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Abstract—Histological image analysis through systems to aid
diagnosis plays an important role in medicine with supplementary
reading for the specialist’s diagnosis. This work proposes a
method based on the association of extracted features by fractal
techniques, regularization and polynomial classifier. The feature
vectors were classified by applying the cross-validation technique
with 10 folds. The evaluation of the results occurred through
metrics such as accuracy (ACC) and imbalance accuracy metric
(IAM). The proposed approach achieved significant results for all
metrics with non-Hodgkin lymphoma lesion sets. The proposed
approach provided values around 0.97 of IAM and 99% of ACC
for investigated groups. These results are considered relevant to
studies in the literature and the association of Hermite polynomial
and regularization can contribute to the detection of the lesions
by supporting specialists in clinical practices.

Keywords—CAD, Histological Image, Polynomial Classifier,
Regularization.

I. INTRODUCTION

Lymphoma is a type of cancer that affects the lymphatic
system and can be subclassified into 38 types according to
their morphological, immunophenotypic, genetic, and clinical
characteristics [1]. One of the types with the highest evidence
among diagnosed clinical cases, around 85%, is non-Hodgkin
lymphomas (NHL). This type can be identified as chronic
lymphocytic leukemia (CLL), follicular lymphoma (FL) and
mantle cell lymphoma (MCL) [2].

Identification and diagnosis of NHL by the pathologist is
still a challenging and complex task. Factors such as workload
and specialist experience level can influence this process.
To assist the specialists, computer-aided diagnosis (CAD)
systems have been applied for supplementary reading during
tissue analysis. The main steps of these systems include the
acquisition of the digitized image, preprocessing, segmen-
tation of regions of interest (ROIs), feature extraction, and
classification. According to the authors [3], the development
of feature extraction and classification algorithm capable of

identifying the ROIs with information on this type of cancer
is fundamental in the diagnosis [4].

The feature extraction should bring information that can
provide differentiation of the labels in the classification step.
Among the approaches, an important technique for description
is the quantification of the texture of an image. Texture
provides measurements of properties such as smoothness,
roughness, and regularity of the image. Techniques based
on fractal dimension and lacunarity allow quantifying self-
similarity properties present in the images, which can not
be defined by Euclidean geometry. These properties are fun-
damental to the processes employed in the classification of
different types of NHL [5].

Classification is a machine learning step that employs the
feature set as the basis for assigning class labels to patterns
obtained from input images [6]. Although various methods
contribute to solving biomedical classification problems, the
choice of the appropriate technique for this task depends on the
properties of the classification algorithm [7]. The polynomial
classifier is an algorithm that has shown promising results,
especially when dealing with nonlinearly separable data. This
algorithm is a parameterized method that exponentially ex-
pands its polynomial base according to the number of elements
in the data vector and the degree of function. So, this strategy
can increase the processing time and this fact represents
an important challenge in the classification stage [8]. So, a
regularization method can provide stability to the classification
and that makes it less sensitive to data training processes.
Regularization may also lead to a reduction in the general-
ization error as well as also help in feature selection to find
out the most relevant features for the classification process
[9]. Several studies have explored solutions as described in
these works [10], [11]. However, a method that associates
regularization with the polynomial classifier has not yet been
investigated, especially when data of NHL histological images
are considered.



This study presents an approach for NHL lesion classifi-
cation based on descriptors obtained by fractal geometry and
polynomial classifier. The feature extraction step employed the
fractal geometry approach for vector generation considering
LAB and RGB color models. The Ridge regularizer was
employed to equalize the set of attributes by adding a constant
that promotes the resizing of the data. Finally, these vectors
were labeled using the polynomial classifier with the Hermite
base function. The performance of the proposed method was
evaluated by the imbalance relation between accuracy metric
(IAM) [12] and accuracy (ACC). The polynomial classifier
was also compared with machine learning (ML) algorithms.
The contributions of this work are i) Study of the polynomial
algorithm based on the Hermite base function with a new
parameterization for NHL classification; ii) Investigation of
Ridge regularization technique on descriptors obtained from
fractal geometry and the performance on polynomial classifi-
cation with color models; iii) Performance comparison of the
Hermite polynomial algorithm with ML methods using the
IAM metric.

