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Abstract—Recent advances regarding deep generative models
have strengthened a realm of approaches in which discriminative
and generative tasks are tackled jointly in an analysis-by-synthesis
manner. In this category, variational autoencoders (VAEs) and
generative adversarial networks (GANs) aim for learning latent
data representations from which sampling of synthetic images
may be performed. However, sampling in such models normally
does not allow for independent control of diverse factors of
variation. Despite general efforts to overcome this issue, deep
generative models tailored for sign language with disentangled
factors of variation are yet not vastly explored in the literature.
In this work, we introduce the SynLibras, a novel model that
allows for disentangling appearance and gestural communication
(i.e. body, hands and face poses) on image synthesis. Our
model is capable of performing cross-language pose-transfer
while maintaining the appearance of the source signer. We
perform experiments on the RWTH-PHOENIX-Weather dataset
and evaluation using the PSNR and the SSIM metrics. To
our knowledge, the SynLibras is the first method for Brazilian
sign language (Libras) synthesis in images. We compare our
model with the EDN, a well-known general pose-transfer method,
achieving better results on Libras synthesis. Finally, we also
introduce the SynLibras-Pose, a dataset with annotated poses
of Libras signers performing single words.

I. INTRODUCTION

According to recent information from the World Health
Organization (WHO) [1], approximately 430 million people
in the world present some degree of disabling hearing loss.
In addition to the personal issues caused by such a disability,
the WHO estimates that it has an annual global cost of US$
980 billion, which includes health sector costs, educational
support, loss of productivity, and societal costs.

People who are not able to hear well face a significant
communication barrier that may prevent them to take part in
several activities, from social interaction to education. Such
restrictions are frequently overcome with the use of sign
language. Despite their enormous importance, gestural lan-
guages are still spoken by a small portion of countries’ overall
population, as shown by studies about American sign language
(ASL) speakers in the United States [2]. Therefore, even
in their own countries, people with hearing loss frequently
depend on translation to communicate.

Assistive technologies may play a relevant role in the
mitigation of the personal and economic consequences of this
problem. One may find a variety of related approaches, from
gloves that turn signs into speech [3] to computer graphics
avatars that reproduce sign language from text or sound [4].

In this realm, computer vision approaches stand as non-
intrusive methods for handling images and videos of people
speaking in sign language. Efforts aiming for the recognition
and translation of sign languages are already well-known in the
literature. Nevertheless, the recent advent of deep generative
models, such as GANs and VAEs, has opened a new branch
of analysis-by-synthesis methods [5], [6], which aim for the
recognition, translation, and synthesis of realistic images and
videos of people speaking in sign languages.

Here, we propose the SynLibras, a novel conditional VAE-
GAN model capable of generating disentangled synthetic im-
ages of Libras signers. To our knowledge, it is the first capable
of producing synthetic images of people communicating in
Libras. We also introduce the SynLibras-Pose dataset, a visual
dataset for Libras with annotated poses of actors signing words
in videos. We perform experiments on the RWTH-PHOENIX-
Weather dataset [7] and evaluation using the well-known peak
signal-to-noise ratio (PSNR) and the structural similarity index
measure (SSIM) metrics [8]. We compare our model with
the well-known and publicly available EDN [9] pose-transfer
method, achieving better scores on the image quality metrics
and better Libras pose-transfer performance. The SynLibras is
capable of training and synthesizing images of multiple people
with just one trained model, in contrast with the EDN method,
in which a model only handles images of one single person at a
time in training and testing. Our method and dataset represent
relevant contributions to this challenging task, aiming for the
automatic and controllable generation of realistic synthetic
sign language speakers.

II. RELATED WORK

Sign language recognition and translation may be consid-
ered as classical applications of computer vision [10]-[13].
Synthesizing sign language with computer graphics avatars is
a well-known strategy [14]-[17]. Therefore, instead of aiming
for a broad literature review of these topics, we highlight
methods for sign language synthesis on images and videos
based on deep learning, covering visual datasets for this
purpose. In both cases, we also emphasize literature related
to Libras. A recent and more general survey on deep learning
sign language production is provided by Rastgoo et al. [18].

