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Abstract—In this work1, we present patterns and pseudo-
randomness in an approach that relates both concepts, which
traditionally are seen as opposites. This approach uses the math-
ematical basis of complex systems for two purposes: to exploit
the spectrum of pseudo-randomness of chaotic systems in a quest
to achieve true randomness and, the development of pattern
recognition methods based on artificial life in complex networks
that finally intertwined the search for patterns in pseudo-random
sequences. In the first part, we developed a method to explore
the depth properties of chaotic systems, specifically in the
logistic map and tent map, as sources of pseudo-randomness. We
observe that the patterns disappear and the pseudo-randomness
is increased by removing k-digits to the right of the decimal
separator of the chaotic orbits. Thus, a rapid transition from
“weak to strong” randomness was evidenced as k tends to infinity,
which allows a parametrically pseudo-randomness. In the second
part, it was proposed the combination of cellular automata
in the network topology (also called network-automata), to
characterize networks in a pattern recognition context. Four
problems were explored: identifying online social networks;
identify organisms from different domains of life through their
metabolic networks; the problem of authorship identification;
and classifying stomatal distribution patterns varying according
to different environmental conditions. Finally, this same approach
was used to analyze the sequences of pseudo-random numbers
generated by the gold standard k-logistic map PRNG in a context
of pattern recognition. The proposed approach allowed to explore
patterns and pseudo-randomness extracted from a myriad of
systems with successful results in terms of accuracy and good
pseudo-randomness. This work has brought significant advances
in real-world pattern recognition tasks across a wide range of
fields such as cryptography, cryptoanalysis, biology, and data
science.

I. EXPLOITING PSEUDO-RANDOMNESS OF CHAOTIC MAPS

Pseudo-random number generators (PRNGs) are the back-
bone of various fields of application, starting from statistics
and applied math, numerical calculus, decision theory, systems
modeling, simulation, programming languages, to cryptog-
raphy. Classically, the development of PRNGs is based on
deterministic algorithms using linear recurrences, algebraic
concepts, and bitwise operations, among other artifacts, usu-
ally without mathematical foundations, such as the linear
congruence generator (LCG) or the Mersenne Twister [1].
In contrast to classical algorithms, chaos-based PRNGs (CB-
PRNG) rely on chaotic systems to produces values with

1This work relates to a Ph.D. thesis.

random-like properties. In fact, much progress has been re-
ported, for instances, with CB-PRNGs based on differential
equations and recurrence maps [2]–[5], and chaotic cellular
automata [6], [7].

Sensitivity to the initial conditions is one of the most impor-
tant properties of the chaos theory since the smallest variation
at the initial conditions can completely disturb the system
over time. Furthermore, other properties from the chaos theory
include its random-like behavior, and its unpredictability, this
is, the difficulty to predict over a long time what the systems’
behavior might be in the future. These features are of great
applicability in different branches including cryptography and
PRNGs, where chaotic systems with a high Lyapunov expo-
nent are used as pseudo-randomness sources. Consequently,
the close relation between chaos and pseudo-randomness has
aroused great interest inside the academic community, com-
mercially and militarily exploited, as established via the state-
of-the-art over the last 32 years.

Recently, some researchers have expressed certain doubts
regarding the chaotic properties of well-known chaotic maps,
such as the logistic map (given by the simple recurrence
equation xt+1 = µxt(1 − xt), with time t, control parameter
µ ∈ [0, 4] and xt ∈ [0, 1]). In the context of modern
cryptography, this chaotic map presents non-uniform proba-
bility distribution (pattern U), where a plateau distribution is
expected; dependence of the control parameter which might
also lead to periodic windows; large enough ciphertext sam-
ples that may estimate the parameter [8]; short cycle period
orbits in which lengthy periodicity is expected depending on
machine limitations [9]; degradation of digital chaotic systems
problems [10].