II. METHODOLOGY

The proposed work performs the classification of lesions
through algorithms developed in the Python programming
language and WEKA software, as presented in Fig. 1. The
experiments were evaluated on a computer with an Intel Core
i5 with 16 GB RAM.

A. Database

The proposed methods were evaluated with data from the
National Cancer Institute and National Institute on Aging, in
the United States [13]. The dataset was constructed from 30
histological slides of lymph nodes stained with H&E, scanned
using the RGB color model with 24-bit quantization and
resolution of 1388 × 1040 pixels and stored in TIFF format.
The regions of each slide were digitally obtained using a light
microscope (Zeiss Axioscope) with a 20× objective lens and
an AxioCam MR5 coupled and recorded without compression.
A total of 374 images were obtained, where 113 of CLL, 139
FL and 122 MCL.

B. Feature Extraction

The first stage consists of feature extraction, a process in
which transformations are applied to image pixels to generate
numerical values that are significant for pattern discrimination
[14]. The used techniques are fractal dimension and lacunarity
as demonstrated in [11] which were applied on RGB and CIE-
LAB color model images. The LAB color model was chosen
due to its compatibility with human vision, which makes it
possible to represent all colors visible to the human eye. The
representation used to define the RGB hyperspace was applied
to evaluate the CIE-LAB model. One of the main advantages
of fractal geometry-based approaches is the possibility of
representing structures captured by the human visual system
in a format that computer systems can quantify in more detail
than Euclidean geometry [5]. In this work, the fractal geometry

metrics were calculated using the gliding box method with the
size of the box between L = 3 and L = 45.

According to the authors in [5], the investigation of the
fractal dimension descriptor with different color models is a
relevant combination because there are few approaches to the
calculation of fractal measurements for color images. Based on
the information described in the study [15], the use of separate
color channels of different models can provide more relevant
information in discriminating these types of lesions.

The lacunarity was extracted by quantification of the dis-
tribution and organization of the pixels as demonstrated in
[16]. Therefore the feature vectors stored the features: fractal
dimension metrics (FD) and five lacunarity values (Lac)
(area under curve - ARC, skewness - SKW , area ratio
- AR, maximum point - MP and scale of the maximum
point - SMP ), represented by Lac (1) to Lac (5). These
measurements were obtained from each channel separated
from the color models, totaling 18 features in the data vector.

The ARC metric was obtained through numerical integra-
tion using the trapezoidal method. The SKW consisted of
an asymmetry indication compared to the average value. The
negative values of skewness indicated that the sample was
concentrated to the left of the average value. The positive
values of SKW indicated that the sample was concentrated
to the right of the average value. Considering a case of a
perfectly symmetrical sample the skewness obtained is 0. The
AR considered the ratio between the right side and the left
side areas under the function curve. The MP provided the
value of the maximum point of each function and the SMP
is the scale of the maximum point.

C. Regularization

Regularization is a technique developed to standardize the
attributes by adding terms that promote resizing and make
the problem more stable. This approach allows solving the
problem of the number of features superior to the number of
classes since some input variables can be set to zero, providing
the construction of a more efficient predictive model [17]. In
this work, we applied the regularization method for feature
selection and evaluation of the classification algorithms. The
regularization stage was used in each training fold to obtain
the most relevant features for the classification process. This
allowed the reduction of the number of attributes required
in the classification step [18]. These selected features were
applied to all investigated classifiers.

An objective function F is smoothed by the norm penalty
parameter ω(θ), according to Eq. 1.

