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Abstract—The revolutionary advances in image representation
have led to impressive progress in many image understanding-
related tasks, primarily supported by Convolutional Neural Net-
works (CNN) and, more recently, by Transformer models. Despite
such advances, assessing the similarity among images for retrieval
in unsupervised scenarios remains a challenging task, mostly
grounded on traditional pairwise measures, such as the Euclidean
distance. The scenario is even more challenging when different
visual features are available, requiring the selection and fusion of
features without any label information. In this paper, we propose
an Unsupervised Dual-Layer Aggregation (UDLA) method, based
on contextual similarity approaches for selecting and fusing CNN
and Transformer-based visual features trained through transfer
learning. In the first layer, the selected features are fused in pairs
focused on precision. A sub-set of pairs is selected for a second
layer aggregation focused on recall. An experimental evaluation
conducted in different public datasets showed the effectiveness
of the proposed approach, which achieved results significantly
superior to the best-isolated feature and also superior to a recent
fusion approach considered as baseline.

I. INTRODUCTION

Information retrieval (IR) is a domain in constant metamor-
phosis, driven by the continuous advancement of computa-
tional capabilities, especially with the integration of machine
learning-based methodologies aiming for efficient and effec-
tive retrieval of the vast and expansive repository of available
content [1]. Especially in the visual domain, a huge growth in
image collections was observed, mainly triggered by a crescent
storage of information in visual and multimedia formats. In
this scenario, Content-Based Image Retrieval (CBIR) systems
have emerged as a relevant solution in IR methodologies,
responding to the growing demand and the development of
computational technologies [2], [3].

During decades of evolution and development of CBIR
systems, there has been a notable proliferation of a diversified
set of feature extraction methodologies. In many cases, the
application of an isolated extraction technique proves insuffi-
cient to capture the multiple aspects of an image, resulting in
low-efficiency ranked lists. Faced with this issue, a promising
solution is to explore different aggregation techniques to
generate a single, final ranked list. Aggregation techniques can
be implemented at different stages of the fusion process, the
most common being during the initial stages, known as early
fusion, and after feature processing, known as late fusion [4].

Notably, aggregation methodologies exhibit substantial
gains compared to isolated rankers, as observed in various
approaches proposed by different authors [5]–[8]. Initially

exploited for aggregating different handcrafted features based
on visual properties given by shape [9], color [10], and
texture [11], [12], aggregation methodologies remain signif-
icantly, despite the impressive progress in the deep learning
techniques.

In fact, the advent of deep features based on Convolutional
Neural Networks (CNNs) [13], and Visual Transformers [14],
[15] lead to impressive results. Trained through transfer learn-
ing on large-scale datasets (often Imagenet), such features
establish the basis for state-of-the-art unsupervised image re-
trieval. Nevertheless, considering the large number of available
approaches, how to exploit the complementary of distinct
models remains a challenging research question, especially
in unsupervised scenarios. In the absence of labeled data,
selecting the results from a wide variety of deep-based models
is an intricate and complex task.

This paper addresses this challenge by proposing a novel
rank-based fusion for unsupervised image retrieval tasks. The
Unsupervised Dual-Layer Aggregation (UDLA) method ex-
ploits effectiveness estimation measures to select a subset of
features. The combinations of pairs of features are fused in
a first-layer contextual rank aggregation focused on precision.
The results of pairs are re-selected by effectiveness estimation
measures for a second layer contextual rank aggregation
focused on recall. The proposed method was experimentally
evaluated on three public and distinct datasets and various fea-
tures based on CNNs and Transformers models. The retrieval
results are superior to the best-isolated feature and recent rank
aggregation approach.

