.0674
ResNet — 85.1324 ± 0.1995
ResNet BFSTREE 87.5515 ± 0.1678
ResNet RDPAC 87.6471 ± 0.0658
ResNet RLSIM 86.9412 ± 0.3679
ResNet CORGRAPH 87.2059 ± 0.1091

Swin-
tf

ViT-b16 — 86.6691 ± 0.0739
ViT-b16 BFSTREE 89.0588 ± 0.0720
ViT-b16 RDPAC 89.4338 ± 0.0574
ViT-b16 RLSIM 87.2132 ± 0.4178
ViT-b16 CORGRAPH 88.3456 ± 0.1326
Swin-tf — 86.7353 ± 0.1364
Swin-tf BFSTREE 89.7647 ± 0.0641
Swin-tf RDPAC 89.7574 ± 0.0337
Swin-tf RLSIM 86.7500 ± 0.2151
Swin-tf CORGRAPH 87.8750 ± 0.1659
ResNet — 82.5000 ± 0.2568
ResNet BFSTREE 89.1544 ± 0.1000
ResNet RDPAC 89.5000 ± 0.0441
ResNet RLSIM 86.5882 ± 0.3650
ResNet CORGRAPH 87.9338 ± 0.2289

ResN
et

ViT-b16 — 79.5809 ± 0.4068
ViT-b16 BFSTREE 77.7353 ± 0.2606
ViT-b16 RDPAC 79.3235 ± 0.3998
ViT-b16 RLSIM 76.5074 ± 0.4618
ViT-b16 CORGRAPH 77.2721 ± 0.2949
Swin-tf — 80.6397 ± 0.1233
Swin-tf BFSTREE 77.7868 ± 0.2740
Swin-tf RDPAC 77.7353 ± 0.1940
Swin-tf RLSIM 74.4265 ± 0.1995
Swin-tf CORGRAPH 75.8897 ± 0.3518
ResNet — 72.8015 ± 0.2894
ResNet BFSTREE 72.6912 ± 0.4676
ResNet RDPAC 74.3603 ± 0.3603
ResNet RLSIM 70.6397 ± 0.5706
ResNet CORGRAPH 74.1691 ± 0.2752

Legend:
Bold: Best result for a combination of graph and feature.
Gray Background: Best combination uses graph and features
from different extractors.
Blue: Best result in the table.

evincing that the combinations were effective in the majority
of cases.

IV. CONCLUSION

This work proposed an approach and investigation into the
behavior of GCN in semi-supervised learning scenarios, where
different extractors are employed for features and graphs.

Combinations of different feature extractors, without the
use of any manifold learning approach, revealed promising

TABLE III
COMBINATIONS BETWEEN DIFFERENT EXTRACTORS, WITH DISTANCE

MATRICES, WITH THE GCN-APPNP NETWORK.

Graph Features Method Accuracy (%)

ViT-
b1

6

ViT-b16 — 85.1471 ± 0.2712
ViT-b16 BFSTREE 87.4559 ± 0.1683
ViT-b16 RDPAC 87.3824 ± 0.0750
ViT-b16 RLSIM 87.5809 ± 0.0768
ViT-b16 CORGRAPH 87.1029 ± 0.1618
Swin-tf — 86.7353 ± 0.1324
Swin-tf BFSTREE 87.9265 ± 0.0294
Swin-tf RDPAC 87.5221 ± 0.0471
Swin-tf RLSIM 87.7868 ± 0.0611
Swin-tf CORGRAPH 88.3603 ± 0.0739
ResNet — 85.6838 ± 0.2960
ResNet BFSTREE 87.9559 ± 0.1348
ResNet RDPAC 87.5588 ± 0.0720
ResNet RLSIM 87.6838 ± 0.0753
ResNet CORGRAPH 87.9559 ± 0.1463

Swin-
tf

ViT-b16 — 86.1765 ± 0.2790
ViT-b16 BFSTREE 89.6691 ± 0.0945
ViT-b16 RDPAC 89.5000 ± 0.0441
ViT-b16 RLSIM 88.9044 ± 0.0396
ViT-b16 CORGRAPH 88.7647 ± 0.1029
Swin-tf — 86.7574 ± 0.1250
Swin-tf BFSTREE 89.4779 ± 0.0611
Swin-tf RDPAC 89.5956 ± 0.0368
Swin-tf RLSIM 88.2132 ± 0.3434
Swin-tf CORGRAPH 88.8750 ± 0.1042
ResNet — 83.4559 ± 0.5453
ResNet BFSTREE 89.3456 ± 0.0768
ResNet RDPAC 89.4706 ± 0.2176
ResNet RLSIM 87.2426 ± 0.1000
ResNet CORGRAPH 88.5735 ± 0.1923

ResN
et

ViT-b16 — 78.5882 ± 0.5187
ViT-b16 BFSTREE 81.0735 ± 0.5485
ViT-b16 RDPAC 82.4265 ± 0.4399
ViT-b16 RLSIM 79.8824 ± 0.2614
ViT-b16 CORGRAPH 80.9118 ± 0.4641
Swin-tf — 80.5882 ± 0.4674
Swin-tf BFSTREE 81.7941 ± 0.1683
Swin-tf RDPAC 82.2941 ± 0.4091
Swin-tf RLSIM 78.6103 ± 0.3668
Swin-tf CORGRAPH 83.4338 ± 0.2207
ResNet — 73.1691 ± 0.9906
ResNet BFSTREE 75.0000 ± 0.5609
ResNet RDPAC 75.1324 ± 0.5999
ResNet RLSIM 73.0294 ± 1.0022
ResNet CORGRAPH 74.9265 ± 0.3049

Legend:
Bold: Best result for a combination of graph and feature.
Gray Background: Best combination uses graph and features
from different extractors.
Blue: Best result in the table.

results when graphs and features from extractors with varying
performances were combined. The use of feature matrices
with better results can enhance the accuracy of matrices that
provide complementary information. A clear example is the
combination of ResNet and Swin-tf, where there is a great
improvement in results, especially when manifold learning is
used with GCN-APPNP.

The results demonstrate that the use of unsupervised mani-
fold learning methods is consistently advantageous with the



application of GCN-APPNP. It can also be concluded that
combinations of extractors are beneficial for those with lower
performance. For instance, in the case of ResNet, it is advan-
tageous to combine it with both Swin-tf and ViT-b16.

In this work, manifold learning was exploited to improve
and pre-process the input graph of GCNs. In future work,
we intend to investigate strategies to improve the feature
representations. Besides that, we also plan to evaluate this
approach for more datasets, extractors, and GCN models.
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