R(θ,X, y) = F (θ,X, y) + βω(θ), (1)

where X is the input matrix, y is the target labels, θ denotes
the trainable parameters, β ∈ [0,∞) is a hyperparameter that
weights the relative contribution of the norm penalty term ω,
which is relative to the standard objective function F . When
the β value is equal to 0 there is no penalty. However, as this
parameter increases, the greater the adjustment performed.



Fig. 1. Block diagram of the main stages of the proposed approach.

The Ridge regularization, represented by (Eq. 2), is obtained
by adding to the cost function the sum of the squares of the
weights β. The term λ(0 < λ < ∞) is a hyperparameter that
controls the application of the regularization method on each
attribute to penalize them with different values

F (θ,X, y)︸ ︷︷ ︸
Original Cost Function

+ λ

p∑
j=1

β2
j︸ ︷︷ ︸

Ridge Regularization

. (2)

The value of λ that generates the highest classification rate
can be calculated iteratively from a cross-validation process.
For this approach, the range used was 10−5 to 10−3 with
2.5×104 iterations. These values were obtained empirically
over the feature vector.

D. Classification

The polynomial classifier is a supervised method capable of
nonlinearly expanding an input feature vector to a higher di-
mension. This strategy allows obtaining linear approximations
in this space that can label the input data to the desired output
[19].

The Hermite polynomials (HP) can generate a complete
orthogonal basis of the Hilbert space that satisfy the orthogo-
nality and completeness conditions of the family of elements
of that space [20]. The orthogonality condition shown on Eq. 3,
implies that any inner product between a pair of orthogonal
polynomials, Pm(x)∞m=0 and Pn(x)

∞
n=0, of different degrees

is equal to zero when the used base function w(x) and [a, b]
range are the same [21].

< Pm(x), Pn(x) >=

∫ b

a

Pm(x)Pn(x)w(x)dx = 0,∀m ̸= n.

(3)
According to Thangavelu [22], HP is orthogonal in the range
of (−∞,∞), for the base function, and allows gains in
the approximation of functions. Mathematically, HP can be
defined as Eq. 4:

Hn(x) = (−1)ne−x2/2 dn

dxn
[e−x2/2]. (4)

An efficient way from a computational point of view to obtain
this polynomial is by using the recurrence relation. In this
case, only the first two terms are needed so that the others
are iteratively calculated. The recurrence relation for the HP
is expressed by Eq. 5 [6].

Hn+1(x)− xHn(x) + nHn−1(x) = 0, n = 0, 1, 2, . . . (5)

Finally, the classifier can be defined according to the Eq. 6:

g(x) = aTHn(x), (6)

wherever a, is the coefficient vector of the polynomial base
function, Hn(x) is the Hermite base function and n corre-
sponds to the order or degree. The training on the polynomial
classifier enlarges the data vector through polynomial expan-
sion to increase the separation of the classes in the generated
new vector. This process generates a polynomial function that
allows the separation of the data into two classes. In the testing
step, the polynomial function generated earlier is applied to
define the class to which each sample belongs [23]. In this
work, the order of the polynomial base was empirically defined
and the best results were obtained with the 3th order and five
features for class separation.

E. Evaluation of Methods

The performance of the HP algorithm was compared with
three different classifiers that are based on the main supervised
ML approaches function-based, ensemble learning, and tree-
based. The chosen algorithms were: logistic (LGT), a model
based on the integration of tree induction algorithm and
additive logistic regression; multilayer perceptron (MLP), an
approach that consists of a system of simple interconnected
neurons, or nodes, representing a nonlinear mapping between
an input vector and an output vector; and random forest (RF),
um strategy based on a tree ensemble method, wherein the
bootstrapping for each tree yields subsets of observations
which are not included in the tree growing process. These
algorithms were evaluated with the cross-validation method
k=10, wherever 90% of the dataset was used for training and
10% for testing the model. This study evaluated the groups of
NHL lesions (FL-CLL, FL-MCL, and CLL-MCL). The ML



algorithms were employed from the Weka software and the
default parameters were adopted.

