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Abstract—In this work, a method is proposed to analyze the
influence of color normalization in the classification lymphoma
images. The approach combines multidimensional fractal tech-
niques, curvelet transforms and Haralick features. The method
considered a feature selection technique and different classifica-
tion approaches to evaluate the combinations, such as decision
tree, random forest, support vector machine, naive bayes and k-
star. The classifications were analyzed considering three common
lymphoma classes: mantle cell lymphoma, follicular lymphoma
and chronic lymphocytic leukemia. The best result was achieved
for the extraction from input images, features obtained mostly
from lacunarity and percolation from curvelet sub-images, using
random forest classifier. The tests were considered with 10-fold
cross-validation and the result was a rate of AUC = 0.963. The
color normalization was not able to provide relevant classification
rates. The obtained performance with the analysis over different
types of features, classifiers and color normalization influence are
important contributions to the identification of the lymphoma
cancer.

I. INTRODUCTION

Lymphoma is a cancer originated on the lymphatic sys-
tem, which is classified into two types: Hodgkin (HL) and
non-Hodgkin (NHL), categorized according to the pattern of
growth and citological characteristics from the cells [1]. In the
United States for the year of 2018, 8,500 new HL cases and
74,680 NHL new cases were estimated, causing an estimated
of 1,050 deaths by HL and 19,910 by NHL [2]. In Brazil, an
estimation was performed by the Institute National of Cancer
(INCA) for the biennium 2018-2019, with 5,370 new cases for
men and 4,810 for women considering NHL [3]. The main
research focus related to this area of cancer concentrate in
non-Hodgkin lymphomas due to the higher rate of incidence.

The NHLs are divided into a variety of sub-types: man-
tle cell lymphoma (MCL), follicular lymphoma (FL) and
chronic lymphocytic leukemia (CLL). MCL sub-type affects
frequently individuals over 50 years, which represents 4% of
all lymphomas in the United States. FL lymphomas constitutes
around 50% of adult lymphomas. CLL is the most common
type of leukemia, affecting patients mostly over 60 years [4].

The most common method considered by pathologists for
diagnosing NHL consists on tissue samples stained with
hematoxylin-eosin (H&E). This task is challenging and time
consuming for pathologists, mainly when the objective is to
classify the correct type of NHL [1]. In order to minimize
the related problems, computational methods were proposed
to support pathologists in the pattern classification and recog-
nition task of non-Hodgkin lymphomas stained with H&E [5]–
[7]. The success of each method can be attributed partly by
the feature extraction stage.

Different approaches can be applied to perform the feature
extraction, such as the techniques presented in this work: Har-
alick features, fractal approaches and curvelet transform. For
instance, Haralick features [8] are useful to extract statistical
properties of the texture, with important applications in differ-
ent contexts, such as detect epileptic activity [9], diagnose
glaucoma [10] and study the oral cancer [11]. Also, auto-
similarity properties are extracted mostly from fractal features.
The main approaches are fractal dimension (FD), lacunarity
(Lac) and more recently, percolation (Perc). FD quantifies the
complexity and irregularity of a fractal, analyzing the level
of space filling of the image [12]. The Lac indicates how the
pixels are distributed and organized across an image. The Perc
consists of the occurrence of a path that connects the upper to
the lower part of a fractal [13]. The different fractal approaches
were applied to study glaucoma [14], breast cancer [15],
prostate cancer [16] and non-Hodgkin lymphomas [7]. The
curvelet transform was also applied to classify the different
degrees of prostate cancer [17], diagnose breast cancer [18]
and study cerebrovascular and neoplastic diseases [19].

The feature extraction has an important role in systems
developed for the identification of lymphomas. In addition,
researches have been addressed to show that the preprocessing
step can also provide an important role in this task [20],
[21]. One of the approaches applied on the preprocessing
step is color normalization [22]. This technique is relevant
by reducing the color variation caused by differences in color



responses of slide scanners and environmental aspects such
as lighting variation [21], [23]. This variation can produce
difficulties for the specialist and also affect the efficiency of
the methods developed to support the diagnosis. Therefore,
in this work a method is proposed that associates multiscale
and multidimensional fractal features, Haralick descriptors
and curvelet sub-images to extract features from the lym-
phomas H&E stained images. Furthermore, the extraction was
performed in non-normalized and color normalized images
to compare the differentiation rates in order to analyze the
influence of color normalization in the classification step. In
this way the main contributions are:

• A combination of features that provides relevant distinc-
tion rates when classifying non-Hodkgin lymphomas;

• A comparison of the classification performance with the
proposed extraction approaches from non-normalized and
color normalized images.