Other works already have proposed multi-level ranked list
aggregation methodologies, which treat the levels differently
for each methodology. Such methodologies aim to use aggre-
gation methodologies at more than one execution level. In [6],
a hierarchical multi-level framework is proposed, where each
feature group is considered in a single hierarchy, with the
main concern being the proper selection of the order of visual
feature retrieval. In [7], a methodology based on three levels
responsible for specific actions is proposed. The color/contour
level is responsible for extracting contour and color character-
istics and concatenating them into a single Vector of Locally
Aggregated Descriptors (VLAD) descriptor. The partial level
deals with the intermediate convolution layers, which tend to
capture information from object parts. However, to the best of
our knowledge, this work is the first to use contextual rank
aggregation methods [16], [17] in a dual-layer approach for



fusing CNNs and Transformers models in image retrieval.
The presentation structure of this paper will follow the

following organization: Section II discusses the formal defini-
tion used in this work; in Section III, the proposed two-layer
aggregation model is presented; Section IV discusses the ex-
perimental protocol conducted for assessing the effectiveness
of the proposed model, as well as the comparison with the
best-isolated feature and other aggregation models.

II. RANK MODEL AND PROBLEM DEFINITION

This section formally defines the ranking model used
throughout this paper. Let C = {x1, x2, x3, . . . , xn} be an
image collection, where n denotes the size of the collection.
Consider a content-based retrieval task where, given a query
image, it returns a list of images from the collection C.

Formally, given a query image xq , a ranker denoted by Rj

computes a ranked list τq = (x1, x2, x3, . . . , xk) in response to
the query. The ranked list τq can be defined by the permutation
of the k neighbors in N (q), which contains the k most similar
images to image xq in the collection C. The permutation τq is
a bijection from the set N (q) to the set [k] = {1, 2, 3, . . . , k}.
The notation τq(i) denotes the position of image xi in the
ranked list τq .

A ranker Rj can be defined based on different features and
distance functions, such that each combination can produce
distinct ranked lists. In this sense, a ranker can be seen as a
descriptor [18], which is formally defined as a tuple (ϵ, ρ),
where ϵ : C → Rd is a function that extracts a feature
vector xi from an image xi ∈ C, and ρ: Rd × Rd → R is
a distance function that computes the distance between two
images according to their corresponding feature vectors.

Considering the diversity of rankers available, we can de-
fined R = {R1, R2, R3, . . . , Rr} as a the set of rankers. In this
paper, the distance function is given by the Euclidean distance
for all rankers. The function ϵ for each ranker is given by
different CNNs and Transformer-based models trained through
transfer learning on ImageNet [19] dataset.

Considering a given ranker Rj and taking each image xi ∈
C as a query, we can obtain a set of ranked lists Tj . Such set
of ranked lists can be exploited by contextual approaches for
ranking and retrieval tasks [16], [17]. The research challenge
addressed in this paper consists of how to combine different
sets of ranked list Tj defined by each ranker Rj ∈ R in order
to compute an aggregated set of ranked lists Ta. In this sense,
the proposed approach UDLA can be defined as a function fa,
such that:

Ta = fa(T1, T2, . . . , Tr). (1)

The objective consists in exploiting contextual and com-
plementary information in the different set of ranked lists to
compute a more effective set Ta.

III. UNSUPERVISED DUAL-LAYER AGGREGATION

This section discusses the proposed Unsupervised Dual-
Layer Aggregation (UDLA) method, which addresses the
complex tasks of selecting and combining a set of visual
features in a fully unsupervised setting.

A. Overview of UDLA

The absence of labels in unsupervised scenarios leads to
challenging questions in selection and fusion retrieval ap-
proaches: (i) How to determine (or estimate) the effectiveness
of retrieval results of a given ranker? and (ii) How to define the
best combination of rankers? The proposed UDLA approach
addresses such questions by exploiting effectiveness estimation
measures in two layers of aggregation.

Figure 1 illustrates the overall organization of UDLA,
highlighting the main stages (Steps 1-10) of the method. The
expected input of the method consists of the retrieval results
of the set of rankers R (Step 1). The retrieval results are given
by the set of ranked lists: for each ranker Rj a set of ranked
lists Tj is defined.

In Step (2), an unsupervised effectiveness estimation is com-
puted for each ranker, assigning a score that allows ranking the
isolated rankers according to the estimated quality of retrieval
results (Step 3). From the list of rankers, the top-m rankers are
selected and become the input for the first aggregation phase
(Step 4), where m is a parameter of the method. Once properly
defining the subset of rankers can directly affect the results,
we devise an approach for turning the method robust to this
definition. The subset is combined pair-by-pair such that the
best pairs can be selected in the next layer.