The classification algorithms were evaluated using the IAM
and ACC. The ACC metric is among the most common metrics
for analysis of results in the context of image classification
because the calculation is simple and the interpretation of the
results is easy. This metric corresponds to a value between
0 and 1. If the classifier has correctly labeled all samples,
the accuracy will have a value equal to 100%. However, in
problems where classes are unbalanced, accuracy may not be a
reliable measure. Due to some of the existing metrics recall of
results based on the feature of the data for unbalanced labels,
in this work the IAM defined as Eq. 7 was also considered in
the experiments.

IAM = 1/k

k∑
i=1

cii −max(
∑k

j ̸=i cij ,
∑k

j ̸=i cji)

max(c.i, ci.)
, (7)

In computing the IAM, cij is the confusion matrix generated
by the classifier. The max value of total off-diagonal items
(
∑k

j ̸=i cij or
∑k

j ̸=i cji) are subtracted from the diagonal values
(cii), divided by the max sum in the corresponding row or
column (max(c.i, ci.)), and finally averaged (/k) to obtain the
expectation.

III. RESULTS AND DISCUSSION

Table I shows the results obtained with the IAM and ACC
metrics for each group (FL-CLL, FL-MCL, and CLL-MCL)
with the color channels of LAB and RGB models without
using the regularization. As there is a group of studies in the
literature that investigates NHL lesions in binary classification
approaches, in this study the investigations followed the same
strategy [24], [25]. According to the results in Table I, we
can observe that the HP classifier was superior for both color
models investigated by the ACC metric. The IAM metric
values (see Table 1) show that the standard deviation values
are also smaller with the HP algorithm. The IAM metric shows
the number of instances that the classifier correctly predicted.
We observed that the ML algorithms had a value closer to
zero when compared with the HP classifier. This metric has a
range of representation between −1 to 1 and when this value
is closer to zero this data represents that number of correct
and incorrect classified instances is close. Results with the
MLP algorithm provided 84.2% of ACC to the CLL-MCL
group, but when the IAM metric is analyzed we can see that
the number of instances correct and incorrect was affected
(0.40). Furthermore, we observed that the standard deviation
values are higher for the ML algorithms in all groups. This
is due to the great variation of the results obtained in each
fold, especially with results obtained by the IAM metric. For
instance, in the FL-CLL group, the standard deviation value
was 0.04 for the HP algorithm and 0.22 for the LGT technique.
According to the authors in [12], the IAM metric shows the
behavior of the classifier is expected to not label an instance
of data in incorrect classes.

Furthermore, in Table I, we observed that the IAM average
value was 0.96 for LAB channels with the HP algorithm. For

other algorithms, the average value were 0.42, 0.54, and 0.49,
respectively, for the LGT, MLP, and RF classifiers. For the
RGB channels, the average values were 0.96, 0.37, 0.50, and
0.44 with the HP, LGT, MLP, and RF algorithms, respectively.
This shows the difference between the use of this model for
the other classifiers. It was observed that the HP algorithm
provided higher values than the other ML algorithms with
the use of the IAM metric. The data in Table I indicate that
the average value of ACC for the HP classifier was 98.70%,
75.30% for the LGT, 82.00% with the MLP, and 79.00% in
RF. These values represent a difference of 24%, 17%, and
20%, among HP, LGT, and MLP classifiers, respectively.