II. METHODOLOGY

The proposed methodology was organized into 4 stages.
In stage 1, feature extraction was performed by considering
multiscale and multidimensional methods (FD, Lac and Perc
features) and Haralick descriptors. The features were extracted
from the non-normalized and color normalized images, as well
as the corresponding curvelet sub-images. Stage 2 comprised
the feature selection for the classification of the lymphomas.
In stage 3, the classifiers decision tree (DT), support vector
machines (SVM), random forests (RaF), naive bayes (NB) and
K-star (K*) were applied to differentiate the studied groups.
The last stage was the performance evaluation, considering the
analysis of the best combinations and results. A general view
of the method is presented in Fig 1.

A. Image color normalization

The process of staining and scanning tissue samples through
microscopic examination may lead to undesirable variations
in color, due to the response of digital scanners and the
staining protocols. Thus, the process of normalization may aid
the laboratory analysis and pattern recognition systems [21].
Different techniques of color normalization were proposed in
the literature [21], [24], [25].

In this work, the normalization technique described by
Vahadane et al. [21] was applied in order to compare the
influence of the color normalization in the process of fea-
ture extraction in lymphoma images. The applied technique
is called structure-preserving color normalization (SPCN),
which performs the stain separation and color normalization,
preserving the biological structure information by modeling
stain density maps based on the properties of non-negativity,
sparsity and soft-classification [21]. This approach basically
works with the replacement of the color basis from the
H&E image with those preferred from pathologists, while
keeping the original stain concentrations. The SPCN approach
also captures most of the histological structures in the stain
concentration [21].

Fig. 1. A summary of the proposed methodology for evaluating lymphoma
images considering non-normalized and color-normalized images.

B. The curvelet transform

The curvelet transform was applied to generate sub-images
from the NHL (non-normalized images and color normalized
images). In this study, the applied approach was the fast
discrete curvelet transform with the wrapping function [26].
This approach is based on the Fourier samples considering
the image as a Cartesian matrix f [r, s], where 0 ≤ r < R,
0 ≤ s < S, R and S are the dimensions of the matrix. The
obtained results were curvelet coefficient sets cD(j, l, ρ1, ρ2)
with a scale j, direction l and spatial localization parameters
ρ1 and ρ2 (Eq. 1).

cD(j, l, ρ1, ρ2) =

R∑
n=1

S∑
m=1

f [r, s]ϕDj,l,ρ1,ρ2 [r, s]. (1)

The curvelet coefficient set consisted of parallelograms that
contained a digital curvelet in the form of a wave ϕDj,l,ρ1,ρ2 .
The wrapping consisted of collecting the information through
the parallelograms inside the rectangle, centered at the origin,
with a width of 2j/2 and height of 2j .

The curves contained on each image were represented
by gaps along the neighbor gray levels. The curvelets were
numerical values that represent the curves in coefficients. The



parameters considered for curvelet calculation were 4 scales
and 8 rotations, according to the information presented by [27],
[28]. The results were 41 curvelet sub-images for each given
histological H&E lymphoma image.

C. Fractal techniques

The fractal features were calculated after obtaining the
curvelet sub-images. The fractal methods performed in this
work were fractal dimension, lacunarity and percolation. In
the Literature, there are fractal dimension approaches that
are multiscale and multidimensional, which are capable of
quantifying images in color or in gray scale level. In this
context, the main FD approaches are the probabilistic method
from Ivanovici, Richard and Decean [29] and the box merging
approach from Nikolaidis N., Nikolaidis I. and Tsouros [30].
The probabilistic approach was also applied to calculate the
lacunarity [29]. The percolation model was obtained from the
approach proposed by Roberto et al. [7]. These techniques
were applied to extract features from the colored lymphoma
histological images and from the gray level sub-images. The
sub-images were obtained by applying the curvelet transform.

1) Fractal dimension based on probabilistic approach:
The probabilistic method [29] was applied by considering
a box of side L scanning all pixels of the image (RGB
color model) given as input. Thus, given a box of size L
positioned over the image with the central pixel (Fc), the
color channel with more relevance was selected by comparing
Fc with the remaining pixels F from the box under analysis.
The distance of the pixels F = f(x, y, r, g, b) to the central
pixel Fc = fc(xc, yc, rc, gc, bc) were obtained by applying
the Minkowski distance (Eq. 2), where the values of x and y
indicate the location of the pixel on the image and the values
of r, g and b correspond to the channel intensities. If the
maximum value obtained was less or equal than L, the pixel
is considered to belong to the box. The sum and storage on
a probability matrix P (m,L) is performed, which represents
the probability of m points belonging to a box on its side L.