The pairs are aggregated employing a contextual rank
aggregation method focused on precision [16] (Step 5). Subse-
quently, effectiveness estimation measures are employed again,
now to estimate the quality of retrieval results of aggregated
pairs (Step 6) and to define a rank of pairs (Step 7). According
to this ranking, the best pairs are selected (Step 8). To
conclude the process, a final contextual aggregation focused
on recall [17] is performed (Step 9) giving rise to the final
retrieval results (Step 10).

In the following sections, the main steps of the proposed
method are discussed and defined in detail.

B. Selection of Isolated Rankers

An effective methodology for selecting rankers is a crucial
and challenging task in the unsupervised aggregation process,
given that inadequate selection of rankers can significantly
compromise the effectiveness of the aggregated results. In
this paper, we exploit unsupervised measures used to estimate
the effectiveness of ranked lists. Given a query image, the
ranked lists obtained for it, and the ranked lists of the top-
k neighborhood, such measures assign a real value that aims
to estimate the qualify of retrieval results. The measures are
mainly based on the cluster hypothesis [20], which states that
closely associated elements tend to be relevant to the same
requests. In this sense, the measures analyze the reciprocal
references among elements at the top positions of ranked lists
to define the estimated value. Two measures were considered:

• Authority Measure: The authority measure [21] is an
effectiveness estimation measure based on the density of
the k-neighborhood graph in a ranked list of an image xq .
The effectiveness estimation provided by the authority
measure is based on the density of the neighborhood
graph of an image xq .

• Reciprocal Density: The reciprocal neighborhood den-
sity [22] also exploits the neighborhood information to



Fig. 1: General view and organization of the proposed Unsupervised Dual-Layer Aggregation (UDLA) method.

check the reciprocal references among elements in top-
k positions of ranked lists. However, while the authority
scores consider that all references have the same impor-
tance, the reciprocal density assigns higher weights to
references at the top position of ranked lists.

Results of studies [23] indicate that different effectiveness
estimation measures can be combined leading to more accurate
estimates. In this work, we combine both measures through a
traditional rank aggregation approach, the Borda [24] method.
The Borda method is based on the positions of rankings. In this
way, a list of rankers is obtained for each measure (Authority
and Reciprocal Density). In the following, the position of each
ranker in both lists is summed to compute a Borda score. The
aggregated ranked list is obtained by sorting the rankers in
crescent order of Borda score. The resulting ordered list is
then used to select the top-m rankers in the ranking, which
are used to select a subset of isolated rankers Rm ⊂ R.

C. Pairwise Aggregation

Given the selected subset of isolated rankers, all the possible
combinations of pairs are computed. Formally, the set of
combined pairs Rc can be defined by a Cartesian product of
the set of isolated rankers, as Rc = Rm ×Rm, composed by
only non-repeating pairs. The number of computed aggregated
pairs is given by rp =

(
m
p

)
, where p denotes the size of tuples

combined, and therefore p = 2 for pairs. The first aggregation
layer aims to bring relevant results to top-positions of ranked
lists, such that they can be exploited by the next layer.
Therefore, an aggregation method focused on precision should
be used for the fusion of pairs. Based on this assumption,
we employed the Rank Diffusion with Assured Convergence
(RDPAC) [16], a contextual re-ranking and rank aggregation
method. Recent studies [25] indicated that RDPAC [16] can
achieve high-accuracy results on classification tasks, which
are grounded on the precision of top-ranking positions. The
method takes as input the set of ranked lists for both rankers
which defines the pair and produces as output one combined
set of ranked lists for each pair in Rc.

D. Selection of aggregated pairs

Once the pairs are combined, not all the pairs are used
for the final aggregation. In this way, similar to the process

of selecting individual rankers, this step selects a subset of
pairs. The same approach defined in Section III-B is used
for pairs selection, employing the unsupervised effectiveness
estimation measures. A subset of the top mc combined pairs
is selected. The value of mc is given by mc = rp × α, where
rp denotes the number of pairs and α is a parameter defined in
a range between (0, 1]. The definition of α is associated with
thresholding for pairs selection, which defines the proportion
of combined rankers belonging to the set of rankers generated
by the first aggregation layer that will be considered for the
final fusion.