Table II presents the results based on the study of the
regularization method. On Table II, we observed that there
is a decrease in values with the ACC and IAM metrics
employed for evaluation of the HP classifier with the modified
vectors. However, the HP method still retains the best results in
comparison with other algorithms. The average value of IAM
in the LAB channels for the HP, LGT, MLP and RF classifiers
were 0.93, 0.38, 0.53, and 0.52, respectively. Using the RGB
channel features, this metric presents the average values of
0.92, 0.35, 0.39, and 0.46 with the HP, LGT, MLP, and RF
algorithms, respectively. The accuracy was around 97.00% for
the HP classifier, 74.00% with LGT, 81.00% for MLP, and
80.00% with RF. These values represent an average difference
amongst the algorithms compared and HP of 24%, 17%, and
16%, successively. In these experiments, only the RF classifier
obtained improvement results for all groups in the RGB color
model. However, these values were lower than those obtained
with the HP algorithm.

Furthermore, we evaluated the frequency of the selected
features by the Ridge algorithm. Figs. 2 and 3 show the
frequency histogram of each selected feature with the LAB
and RGB color models. The features identified from 1 to 18
in Fig. 2 correspond to FD, ARC, SKW , AR, MP and
SMP for the L, A and B channels, respectively. Similarly, in
Fig. 3, the attributes are arranged in the same order considering
the R, G, and B channels. We observed that the DF measure
extracted from channel L (see Fig. 2) appeared in all folds
of the FL-CLL group. On the other hand, we observed that
the DF value was not selected from the A channel. The most
selected features in the folds were MP of the L channel, AR
and MP for channel A and AR for channel B. These data
were represented by the numbers 5, 10, 11, and 16 on the X
axis of the graph. Thus, these four features had the greatest
influence on the classification. On the other hand, in Fig. 3, the
features that had the highest incidence were SKW , AR, MP ,
and SMP of the R and B channels, i.e., eight information
that most contribute to the classification. This information is
represented by the numbers 3, 4, 5, 6, 15, 16, 17, and 18
on the X axis of the graph. In some groups such as FL-
CLL, some features were not selected in the folds (numbers
8 and 14 in Fig. 3). The performance of the HP algorithm
remains promising even with the lower value when using the
regularizer with the IAM metric. Therefore, this strategy can
reduce the complexity of computing the algorithms. The best



TABLE I
RESULTS OBTAINED WITH CLASSIFICATION ALGORITHMS FOR THE DATASET WITH LAB E RGB WITHOUT REGULARIZATION

FL-CLL FL-MCL CLL-MCL Average
Classifier Colormap IAM ACC IAM ACC IAM ACC IAM ACC

HP LAB 0.98±0.04 99.6±0.04 0.95±0.07 98.4±0.02 0.96±0.07 99.2±0.01 0.96±0.06 99.1±0.02
RGB 0.98±0.04 99.6±0.01 0.97±0.06 99.2±0.01 0.93±0.08 97.9±0.03 0.96±0.06 98.9±0.02

LGT LAB 0.45±0.22 78.1±0.12 0.41±0.18 75.8±0.07 0.41±0.11 76.7±0.07 0.42±0.17 76.9±0.09
RGB 0.45±0.27 77.3±0.10 0.42±0.18 76.5±0.12 0.24±0.07 67.5±0.11 0.37±0.17 73.8±0.11

MLP LAB 0.67±0.18 86.2±0.07 0.57±0.13 83.6±0.07 0.40±0.24 84.2±0.09 0.55±0.18 84.7±0.08
RGB 0.60±0.19 85.4±0.06 0.54±0.11 80.8±0.06 0.36±0.15 72.7±0.07 0.50±0.15 79.7±0.06

RF LAB 0.50±0.20 81.7±0.10 0.50±0.16 79.7±0.07 0.48±0.13 82.5±0.06 0.49±0.16 81.3±0.08
RGB 0.48±0.16 81.0±0.05 0.45±0.14 75.8±0.07 0.40±0.14 74.9±0.06 0.44±0.14 77.2±0.06

TABLE II
RESULTS OBTAINED WITH CLASSIFICATION ALGORITHMS FOR THE DATASET LAB AND RGB WITH REGULARIZATION

FL-CLL FL-MCL CLL-MCL Average
Classifier Colormap IAM ACC IAM ACC IAM ACC IAM ACC