Notwithstanding, we have found that the authentic advanta-
geous of the chaotic systems are based on the infinitesimal
depth of the precision digits of their orbit points. As an
example, considering the well-known Mandelbrot set, when
displayed on a computer screen, it exhibits curious but con-
strained patterns. But, while this pattern is again and again
prolonged, a huge number of complex patterns may be dis-
tinguished and, surely, is in those magnifications in which
legitimate chaos occurs. Therefore, higher computational pre-
cision is required to exploit the deep-zoom of a chaotic system
and hence to research the pseudo-random properties of such



chaotic systems.
In this thesis, we proposed a generalized approach to gener-

ate a new orbit from an underlying orbit of a one-dimensional
discrete dynamical system (such as the logistic map, tent map,
etc) where each point is composed by removing k-digits to
the right of the decimal separator given by Equation (1). In
such manner that the resulting orbit Ok(µ, x0) maintains both
parameters: µ ∈ [0, 4] and its phase space inside the unit
interval [0, 1] of the corresponding chaotic map, e.g. k-logistic
map.

xkt = bxt10kc − bxt10kc , (1)

where xkt , e b c represents the floor function.
Henceforth, we summarized the main outcomes concerning

the first topic of this thesis: to exploit the pseudo-randomness
properties of a chaotic map. All subsequent experiments were
focused on the most chaotic regions of the k-logistic map
provided by the parameter µ = 4 which relates to the
largest Lyapunov exponent. In Fig. 1a-b, we can observe the
Poincaré plot, which relates the arrangements xkt , x

k
t+1 and

xkt+2, respectively. The original orbit k0 shows the typically
inverted parabola of the logistic map, whose similar pattern
is retained in the 3D version. At that point, in a top-down
vision, we introduce the phase diagrams from k1 to k4, we
can observe how the parabola curve changes in a zig-zag sort,
which is consistently vanished until it turns out to be outwardly
arbitrary, as it can be seen from k2 onwards. In fact, it is seen
that the phase space is being filled as k increases, that is,
that the k-logistic map generated almost all attainable values
within [0, 1], as it is expected of a good PRNG and furthermore
turning it into a non-invertible map, i.e. past and future values
are getting uncorrelated. In Fig. 1c is shown the 2D Fourier
power spectrum. From top to bottom, this spectral assessment
is demonstrated with the parameter k, for k0, k1, k2, k3 and
k4. For the original logistic map (k0), the parallel lines already
suggest the presence of patterns, however, as the parameter k
is increased, the spectral density shows a regular constant at
the center, which is a patternless indicator.

One of the main goals to construct a good PRNG is to
obtain a uniform distribution as much as possible [11], [12].
The logistic map distribution shows a U pattern, which is
clearly observed on the first chart of Fig. 1d, which represents
frequency curve of the original logistic map k0 using the
parameter µ = 4. This U pattern is outstanding in dynamic
system theory since the logistic map follows an invariant
probability density function. Nonetheless, from top to down, it
can be seen that this distribution turns out to be more uniform
as k increases, i.e. the pseudo-randomness properties of the k-
logistic map changes, in spite of redundancy, more random as
k � 1. Moreover, this uniformization procedure is illustrated
in Fig. 1e, which compares the former curves [13].

Besides the former plots, we also explored the pseudo-
randomness DIEHARD tests results, which are reported in
Table I. Each column corresponds to the number of files that
passed the sub-tests. The failed tests (at least 50 files) were
highlighted in gray, which can be observed in the case of k0,

k1, k2 and k3-logistic map. We observed that k = 0 fails to
the DIEHARD tests, however, the panorama changes as the
parameter k increases, since the k-logistic map passes on all
of the tests when k ≥ 4.

TABLE I
AVERAGE NUMBER OF FILES THAT PASSED DIEHARD TESTS USING THE
k-LOGISTIC MAP PRNG FROM 100 FILE SAMPLES. MAJOR FAILED TESTS

ARE SHOWN IN GRAY. ALL TESTS PASSED USING THE INTERVAL
0.0001 < P-VALUE < 0.9999. SOURCE: [13].