After applying the multiscale and multidimensional ap-
proaches, the total number of boxes NFDp(L) for covering
an image was defined (Eq. 3) and calculated for different
observation scales L. The probabilistic fractal dimension FDp

was given by the angular coefficient of the linear regression
defined by logL× logNFDp

(L). The size of the boxes were
L = 3 to L = 45. These values were sufficient for indicating
multiscale observations in lymphoma images.

|F − Fc| = max|f(i)− fc(ic)| ≤ L,∀i = 1, 5, (2)

NFD(L) =

N∑
m=1

P (m,L)

m
. (3)

2) Fractal dimension based on box merging approach:
The box merging FDm [30] was another approach to obtain
the fractal dimension. The calculation similarly to the other
fractal approach was performed on input lymphoma images

and generated curvelet sub-images. The value of FDm was
determined from a partition table defined as in Eq.4, where
L is an observation scale, s indicates the size of the partition
under analysis, x is the coordinate of a pixel in the box and ε
indicates the relation of L/s. The table allows the storage of all
the partition coordinates t that contains at least one element
from the dataset. Each line indicates the calculation of the
partitions tx, ty , tr, tb, tg for each pixel of the image. The
quantity of lines nm on the partition table is counted at each
iteration. The value of FDm was obtained from the angular
coefficient of a graph of log nm × log s.

tx =

⌊
x

εx

⌋
=

⌊
xs

Lx

⌋
. (4)

3) Multiscale and multidimensional percolation: The per-
colation can be defined as the existence of a path of connected
pixels (cluster) from one extremity to the other from an image.
The applied method was described in detail by Roberto et al.
[7].

The first step consisted of a multiscale analysis with the
gliding box algorithm. A square box with a side of L was used
to cover all the pixels of an image, increasing the size L after
covering the image entirely. The box total T was calculated
from width W and height H of the image as well the box size
of L (Eq. 5).

T = (H − L+ 1)× (W − L+ 1). (5)

In the next step, the multidimensional analysis was per-
formed by applying the Minkowski distance (Eq. 2), as defined
for calculating the FDp. When the Minkowski distance d was
less or equal to L, the value of P was defined as −1 to indicate
the representation of a pore in the considered box.

The third step was defined to associate the percolation
theory with the multiscale and multidimensional approaches.
Thus, the height and width of the matrix, as well as the
probability p were applied to define a pore whereby a supposed
fluid may flow through it. The remaining spaces correspond
to solids where the fluid is not able to flow [7]. The presence
of a percolating cluster is guaranteed when p is greater than
the percolating threshold (p = 0.59275) [31]. The cluster
labeling algorithm of Hoshen-Kopelman was applied to obtain
the percolating clusters based on the values of P = −1 [32].

The analysis of lymphoma images was performed with three
functions: cluster average C, percolating box ratio Q and
average coverage ratio of the largest cluster Γ. The number
of clusters in a box is given by ci and the average per box
C(L) is presented in Eq. 6.

C(L) =

∑T
i=1 ci
T

. (6)

The percolating boxes ratio Q consisted of the number of
percolated boxes divided by the total number of box T in a
scale L. A box qi was considered as a percolating box if the
ratio between the number of pixels labeled as pores (Ωi) and
the total number of pixels inside the box (L2) exceeded the



percolation threshold p. Thus, the function Q(L) was obtained
by dividing the total number of percolating boxes qi by the
total number of boxes T in a specified scale L, as in Eq. 7.

Q(L) =

∑T
i=1 qi
T

. (7)

The coverage ratio of the largest cluster in each box of size
L was given by the function of the average coverage ratio of
the largest cluster Γ. The coverage of a box i consisted in the
division of its largest cluster (γi) by the number of pixels in
the box L2 (Eq. 8).

Γ(L) =

∑T
i=1 γi/L

2

T
. (8)

The behaviors of the functions C(L), Q(L) and Γ(L) were
analyzed by considering different metrics: area under curve
(ARC), skewness (SKW ), area ratio (AR), maximum point
(MP ) and the scale of the maximum point (SMP ). These
metrics were described by Roberto et al. [7]. The percolation
approach was obtained by applying box sizes of L = 3 to L =
45. These values are similar to those used in the calculation
of FDp.