E. Final Aggregation
In this step, a final aggregation is conducted to fuse the

results of selected pairs. Since it is expected that the retrieval
results of pairs were improved especially in precision (at
the top position of ranked lists), this step aims to exploit
it to improve recall. In this way, we employ the contex-
tual aggregation approach given by the Cartesian Product
of Ranking References (CPRR) [17]. This method aims to
maximize the available similarity information contained in
top-ranking positions. By using Cartesian product operations
on neighborhood sets, these operations create new similarity
relationships [17].

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation con-
ducted to assess the effectiveness of the proposed method.
In Section IV-A, the experimental protocol applied, along
with the datasets and the selected rankers/ visual features
are discussed. In Section IV-B, the results obtained from the
pairwise aggregation of the first layer of the methodology are
analyzed. In Section IV-C, the final results for each dataset are
presented, as well as the comparison with a recent baseline.
In Section IV-D, the visual results are presented.

A. Experimental Protocol, Datasets and Features
For the evaluation of the proposed method, the adopted

protocol employed all the images contained in each dataset as
a query. The effectivenes measure considered is the traditional
Mean Average Precision (MAP). In the following, we discuss
the datasets, visual features, and implementation details re-
garding the experimental evaluation:



• Datasets: The experimental analysis considered three
datasets containing from 1,360 to 11,788 images and with
different complexities. For experimentation, Flowers17 [26],
Corel5k [27], and Cub200 [28] were used. The MAP was
calculated considering each image in the dataset as a query.

• Visual Features: Six visual features were selected for
the experiments. Traditional CNNs and recent Transformer-
based models were considered, namely: Dual Path Networks
(DPN) [29], Residual Network (RESNET) [30], Squeeze-
and-Excitation Network (SENET) [31], Extreme Inception
(XCEPTION) [32], Swin Transformer (SWINTF) [33], and
Visual Transformer (VIT-B16) [34].

Tables I, II e III present the retrieval results achieved by
the visual features in each dataset. The results of effectiveness
estimation measures are also reported. We can observe that the
values of these measures are highly correlated with the MAP
scores.

TABLE I: Retrieval results for isolated features (MAP) and
effectiveness estimation measures (Authority and Reciprocal)
for Flowers17 dataset.

Ranking Descriptor Original Authority Reciprocal
MAP

1 SWINTF 0.9300 0.89558 0.06195
2 VIT-B16 0.8771 0.81210 0.05857
3 RESNET152 0.5183 0.49102 0.04432
4 XCEPTION 0.4731 0.48584 0.04398
5 DPN92 0.5093 0.47779 0.04350
6 SENET154 0.4316 0.45529 0.04283

TABLE II: Retrieval results for isolated features (MAP) and
effectiveness estimation measures (Authority and Reciprocal)
for Corel5k dataset.

Ranking Descriptor Original Authority Reciprocal
MAP

1 VIT-B16 0.7525 0.65472 0.04119
2 SWINTF 0.7434 0.65266 0.04174
3 DPN92 0.6516 0.57152 0.03822
4 SENET154 0.5699 0.55428 0.03831
5 RESNET152 0.6483 0.55950 0.03776
6 XCEPTION 0.5449 0.51590 0.03581

TABLE III: Retrieval results for isolated features (MAP) and
effectiveness estimation measures (Authority and Reciprocal)
for Cub200 dataset.

Ranking Descriptor Original Authority Reciprocal
MAP

1 SWINTF 0.5840 0.61887 0.05149
2 VIT-B16 0.6082 0.60159 0.04960
3 SENET 0.1889 0.40342 0.03933
4 DPN92 0.2658 0.37041 0.03743
5 XCEPTION 0.2620 0.36310 0.03723
6 RESNET152 0.2324 0.30944 0.03372

• Implementation details: For the fusion methodologies,
the unsupervised distance learning framework (UDLF) [35],
which includes several pre-implemented fusion methods, was
used. Regarding the parameters, we used k = 100 and
L = 3, 500 for contextual rank aggregation methods and effec-
tiveness measures (except for Flowers17 dataset which used
L = 1, 360). The parameter L defines the length of ranked
lists. For the first layer aggregation method RDPAC [16], we
used k = 15, the default parameter of UDLF [35] framework.
For UDLA we used α = 0.25, m = 6 for all experiments in
all datasets.