HP LAB 0.97±0.06 99.2±0.01 0.91±0.07 97.2±0.02 0.91±0.08 98.0±0.02 0.93±0.07 98.1±0.02
RGB 0.96±0.06 97.5±0.02 0.91±0.01 97.6±0.01 0.90±0.11 97.1±0.01 0.92±0.06 97.4±0.02

LGT LAB 0.33±0.26 73.6±0.11 0.41±0.20 75.8±0.09 0.41±0.16 74.9±0.07 0.38±0.20 74.8±0.09
RGB 0.44±0.26 78.2±0.10 0.39±0.13 74.2±0.07 0.24±0.23 67.5±0.11 0.35±0.20 73.3±0.09

MLP LAB 0.69±0.13 87.9±0.06 0.57±0.10 83.2±0.05 0.34±0.19 75.8±0.08 0.53±0.14 82.3±0.06
RGB 0.58±0.11 85.0±0.04 0.33±0.13 81.3±0.05 0.27±0.17 71.4±0.08 0.39±0.29 79.2±0.06

RF LAB 0.53±0.28 80.9±0.13 0.53±0.12 80.5±0.04 0.51±0.20 80.1±0.08 0.52±0.20 80.5±0.08
RGB 0.55±0.17 83.4±0.06 0.50±0.16 80.8±0.08 0.34±0.16 75.8±0.08 0.46±0.16 80.0±0.07

Fig. 2. Frequency of regularized features in the LAB color model.

performance with the reduction of the feature number was
observed by the HP classifier in the FL-MCL group and with
the LAB color model. To obtain this result, the proposed ap-
proach used in part of the experiments the following features:
MP and SMP of the L channel; SWK, AR and MP from
channel A and FD, AR, MP , and SMP from channel B.
An analysis of computational time was also carried out on
the HP classifier without applying the regularization. In this
experiment, the HP algorithm provided an average time of
24,840 seconds. With the regularization method, the average
time was 1,540 seconds which corresponds to a reduction of
16 times.

Fig. 3. Frequency of regularized features in the RGB color model.

Table III shows an indirect comparison with recently pub-
lished works that proposed different techniques for NHL
image classification. The results show that the approach with
the relevant accuracy value for NHL classification also used
several different features. Even so, the HP algorithm together
with the fractal descriptors provided promising results when
analyzing other works in the literature.

IV. CONCLUSION

The great impact generated by the work was to investigate
the association of fractal features, regularization, and HP for
the construction of prediction and classification models of



TABLE III
AN INDIRECT COMPARISON OF THE ACCURACY FROM DIFFERENT

APPROACHES

Reference Approach ACC(%)

Proposed Fractal Dimension, Lacunarity
Polinomial Classifier and Regularization 98.13

[24] Morphology, entropy, GLCM,
other descriptors, ELM and SVM 97.96

[8] Fractal Dimension, Lacunarity
and Polynomial Classifier 97.60

[26] Percolation theory and Logistic Classifier 96.40

[25] Histogram, edge histogram,
LBP, curvelets, colour, wavelet and SVM 95.50

NHL tissues concerning digital histology. The results showed
that the proposed method provides a good discriminative
performance in RGB and LAB color models with the IAM and
ACC metrics above 0.90 and 97%, which are relevant results
when indirectly compared to the literature. Furthermore, this
strategy shows that a regularization is a relevant tool for
computational time reduction spent by HP for model training.

The limitation of this work is related to the restricted group
of samples which is believed to have influenced the results
of the experiments. In the future studies will be applied to
principal component analysis to verify the correlation of the
selected features by the regularization. In addition, it aims
to increase the number of NHL samples to have a better
representation in the predicted models during the evaluations,
evaluate the results with statistical tests with respect to other
approaches, investigate other regularization techniques as well
as evaluate the proposed method in other datasets.
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