Diehard tests k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

BirthdaySpacings [KS] 100 100 100 100 100 100 100 100 100 100
OverlappingPermutations 99 97 98 95 98 96 98 98 99 100
Ranks31x31 matrices 100 100 100 100 100 100 100 100 100 100
Ranks32x32 matrices 100 100 100 100 100 100 100 100 100 100
Ranks6x8 matrices [KS] 0 0 25 99 100 100 100 100 100 100
Monkey20bitsWords [KS] 0 99 100 100 100 100 100 100 100 100
OPSO [KS] 98 99 100 100 100 100 100 100 100 100
OQSO [KS] 98 100 100 100 100 100 100 100 100 100
DNA [KS] 100 100 100 100 100 100 100 100 100 100
Count1sStream 0 0 0 98 100 100 100 100 100 100
Count1sSpecific [KS] 0 0 0 0 94 100 100 100 100 100
ParkingLot [KS] 100 100 100 100 100 100 100 100 100 100
MinimumDistance [KS] 96 100 100 100 100 100 100 100 99 100
RandomSpheres [KS] 100 100 100 100 100 100 100 100 100 100
Squeeze [KS] 100 100 100 100 100 100 100 100 100 100
OverlappingSums [KS] 100 100 100 100 100 100 100 100 100 100
Runs (up) 100 100 100 100 100 100 100 100 100 100
Runs (down) 100 100 100 100 100 100 100 100 100 100
Craps (wins) 100 100 100 100 100 100 100 100 100 100
Craps (throws/game) 100 100 100 100 100 100 100 100 100 100

In these experiments, we have found that the pseudo-
randomness properties of the logistic map can be notably
enhanced when k is increased. In fact, patterns turn out
to be progressively widespread until they turn out visually
indistinguishable (k ≥ 4). Regarding the pseudo-randomness
tests, we also have verified that the sequences produced by the
map k ≥ 4-logistic map passed effectively both randomness
tests of DIEHARD and NIST (data found in Ref. [13]).
Therefore, we formulated the following conjecture: as the
parameter k increases, the pseudo-randomness is improved,
going from regular (k0) to the most random (k∞). Clearly, in
computational terms, k∞ would be impossible to demonstrate,
yet we did not mean to explore this side of the conjecture,
however, to exploit the fact that k increases the pseudo-
randomness, which thereby allows us to create a helpful tool: a
gold standard PRNG. With this gold standard, it is conceivable
to generate datasets with different parameters k thus providing
distinct classes of pseudo-randomness, which would permit
the study and development of methods aimed for pattern
recognition purposes, which is the second part of this thesis.

II. FINDING PATTERNS IN COMPLEX NETWORKS

Networks have been used effectively in many fields. The
increasing demand involving networks is because it incor-
porates an alternate point of view from the conventional
data analysis. Typical examples of data modeled as networks
include metabolic networks, protein-protein interaction net-
works and social networks, etc. In the most recent decades,
unstructured models, such as time series, plots of recurrence,
contours [14], textures [15], have managed to model their
connections as networks. The organization of all these systems
can be represented by graphs, i.e vertices associated by edges.

The joint of pattern recognition and networks emerge as an
essential approach to deal with the high demand for methods



Fig. 1. Various visual results for the k-logistic map for k0, k1, k2, k3 and k4 (top to down) utilizing µ = 4. (a-b) Two-and three-dimensional plots are
shown on the left and right column, respectively. The horizonal and vertical axes demonstrate the phase space of xkt against xkt+1. Each orbit contains 104

points started from arbitrary initial conditions, where the initial 200 iterations were dismissed of (transient time). (c) 2D Fourier power spectrum for 1503

numbers produced by the PRNG k-logistic map. (d) Frequency distribution curves. Horizontal axis shows the x ∈ [0, 1] (500 bins) and vertical axis shows the
frequency of the 104 values removing of firsts 103 transient values. The curves represent the mean and standard deviation (shaded error bar) for arrangements
generated over 100 random initial conditions. (e) The inset plot portrays a zoom on the windows x ∈ [0, 0.03]. Adapted from [13].

that handle in a big data scenario. Since information extracted
from networks can prompt a comprehension of network pat-
terns that are intrinsically related to the network model. In
this way, pattern recognition in networks aims to characterize
networks by extracting information from the correlation among
vertices and their association with the network topology.