In order to compare with other approaches, the first natural
baseline consisted of surpassing the performance of the best
individual ranker, followed by exceeding the performance
of the best pairwise fusion of descriptors. With these goals
achieved, the next step was to compare the obtained results
with another recent selection and aggregation method, such as
the Unsupervised Selective Rank Fusion (USRF) [8].

We can observe that the values of these measures are highly
correlated with the MAP scores.

B. Results of Pairwise Combination
This section aims to evaluate the capacity of the proposed

method to achieve effectiveness gains when combining the
pairs. In addition, we aim to evaluate the capacity of selecting
the effective pairs. The results are presented in Tables IV,V,
and VI.

TABLE IV: Retrieval results for pairwise combination of
features (MAP) and effectiveness estimation measures of pairs
(Authority and Reciprocal) for Flowers17 dataset.

Ranking Combined Descriptors MAP Authority Reciprocal
1 SWINTF + VIT-B16 0.9950 0.94854 0.06256
2 SWINTF + XCEPTION 0.9878 0.94329 0.06253
3 VIT-B16 + XCEPTION 0.9808 0.93727 0.06238
4 SWINTF + SENET154 0.9845 0.93658 0.06230
5 VIT-B16 + RESNET152 0.9776 0.93565 0.06236
6 SWINTF + RESNET152 0.9898 0.93581 0.06223
7 SWINTF + DPN92 0.9875 0.93525 0.06216
8 VIT-B16 + DPN92 0.9652 0.91916 0.06188
9 VIT-B16 + SENET154 0.9660 0.91369 0.06156

10 XCEPTION + DPN92 0.8109 0.78787 0.05726
11 RESNET152 + DPN92 0.8090 0.78403 0.05709
12 RESNET152 + XCEPTION 0.8029 0.78720 0.05704
13 RESNET152 + SENET154 0.7927 0.78040 0.05679
14 DPN92 + SENET154 0.7648 0.74915 0.05569
15 XCEPTION + SENET154 0.7771 0.74621 0.05554

TABLE V: Retrieval results for pairwise combination of
features (MAP) and effectiveness estimation measures of pairs
(Authority and Reciprocal) for Corel5k dataset.

Ranking Combined Descriptors MAP Authority Reciprocal
1 SWINTF + VITB16 0.9380 0.88978 0.04851
2 SWINTF + DPN92 0.9373 0.88063 0.04828
3 SWINTF + RESNET152 0.9318 0.88131 0.04823
4 VITB16 + RESNET152 0.9198 0.86719 0.04782
5 VITB16 + DPN92 0.9182 0.86229 0.04769
6 SWINTF + XCEPTION 0.8904 0.84446 0.04697
7 SWINTF + SENET154 0.8894 0.83439 0.04661
8 VITB16 + XCEPTION 0.8769 0.82830 0.04630
9 DPN92 + RESNET152 0.8771 0.82468 0.04645

10 VITB16 + SENET154 0.8782 0.82207 0.04614
11 SENET154 + RESNET152 0.8750 0.81150 0.04606
12 DPN92 + SENET154 0.8420 0.79953 0.04536
13 DPN92 + XCEPTION 0.8358 0.79896 0.04536
14 RESNET152 + XCEPTION 0.8374 0.79655 0.04533
15 SENET154 + XCEPTION 0.8347 0.79120 0.04520

Figures 2, 3, and 4 also present the results in a different
perspective. Each pair is represented by a point in the graph.
The number represents the rank position in the ranking of
pairs. The values are also shown in Tables IV,V, and VI. We
can observe in Figures 2, 3, 4 that most of the pairs achieved
results superior to the best-isolated features (red line). The first
pairs are significantly superior. We can also observe that the
final aggregation result surpass the best isolated feature and
all the pairs.