4) Lacunarity: The pixel distribution and organization were
quantified by applying the methods described by [33], [34].
The lacunarity Lac(L) was obtained from colored images
and curvelet sub-images. The applied approach for multidi-
mensional lacunarity was the method proposed in [29] by
calculating the first order moment (Eq. 9) and second order
moment (Eq. 10). These moments were defined based on
the probability matrix P (m,L).The calculation of Lac(L) is
presented in Eq. 11. The lacunarity curves were analyzed by
applying the metrics ARC, SKW , AR, MP and SMP ,
considering the work presented by Roberto et al. [7].

λ(L) =

N∑
m=1

mP (m,L), (9)

λ2(L) =

N∑
m=1

m2P (m,L), (10)

Lac(L) =
λ2(L)− (λ(L))2

(λ(L))2
. (11)

D. Haralick features
Haralick features were also applied to evaluate the H&E im-

ages and the curvelet sub-images. The features were calculated
from the co-occurrence matrices [8]. In this study, the values
considered were of distance δ = 1 and orientation θ = 0◦,
θ = 45◦, θ = 90◦ and θ = 135◦. The Haralick features
were calculated from the average values of the obtained co-
occurrence matrices: (1) angular second moment; (2) contrast;
(3) correlation; (4) sum of squares (variance); (5) inverse
difference moment; (6) sum average; (7) sum variance; (8) sum
entropy; (9) entropy; (10) difference variance; (11) difference
entropy; (12) and (13) are information measures of correlation;
(14) maximal correlation coefficient. The features were applied
as proposed by [8].

E. Composition of the feature vector

The features were defined by associating the previously de-
scribed approaches: a value of FDp; a value of FDm; 5 values
of Lac (ARC, SKW , AR, MP and SMP ), represented
by Lac(1) until Lac (5); 14 Haralick features, represented
by Har(1) until Har(14); and, 15 percolation features (ARC,
SKW , AR, MP and SMP ) for each function (C, Q, Γ),
named Perc(1) to Perc(15). These features were calculated
for curvelet sub-images, with parameters of 4 scales and 8
rotations. The results were 41 sub-images for each lymphoma
image. Thus, the feature vector was composed by 1512 values
(Fig. 2).

Fig. 2. Illustration of the feature vector obtained with fractal approaches and
Haralick features, considering the non-normalized and normalized images, as
well as the corresponding curvelet sub-images.

F. Classification and evaluation of features

The dimensionality of the feature vector with 1512 values
was reduced by applying the ReliefF algorithm [35]. This
algorithm is an expansion of Relief approach [36]. The goal
was to define the most relevant features to understand the
lymphoma cancer. Each reduced feature vector was evaluated
by applying different classifiers, such as DT [37], SVM [38],
RaF [39], NB [40] and K* [41]. The approach of k−fold cross-
validation was applied to these algorithms with k = 10. The
method was evaluated by considering two metrics: area under
the ROC curve (AUC) and accuracy (AC) [42].

The feature selection was performed over each fold k to
rank the most relevant features. The number of features was
obtained by observing the average performance of the folds.
This strategy was performed by considering the AUC metric.
The approach started with 5 features, adding 5 at each iteration
until reaching 100 features. The total number of features was
defined by counting the number of features at each fold,
without repetitions. This approach was achieved with the
analysis of the size of the union of the folds.

In this work, the feature extraction approaches were imple-
mented by using the MATLAB software, version R2015a, and
the Weka platform 3.8.1 [43]. The curvelet coefficients were
calculated by applying the curvelab package [44].

G. Image Database

The proposed work was tested on NHL images from the
National Cancer Institute [45] and from the National Institute
on Aging [46]. The image database consisted on 173 histolog-
ical NHL images comprising by 99 images from MCL group,



62 from FL group and 12 representing the CLL group. The
images were digitally acquired, through a light microscope
(Zeiss Axioscope) with a 20 objective and a colored digital
camera (AXio Cam MR5). The regions of interest were
selected by specialists, digitally photographed and recorded
without compression, with the RGB color model and spatial
resolution of 1388×1040 pixels. In Figs. 3, 4 and 5 examples
are presented for the MCL, FL and CLL groups, respectively.

(a) (b)

(c) (d)

Fig. 3. Examples of MCL histological images group.

(a) (b)

(c) (d)

Fig. 4. Examples of FL histological images group.

III. RESULTS

The color normalization was performed in the image dataset
(Figs. 3, 4 and 5), considering the approach presented in
subsection II-A. The results were color normalized images.
Examples of the images after this stage are presented in the
Figs. 6, 7 and 8.