Three phases for pattern recognition in networks are well
established: the modeling of data as networks, the extraction
of characteristics and the classification and/or analysis of
patterns. Thus, the choice of adequate network descriptors
is crucial for applications in pattern recognition in general,
and consequently for pattern recognition in networks. The fea-
ture extraction is typically based on well-established network
structural measures, such as connectivity attributes such as the
average degree and distributions and correlations of degrees,
distances and paths, and so on, which are able to identify
global properties shared by a large majority of empirical and
synthetic networks such as random, small-world, scale-free
networks, and geographic networks models [16]–[18]. How-

ever, there are still several limitations that must be considered.
For example, the degree distribution is used to discriminate
among the various theoretical models of networks, but when it
comes to real-world networks, this same measure is no longer
adequate, because there are networks with different topologies
that may have a similar degree distribution, thus failing in their
correct classification [17], [19].

Thus, keeping in mind the main goal to address these
challenge issues, we proposed a method based on the em-
bedding of cellular automata (CA) over the topology of a
network aiming to characterize networks from the spatio-
temporal dynamics of these networks. We use a family of
CAs motivated by the rules of Life-Like, in this way we
present the Life-Like Network Automata (LLNA) [20], as
illustrated in Fig. 2. First, given a networks dataset aiming
for an automatic classification is split into a training and test
set. Each network is thought to be initiated with ones and zeros
(alive and dead) conditions (Fig. 2a). Second, considering a
set of best rules that maximizes the problem are chosen. One



rule is used to evolve a network, from which is acquired a
spatio-temporal pattern (Fig. 2). Third, considering the later
formation, various features can be extracted, for example,
the Shannon entropy, the word length and the Lempel-Ziv
complexity (Fig 2). Fourth, once a feature vector is obtained
for each of the networks, then various classifiers methods can
be used, in this thesis we used the Support Vector Machine
(SVM) and k-fold validation [21], in order to guarantee a fair
examination of the performance of the method.

Fig. 2. Scheme based on the LLNA method. The following steps are applied:
(a) given a network dataset; (b) a network is setup with alive/dead initial
conditions, following the Life-like network automata method; (c) a selected
LLNA rule evolves over the textual network topology; (d) LLNA spatio-
temporal patterns are extracted and then used for the networks’ classification
task.

All the experiments regarding the LLNA classification per-
formance were analyzed first on a synthetic network dataset,
i.e. well-known theoretical models used here as a benchmark,
as follows:
• Synthetic dataset: produced according to the network

models: random, small-world, scale-free, and geographi-
cal with number of nodes N = {500, 1000, 1500, 2000}
and mean degree 〈k〉 = {4, 6, 8, ..., 16}. This dataset
encloses 11200 networks (2800 per model) (Fig. 3a);

• Synthetic scale-free: dataset composed only of scale-
free networks generated using the modeld proposed by
Barabasi & Albert and Dorogovtsev & Mendes. The
dataset consists of 100 networks per each of the five
classes with N = 1000 nodes and 〈k〉 = 8 (Fig. 3b).

This same figure shows an examination with the outcomes
obtained from the structural network measurements, which
correspond to the concatenation of the average degree, average
hierarchical degree, average clustering coefficient, average
path length and degree Pearson correlation.