Early adopters of deep generative models for sign language
generation in videos, Stoll et al. [19] propose sign language
translation using neural machine translation (NMT) [20] and



generative adversarial networks (GANs) [21]. They perform
a sequence of translations, from spoken language to lexical
entities (glosses), and finally, to sequences of body postures.
In doing so, they produce faithful German sign language
(DGS) videos sequences conditioned to appearance and pose.
The authors extend their work using a motion graph in [22],
which is also extended in [23]. More recently, Stoll et al. [24]
and Saunders et al. [25] perform translation to German sign
language videos, still relying on GANs. Also using GANSs,
Vasani et al. [26] and Krishna et al. [27] perform video frames
generation of Indian sign language (ISL). Ventura et al. [28]
apply the EDN method [9] for generating signing videos.
Saunders et al. [29] propose an image-to-image method for
anonymization of synthetic sign language videos, and very
recently a pose-conditioned GAN model for video produc-
tion [30]. Concerning Libras, despite the existence of machine
learning methods for recognition and translation [31]-[35], to
our knowledge, the SynLibras is the first method for synthesis
on images. In contrast with previous art, our disentangled deep
generative model, based on a conditional VAE-GAN architec-
ture, was capable of performing cross-language pose-transfer
with independent control over the pose and appearance.
Regarding visual datasets for sign languages, several bench-
marks are found in the literature. The RWTH-PHOENIX-
Weather dataset [7] has been widely used since it provides
a large collection of German sign language sequences (8,257)
performed by 9 signers. It does not provide body posture
annotations, which are frequently generated with body pose
estimators [36] when required during sign language image
synthesis. A more recent dataset, the How2Sign [37] consists
of a larger set of sequences (38,611) from 10 different ASL
signers. It already includes postural annotations. Besides these,
other collections of visual data are found in the literature,
for diverse languages, such as British sign language [38],
[39], ASL [40], [41], German sign language [42], Turkish
sign language [43], Chinese sign language [44], Czech sign
language [45], and, Libras [32], [46]-[48]. In contrast, our
SynLibras-Pose contains annotations of the body, hands and
faces of the signers, as well as the words they are performing.

III. METHODOLOGY: THE SYNLIBRAS
ARCHITECTURE

Deep generative models based on VAEs [49] aim for
maximizing the evidence lower bound (ELBO) of the log-
likelihood over training data x, marginalized over a latent
variable z. Such models may be turned into conditional VAEs
(CVAEs) [50] by incorporating a conditioning variable y to
the marginal log-likelihood, as per

log po(x|y) > Lcvar(o,0;%,y)
= Egy (apey) [log po(x|2, )]
— KL g4 (2%, ¥)llpo(=ly)], (1)
where, log py(x|y) is the conditional marginal log-likelihood

and Lcvag(¢, 0;x,y) is the evidence lower bound. The ELBO
is composed of two terms, which are learned simultaneously

through an encoder-decoder neural network architecture. In
such an architecture, following Eq. 1, an “inference network”
(encoder), with parameters ¢, minimizes the KL-divergence
between the surrogate distribution ¢4(z|x,y) and the prior
distribution py(z|y), while a “generative network™ (decoder),
with parameters 6, minimizes the expected reconstruction error
of the generative model py(x|z,y). Additionally, such models
may be extended with discriminators from GANs [21], which
have their objective defined as a two-player minimax game

Loan(D. ) = By [log D(x)
+ Ep, (2 [log(1 — D(G(2)))] - (2)

Here, the discriminator (D) is trained to maximize the proba-
bility of assigning the correct labels to real and fake samples,
while simultaneously the generator (G) is trained to minimize
log(1—D(G(z))). Finally, CVAE-GAN models [51]-[53] have
their final objective given by

L = Lcvae + Lgan. 3)

Our SynLibras architecture, illustraded in Figure 1, is an
CVAE-GAN model. During training, an input RGB image
x is received by the Encoder (E) and reconstructed by the
Decoder/Generator (G) aiming for the minimization of the
L1-norm reconstruction loss. Meanwhile, the heatmap pose
representation y is conditioning these two modules. It is also
the input of a Prior (P) module correspondent to py(z|y),
which is used in the minimization of the KL-divergence
KLlgs(z|x,y)||lpe(z]y)]. The Gaussian latent variable z is
sampled using the reparametrization trick [49], as per z ~
4s(z|x,y) = N(u,0?), and encodes the visual appearance
of the signer, once the gestural communication is encoded
by the conditioning pose representation y. The intentional
disentanglement of visual appearance z and posture y in
the generative model py(x|z,y) aims for the independent
manipulation of these factors of variation in the synthesis
of images. Finally, a Discriminator module (D) classifies the
output images as real or fake. Following Eq. 2, it minimizes
the cross-entropy loss and contributes for image quality.