The curvelet transform was applied in the non-normalized
H&E images as well as in the color normalized ones, con-
sidering scales of 1 to 4 and rotation of 1 to 8. The results
were 41 curvelet sub-images. The approaches for obtaining
FDm, FDp, Lac, Har and Perc were used to quantify each

(a) (b)

(c) (d)

Fig. 5. Examples of CLL histological images group.

(a) (b)

(c) (d)

Fig. 6. Examples of color normalized images (MCL group).

(a) (b)

(c) (d)

Fig. 7. Examples of color normalized images, FL group.

input and normalized images as well as the corresponding
curvelet sub-images. The feature selection step was applied at
each fold to obtain the most relevant features among the 1512



(a) (b)

(c) (d)

Fig. 8. Examples of color normalized images (CLL group).

values from each image. The selection process was described
in subsection II-F. The best observed case was achieved with
25 features per fold, with a number of 43 non-overlapping
features. A list of the most selected features is presented on
Table I.

TABLE I
ANALYSIS OF THE SELECTED FEATURES USING THE PROPOSED METHOD.

Approach Image type Quantity

FDp
H&E Image 0
Curvelet sub-image 0

FDf
H&E Image 0
Curvelet sub-image 0

Lac H&E Image 1
Curvelet sub-image 11

Har H&E Image 3
Curvelet sub-image 0

Perc H&E Image 2
Curvelet sub-image 26
Total 43

From the results, it is possible to note that the features FDp

and FDm were not selected, which may indicate that the frac-
tal dimension and the combination with curvelet coefficients
are not relevant for the differentiation of H&E lymphoma
images. The selected Har features were extracted directly
from the input images: variance, sum average and sum of
variance. Finally the most selected features were multiscale
and multidimensional lacunarity and percolation with 12 and
28 features, respectively. A number of 40 features (92.5%) was
calculated from curvelet sub-images, indicating the importance
of the association for distinguishing the group of interest.

An analysis was made considering the features that appeared
in every fold in the selection step (Table II), wherein the
percolation function Γ(L) was the most selected, quantifying
the average coverage ratio of the largest cluster. From Γ(L),
the maximum point (MP ) was the most used feature. Most
of the features were extracted from curvelet sub-images with
scales 1 and 4. The curvelet sub-image with the highest
number of extracted features was constituted of a combination

of scale 1 and rotation 1.

TABLE II
MOST SELECTED FEATURES WITH CURVES METRICS FOR LAC AND PERC:

ARC , SKW , AR, MP ) AND SMP .

Feature Image type
AR(Lac(L)) H&E
SKW(Lac(L)) Curvelet: Scale 1, Rotation 1
ARC(C(L)) (Perc) H&E
ARC(Q(L)) (Perc) Curvelet: Scale 1, Rotation 1
SMP(Q(L)) (Perc) Curvelet: Scale 1, Rotation 1
ARC(Γ(L)) (Perc) Curvelet: Scale 1, Rotation 1
AR(Γ(L)) (Perc) Curvelet: Scale 1, Rotation 1
MP(Γ(L)) (Perc) Curvelet: Scale 1, Rotation 1
SMP(Γ(L)) (Perc) Curvelet: Scale 1, Rotation 1
MP(Γ(L)) (Perc) Curvelet: Scale 4, Rotation 6
MP(Γ(L)) (Perc) Curvelet: Scale 4, Rotation 7
AR(Γ(L)) (Perc) Curvelet: Scale 4, Rotation 14
MP(Γ(L)) (Perc) Curvelet: Scale 4, Rotation 14
AR(Γ(L)) (Perc) Curvelet: Scale 4, Rotation 15
MP(Γ(L)) (Perc) Curvelet: Scale 4, Rotation 15

The selected features were applied to perform the classifi-
cation. The results obtained in the classification considering
the non-normalized images and normalized images comparing
all three groups (MCLxFLxCLL) are presented on Table III.
By the features extracted from the non-normalized images, it
is noted that most of the classification techniques provided
relevant results, with average AUC rates higher than 0.85.
The highlight though is the classification with RaF approach
achieving AUC = 0.963. When considering the normalized
images, the results achieved were not relevant, where only the
RaF classifier provided an AUC rate of 0.868.

Taking into consideration the AC measure, the results
also are relevant for the non-normalized images, with the
best cases comprising DT (86.14%) and RaF (85.03%). The
obtained results were poor for the normalized cases. Another
observation is that from the AC measure, the rates are slightly
smaller when comparing with AUC. This fact is due to the
unbalanced lymphoma classes compared, affecting the AC
measure in the differentiation.