C. Final Aggregation Results and Comparisons
Table VII presents the results obtained for each dataset,

comparing the performance of the best-isolated ranker, the



TABLE VI: Retrieval results for pairwise combination of
features (MAP) and effectiveness estimation measures of pairs
(Authority and Reciprocal) for Cub200 dataset.

Ranking Combined Descriptors MAP Authority Reciprocal
1 SWINTFF + VIT-B16 0.7675 0.70782 0.04275
2 SWINTFF + XCEPTION 0.6652 0.64816 0.04016
3 SWINTFF + DPN92 0.6601 0.64562 0.04005
4 SWINTFF + RESNET152 0.6442 0.64356 0.03976
5 VIT-B16 + DPN92 0.6625 0.63610 0.03991
6 VIT-B16 + XCEPTION 0.6692 0.63840 0.03989
7 VIT-B16 + RESNET152 0.6487 0.62442 0.03938
8 SWINTFF + SENET 0.5643 0.58493 0.03773
9 VIT-B16 + SENET 0.5692 0.57486 0.03753

10 DPN92 + XCEPTION 0.4745 0.54971 0.03646
11 DPN92 + RESNET152 0.4420 0.53411 0.03574
12 XCEPTION + RESNET152 0.4633 0.53153 0.03563
13 SENET + DPN92 0.3831 0.50009 0.03476
14 SENET + XCEPTION 0.4068 0.49711 0.03457
15 SENET + RESNET152 0.3691 0.48574 0.03401
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Fig. 2: Analysis of Pairwise Combination compared to the Best
Isolated feature (red) and proposed approach UDLA (blue) for
Flowers17 dataset.
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Fig. 3: Analysis of Pairwise Combination compared to the Best
Isolated feature (red) and proposed approach UDLA (blue) for
Corel5k dataset.

best-combined pair, the USRF approach [8], and the proposed
UDLA approach.

The proposed UDLA approach achieved very significant
effectiveness gains over the best-isolated ranker. For Corel5k
dataset, we can observe an impressive improvement from
75.25% to 97.51%. The proposed approach also achieved
results superior to the best pair and the best USRF [8]
combination in all datasets.
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Fig. 4: Analysis of Pairwise Combination compared to the Best
Isolated feature (red) and proposed approach UDLA (blue) for
Cub200 dataset

TABLE VII: Final Aggregation Results of UDLA compared
to other approaches: Best Isolated Descriptor, Best Pair, and
Best USRF [8] result, considering MAP scores.

Dataset Best Best Best Final
Isolated Pair USRF [8] UDLA

Flowers17 0.9300 0.9950 0.9973 0.9989
Corel5k 0.7525 0.9380 0.9679 0.9751
Cub200 0.6082 0.7675 0.7472 0.7701

D. Visual Results
Figures 5 and 6 present the visual results of UDLA in

comparison with the two best-isolated descriptors and the
best-combined pair. The query image is represented in green
borders (at left). Each line represents a ranked list obtained by
each approach. The non-relevant results are illustrated in red
borders. From this visualization, it is possible to observe the
increase in effectiveness in the results achieved through the
proposed methodology.

Fig. 5: Visual examples for Corel5k dataset image 53.

Fig. 6: Visual examples for Corel5k dataset image 2109.



V. CONCLUSION

This study highlighted the challenges involved in selecting
effective visual features for image retrieval in unsupervised
scenarios. It also emphasized the intricate process of achieving
positive results in aggregation tasks where no labeled data is
available. Properly selecting and fusing rankers play a crucial
role in content-based image retrieval, as they directly influence
the effectiveness of the generated ranked lists. In this paper,
we proposed a dual-layer aggregation approach for image
retrieval. The proposed UDLA method exploits effectiveness
estimation measures for an unsupervised selection of isolated
rankers and pairwise aggregations. The method includes a first-
layer fusion focused on precision and a second-layer fusion
focused on recall, both based on contextual rank aggregation
methods. An extensive experimental evaluation considering
visual features based on CNN and Transformer-based models
indicates the effectiveness of the proposed approach, achiev-
ing results superior to the best-isolated feature and a recent
fusion approach. In future work, we intend to evaluate the
efficiency aspects of the method and investigate performance
optimization strategies.
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