Since visual appearance and body posture are disentangled,
at test time the SynLibras may be employed for pose-transfer.
In this task, the Encoder is fed with an input RGB image
which is reconstructed by the Decoder with a different body
posture. Therefore, the model can synthesize images with
appearance given by the input image and body pose given by
the conditioning variable y. The Prior and the Discriminator
modules are not used during this task.

Finally, concerning the details of our architecture, all Syn-
Libras modules are composed of residual layers [54], except
the Decoder/Generator (G), which has a purely convolutional
part. We also employ the Leaky ReL.U [55] as the activation
function of all the non-linear layers. In addition, we use
equalized learning rate [56] and pixel-wise feature vector
normalization [56] to maintain greater stability during train-
ing. Finally, our pose representation emphasizes hand poses
and facial expressions, which are crucial for sign language.
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Fig. 1. SynLibras architecture. During training, an input RGB image x is received by the Encoder (E) and reconstructed by the Decoder/Generator (G)
through the minimization of the L1-norm. Meanwhile, the pose representation y is conditioning these two modules. It is also the input of a Prior (P) module,
used in the minimization of the KL-divergence K L[qq(2|x,y)||pg(2z|y)], between the surrogate distribution gy (z|x,y) and the prior distribution pg(z|y).
The Gaussian latent variable z is sampled using the reparametrization trick [49], as per z ~ q4(z|x,y) = N(y, o), encoding the visual appearance of the
signer. Finally, a Discriminator module (D) classifies the output images as real or fake and contributes to further improvement of image quality. At test time,
for the pose-transfer task, a given input RGB image may be combined with different poses y, allowing for the synthesis of a person with a certain appearance
in diverse postural configurations. The Prior and the Discriminator modules are not used during testing.

We derive Gaussian heatmaps from body, hands and facial
keypoints. The 2D heatmaps are employed as the conditioning
pose representation y in the model (see Fig. 1).

IV. EXPERIMENTS AND RESULTS
A. Datasets

We train our model on the RWTH-PHOENIX-Weather
dataset [7]. This is a well-known sign language benchmark in
which 9 subjects translate the news and the weather forecast
into German sign language. The dataset consists of videos
captured at 25 frames per second and an original resolution
of 210 x 260 pixels. We employ the OpenPose [36] method
to automatically estimate the position of the body, hands and
face keypoints. In total, we use 30 keypoints: 12 for the upper
body, 5 for each hand and 8 for the face. Each one of these
keypoints is mapped to a 2D Gaussian heatmap [57], which
together are the conditioning pose representation in our VAE-
GAN model. After sampling images in time, and discarding
corrupted and inconsistent estimates, we end up with a training
set of 19,365 frames and a testing set of 2,957 frames.

Regarding Brazilian sign language, we introduce the
SynLibras-Pose dataset, which is based on an open Libras-
Portuguese video dictionary [58]. It consists of 1,133 videos
with approximately 200 frames each with an original size of
1920 x 1080 pixels. The videos contain subjects performing
signs corresponding to individual words related to several
different themes and areas. We crop 1024 x 1024 windows,
keeping the subjects centralized. We use the OpenPose [36] to
automatically annotate the pose keypoints, manually correcting
them to enforce consistency and ending up with 427 videos
(approximately 85,400 frames). Samples of video frames with
the corresponding annotations are shown in Figure 2.

B. Implementation and Training

Both, our implementation and dataset will be made publicly
available for the sake of reproducibility!!. We implement our

https://github.com/ReplicAl/SynLibras

)

Fig. 2. SynLibras-Pose. A visual dataset of Libras with annotated poses, as
illustrated above, based on an open Libras-Portuguese video dictionary [58].
We provide annotations for 30 keypoints: 12 for the upper body, 5 for each
hand, and 8 for the face.

model in PyTorch and all experiments were run on Google
Colab. Regarding training, it has lasted for 15 epochs with our
mini-batches consisting of 6 images on the RWTH-PHOENIX-
Weather dataset [7]. We use the Adam [59] with a learning
rate of 1073, 31 = 0.0 and 52 = 0.999. Network weights
were initialized following Gaussian initialization. All images
are normalized to 256 x 256 pixels, centered on the subject. No
data augmentation was used except for image normalization
to zero mean and unit variance.