From such highlights, one can conclude that the best combi-
nation was achieved with the fractal attributes of lacunarity and
percolation multiscale and multidimensional, both calculated
from curvelet images and RaF classifier. Another observation
was the lack of relevant differentiation rates when classi-
fying the features extracted from color normalized images.
A possible explanation is that the most relevant features
were extracted from the curvelet sub-images instead of the
extraction directly from the considered the images.

A variety of studies were developed for the lymphoma
cancer detection, such as the works presented in [1], [5]–[7],
[47], [48]. A comparison is presented in Table IV, based on
the AC and AUC values observed from the cited methods.

The approaches proposed in Table IV presented AC higher
than 85% by applying different methodologies. Each author
proposed distinct methodologies which were relevant contri-
butions in the literature. Although the direct comparison is
a hard and unfair task, once each approach applied distinct
methodologies and images datasets. Nevertheless, we believe



TABLE III
PERFORMANCE (AUC) FOR THE CLASSIFICATION OF THE GROUPS

MCLXFLXCLL WITH THE PROPOSED COMBINATION OF FEATURES.

Non-Normalized Normalized
Classifier AUC AC AUC AC
DT 0.873 86.14 0.705 64.05
SVM 0.837 82.12 0.649 61.76
RaF 0.963 85.03 0.868 73.39
NB 0.766 49.76 0.559 39.74
K* 0.852 71.16 0.699 64.12
Average 0.858 74.84 0.696 60.61

TABLE IV
PERFORMANCE OF THE PROPOSED METHOD AND CORRELATED WORKS BY

CONSIDERAING AC AND AUC

Reference Features Color AC (%) AUC
Shamir et al. (2008) [47] 1,025 Yes 85.00 -
Meng et al. (2010) [48] 12,625 Yes 92.70 -
Orlov et al. (2010) [1] 1,025 Yes 99.00 -
Song et al. (2016) [5] 9,872 No 96.80 -
Codella et al. (2016) [6] 216 Yes 95.50 -
Roberto et al. (2017) [7] 15 Yes 96.40 0.967
Proposed method 43 Yes 86.14 0.963

that the proposed method is able to provide relevant results
in the context of lymphoma images and the proposed method
is compatible with the approaches observed in the specialized
literature.

IV. CONCLUSION

In this work, a method was developed to extract features
from non-normalized and color normalized lymphoma images,
with a combination of multiscale and multidimensional fractal
approaches, discrete curvelet transform and Haralick features.
The classes distinguished were mantle cell lymphoma, follic-
ular lymphoma and chronic lymphocytic leukemia.

The best case in the differentiation of the three groups was
observed with multiscale and multidimensional percolation
features extracted from curvelet sub-images (scales of 1 and 4),
as well as quantifications performed with multiscale and mul-
tidimensional lacunarity, obtained from the non-normalized
images and their curvelet sub-images calculated with scale 1.

The best classification rate was obtained with RaF classifier
extracted from the images without color normalization. When
considering the case of color normalized images, the results
provided poor differentiation rates. We believe that this ob-
servation is due to the fact that most of the selected features
were from curvelet sub-images, which were generated in gray
levels, instead of the input images.

A comparison was performed with the correlated works.
The proposed approach provided rates compatible with those
observed in the literature. Moreover, we believe that the ob-
tained results are relevant to the study of lymphomas, mainly
in the comparison of non-normalized and color normalized
images, allowing the analysis with different types of features
and classifiers to differentiate 3 classes (MCL, FL, CLL). In
future works, the authors expect to test the method in different
color models, other curvelet scales and rotations, as well as

apply different types of color normalization techniques for
further investigations.

ACKNOWLEDGMENT

The authors thank to CNPq (427114/20160), CAPES
(1646248) and FAPEMIG (TEC - APQ-02885-15) for financial
support.

REFERENCES

[1] N. V. Orlov, W. W. Chen, D. M. Eckley, T. J. Macura, L. Shamir,
E. S. Jaffe, and I. G. Goldberg, “Automatic classification of lymphoma
images with transform-based global features,” IEEE Transactions on
Information Technology in Biomedicine, vol. 14, no. 4, pp. 1003–1013,
2010.

[2] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2018,” CA:
a cancer journal for clinicians, vol. 68, no. 1, pp. 7–30, 2018.

[3] INCA, “Estimate/2018 cancer incidence in brazil,” Instituto Nacional de
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