Furthermore, the LLNA performance was analyzed on five
real-world network datasets, which are summarized as:

Fig. 3. Comparison summary reporting the classification performance be-
tween the proposed method and the structural measures of networks for
different networks dataset. Bar graphs exhibit the mean accuracy (%) and
standard deviation (error bar) using the best combinations of LLNA feature
vectors and structural measures, (isolated and combined). The performance
of the LLNA is contrasted with the structural measurements of networks:
average degree (〈k〉), average hierarchical degree of level 1 (〈Hk1

〉) and
level 2 (〈Hk2

〉), average clustering coefficient (〈cc〉), average path length (l)
and degree Pearson correlation (ρP ). Adapted from [20].

• Identification the structural patterns in online social net-
works, in which Twitter and Google+ users networks are
examined (Fig. 3c);

• Identification of organisms from specific domains of
life (archaea, bacteria and eukaryotes) through their
metabolic networks (Fig. 3d);

• Authorship identification of literary manuscripts, which
consists of three networks datasets with respect to the
lemmatization treatment of the texts used to produce the
networks (partial, complete and none (Fig. 3e);

• Regarding plant phenotypic plasticity analysis, the classi-
fication of distribution patterns in microscopic photos of
stomata, by fluctuating various lighting conditions, using
a distance-based stomata network (Fig. 3f);



• Finally, a method to find patterns, if possible, within the
pseudo-random number sequences produced by the gold-
standard k-logitisc map. For this situation the task is to
separate PRNG classes k0 vs k1, k1 vs k2, k2vs k3 and
k3 vs k4 containing sequences of numbers transformed as
networks by using a distance-based threshold (Fig. 3g).

From these outcomes, we should notice that the LLNA
accomplished the best performance regarding the identification
problem of living organisms. Besides that, similar results were
obtained for the analysis of phenotypic plasticity of plants
through stomatal networks, in all species that were submitted
to the conditions of environmental stress. Moreover, regarding
the authorship identification using literary networks, which is
considered a challenging task in the area of Natural Language
Processing, our results also outperforms compared to the
classical networks measurements.

III. CONCLUSIONS

In this manuscript, we presented, in a brief manner, how
patterns and pseudo-randomness can be interrelated for two
purposes: to exploit the pseudo-randomness properties of
chaotic maps, and to explore a combination of cellular au-
tomata and networks aiming for pattern recognition purposes.

On the first part of this thesis, we developed two chaos-
based PRNGs based on the k-logistic map and the k-tent
map. In that regard, we observed that the pseudo-random
properties of a chaotic map can be improved as k increases.
In fact, by means of all the visualization tools (bifurcation
diagram, Poincar diagram, frequency histogram), Lyapunov
exponent analysis, randomness tests, spectral analysis and
pseudo-randomness DIEHARD and NIST test suites (Fig. 1
and Table I); suggest that the quality performance of the
proposed PRNG with k ≥ 4-logistic map overpass the pseudo-
randomness properties of classical PRNG such as LCG and
Mersenne Twistter. Therefore, one main contribution of this
thesis is a parameterized gold-standard PRNG, which is the
first of its kind into the literature. The gold standard represents
an important research tool that can aid the development of
three different areas: pattern recognition, cryptography, and
cryptanalysis. Since it can generate virtually infinite sets of
random numbers with known theoretical basis.

In the second part of this thesis, we exhibited the great
multidisciplinary of the LLNA as a tool for pattern recognition
in networks. The LLNA surpassed the accuracy rates when
compared to the topological descriptors of networks in almost
all of the problems presented here, as shown in Fig. 3.

Finally, the relevance of the LLNA method was additionally
extended to sequences generated by the proposed PRNG. In
this way, the main motivation is the analysis of sequences of
pseudo-random numbers aiming to discover patterns and/or
to find approaches to recognize among PRNGs classes. The
deliberation of such data sequences, first represented as time
series and then modeled as mind complex networks, opens
up the possibility of using pattern recognition strategies in
networks in order to “measure pseudo-randomness” in such
systems. Hence, throughout all of these points, the proposed

approaches have conveyed huge advances to an extensive va-
riety of fields including cryptography, cryptoanalysis, science,
and information science.
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