C. Baseline Method

To our knowledge, no other method in the literature tackles
Libras synthesis in images. Therefore, to evaluate the Syn-
Libras model we have adopted a well-known and publicly
available method for pose-transfer, the EDN (FBF) [9]. Dif-
ferently from the SynLibras, which is capable of learning a
generative model of several people with diverse appearances
and postures simultaneously, the EDN is trained and tested
with sequences of images of a single person at a time. At
test, the model is then capable of transferring postures to
that particular person employed in training. In this context,
we have performed specific experiments with the SynLibras
for allowing a fair comparison with the EDN baseline. All
experiments and results are presented in the following sections.

D. Qualitative and Quantitative Evaluation

Initially, we evaluate the image quality of our reconstruc-
tions on the RWTH-PHOENIX-Weather test set. For that, we



employ the well-known SSIM [8] and the PSNR metrics. The
SynLibras achieves SSIM=0.89 and PSNR=25.2 on the full
test set composed of multiple people. The reconstructions of
the RWTH-PHOENIX-Weather are illustrated in Figure 3.

For a comparison between the SynLibras and the EDN
baseline, we have trained (= 12 epochs) and tested the EDN on
a reduced version of the RWTH-PHOENIX-Weather dataset
containing only a single person (PHOENIX_Single), since the
EDN is not capable of learning the appearance of multiple
people simultaneously. The quantitative results of both models
on the reconstruction of the PHOENIX_Single test set, which
contains 2,084 images, are shown in Table I. Our SynLibras
model has presented better performance regarding both met-
rics. A qualitative comparison is shown in Figure 4.

TABLE I
COMPARISON ON THE TEST SET OF THE PHOENIX_SINGLE DATASET.
LARGER SCORES MEAN BETTER RESULTS.

SSIM | PNSR
SynLibras 0.87 24.12
EDN [9] 0.86 22.85

Employing our SynLibras-Pose dataset for testing, we per-
form cross-language pose-transfer. With the SynLibras model,
we produce synthetic images of people presenting appearances
from the RWTH-PHOENIX-Weather [7] subjects, yet per-
forming signs in Libras. This shows the capability of the model
to disentangle gestural communication and visual appearance.
To our knowledge, the SynLibras is the first method to produce
disentangled synthetic images of multiple Libras signers from
a single model. Qualitative results of pose-transfer are shown
in Figure 5. For the comparison between the SynLibras and
the EDN [9] on the pose-transfer task, we also employ the
PHOENIX_Single, as shown in Figure 6.

Lastly, we importantly emphasize that in contrast with
related methods such as the EDN, the SynLibras is capable
of training with images of multiple people simultaneously.
Consequently, the same trained model is capable of synthe-
sizing images of diverse people, as illustrated in Figure 5.
The EDN, for instance, is only capable of training and testing
with images of a single person at a time. Thus, it is needed
to retrain the model for generating images of different people.
Due to these differences, regarding the comparisons between
the SynLibras and the EDN, the SynLibras was trained on
the full RWTH-PHOENIX-Weather dataset and tested on the
PHOENIX_Single, while the EDN was trained and tested on
the PHOENIX_Single dataset.

V. CONCLUSIONS, LIMITATIONS AND FUTURE

We introduce the SynLibras, a disentangled deep generative
model for tackling the challenging and relevant task of syn-
thesizing Libras in images. Our deep learning architecture is
a CVAE-GAN conditioned on gestural communication (body,
hands and facial postures). We also introduce the SynLibras-
Pose, a dataset of Libras signers performing single words in
videos with body, hands and facial keypoints labeling. We
have trained the SynLibras on the RWTH-PHOENIX-Weather,

and tested on both the RWTH-PHOENIX-Weather and the
SynLibras-Pose datasets. We compare our model with the
EDN [9], a well-known and publicly available method for
general pose-transfer. The SynLibras presents better scores
on the SSIM and the PSNR metrics. Moreover, our model
was capable of presenting better performance than the EDN
on cross-language pose-transfer, i.e. to synthesize images of
RWTH-PHOENIX-Weather dataset subjects performing Li-
bras signs from the SynLibras-Pose dataset, emphasizing the
disentanglement between appearance and gestural posture in
the model.

Despite the good results, fine details of hair, faces and hands
are still hard to reconstruct (Fig. 3), as well as the precise
direction of the face (Fig. 5). Such problems may be overcome
with better and more accurate pose representation. Finally,
another direction of future improvement is the use of pose
estimators over synthetic images as a surrogate measurement
of image quality.
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