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Fig. 1. A control mesh with 10 triangles showing the Bézier control points (small dots) and some specific subsets (larger dots): (a) Anchor points
(set A) specified by the user; (b) initial derived points (set S) specified by setting δmax = 3 by the user interface; (c) derived points (set D) specified
by the 2DSD; (d) Relevant and non-redundant constraints specified by ECLES; and (e) modified derived control points.

Abstract—We describe 2DSD, a general algorithm for inter-
active editing of smooth deformations of the plane defined by
polynomial splines of degree 5 on an triangular mesh. 2DSD
is based on ECLES, a flexible and general exact method for
interactive editing of numeric parameters subject to linear or
affine constraints. Each editing action is abstracted as setting a set
of anchor points to new positions, and recomputing some derived
points so as to satisfy the constraints. When there are multiple
solutions, ECLES uses least squares to choose the closest solution
to a suggested hint. The advantages of 2DSD include immunity
to rounding errors, automatic selection of the derived points
for each editing action, and a representation of the deformation
whose complexity does not grow with as editing progresses. To
validate our algorithm, we re-implemented an editor of space
deformations designed to assist the matching of 3D models of
flexible microorganisms to microscope images of the same.
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I. INTRODUCTION

In this paper, we define a general method for interactive
editing of smooth simplicial spline deformations of the plane,
which we call 2DSD. This is a necessary tool in many appli-
cations such as editing of surfaces, deformation of geometric
models, image morphing, registration and vectorization.

We implemented our algorithm in an editor which makes
it possible to define and modify a 2D deformation with the
mouse in a user-friendly way. See Fig. 1.

a) Deformation model: In our method, the object to be
deformed is covered by a control mesh, a planar triangulation
with straight edges. The deformation is a function φ from the
region Ω covered by a mesh in the plane R2, defined by a
single polynomial map inside each cell. We require φ to be
smooth (C1), that is, to be continuous and have continuous

derivatives, even along the shared cell boundaries. We chose to
use triangular splines because the popular quadrangular tensor-
product splines constrain the topology of the mesh.

Inside each cell, the deformation is specified by the Bézier
control points of the corresponding polynomial. The desired
deformation is edited by manipulating one or more control
points of the spline. Each editing operation requires the
automatic adjustment of several other nearby points in order
to preserve the smoothness of the spline. The set of adjusted
points is determined at the time of editing by the 2DSD.

b) Contributions: The main contributions are the use of
ECLES [1], a flexible and general exact method for interactive
editing of numeric parameters subject to linear or affine
constraints, to select and to solve the smoothness constraints,
and an automatic method to select the control points to be
modified at each editing action. Standard floating-point solvers
may fail to identify possible redundancies due to rounding
errors, which justifies the use of ECLES, since its fraction-
free integer solver efficiently and reliably identifies redundant
constraints, and to ensure that the constraints are exactly
satisfied even after many editing actions.

Some techniques for C1 deformation, such as radial basis
methods, yield deformations whose representations become
increasingly complex as they are edited. In our approach, the
description of the deformation remains simple and of finite
size. Since the deformation is applied to a control mesh, this
approach enables the reuse of the edited deformation on other
models, and ensures that the method is independent of the
resolution and representation of the target object. Another
advantage is that the deformed control mesh provides an
immediate visualization of the scope of each control parameter
and of the deformation, even before it is applied to the object.



The main advantage of splines over other function approxi-
mation methods is that they allow local control: if we change
only one control point, the spline changes only within the cor-
responding cell of the mesh and perhaps a few other triangles
surrounding it. Also, at each point of the domain, except in
cell boundaries, the deformation has a simple analytic formula
that allows the efficient computation of derivatives.

A. Related work

Smooth space deformations have been extensively studied
in the context of three-dimensional shape editing. A survey fo-
cusing on interactivity is presented by Gain and Bechmann [2].
2D space deformation techniques such as radial basis functions
and free-form deformations have also been studied in the
context of image morphing and registration [3], [4], [5], [6].

Our 2DSD algorithm is an evolution and generalization of
the one previously described by Rodrigues et al. [7]. The
improvements include using ECLES instead of floating-point
linear algebra packages, a more flexible and general method
for control point selection (allowing multiple anchors), and a
different goal function for the least squares method. Also, the
2DSD approach can easily accommodate higher degree splines
and other first degree constraints, such as C2 smoothness,
vertical or horizontal alignment, fixed points, etc.

a) Non-spline methods: Some mesh-based space defor-
mation methods attempt to obtain C1 smoothness by the use of
non-polynomial interpolating functions, which are determined
only by the control mesh vertices and/or faces.

One early approach in this direction was based on mean
value coordinates [8], [9], [10]; these are infinitely smooth
almost everywhere, but are not C1 at the vertices of the mesh.
The harmonic coordinates [11] are smooth everywhere, but
do not have closed formulas, and are expensive to compute
numerically. The most recent approach in this direction is
based on Green coordinates [12]. These interpolants have a
closed form, but are still expensive to compute.

Another popular approach to non-spline modeling uses a
linear combination of radial basis functions[13]. Each time
the deformation is edited, one radial element is added to its
description and its coefficient is manipulated directly by the
user. This approach is very flexible, but has the drawback that
the complexity of the deformation increases without bound as
editing goes on.

b) Spline methods: Many deformation modeling methods
use polynomial splines, that is, piecewise-defined functions
where each piece is a polynomial on the domain coordinates,
developed by Paul de Casteljau and Pierre Bézier [14].

Barr [15], and Sederberg and Parry [16] pioneered a space
deformation method using splines as interpolation technique,
namely Free-Form Deformation (FFD) [17], [18], [2].

Spline-based deformation editors for modeling of 3D ob-
jects generally use a control mesh consisting of either hexahe-
dra [19], [16] or tetrahedra [20], [21], [22] defined by Bézier
control points. As we shall see in Section V, one can also use
prismatic elements [7].

In the two-dimensional context, most spline-based deforma-
tion techniques use quadrangular or triangular patches. Some
applications include morphing [23], [24], registration [25], and
vectorization [26]. Simplicial (triangular or tetrahedral) Bézier
patches have the advantage over quadrangular ones that they
can be joined with almost arbitrary topology. On the other
hard, their continuity constraints are more complicated.

Compared to non-spline methods, splines generally use
more control points, but can use a control mesh with fewer
cells. An important advantage of the spline approach is that
the complexity of the deformation is independent of its editing
history. Namely, the number of patches and control points is
fixed by the choice of the control mesh. It is also easier to
guarantee the one-to-one property if necessary.

B. Technique overview

We can write a set of C1 continuity constraints of a spline
as the matrix equation

RP = Q (1)

where P is an c × 2 matrix of the coordinates of all Bézier
control points, R is a constant l× c coefficient matrix, and Q
is a constant l × 2 matrix (usually zero).

a) Parameter sets: Let P be the set of indices of all
control points of the mesh, and R the set of indices of the
continuity constraints. For any X ⊆ P , we denote by pX the
subvector p whose indices are the elements of X . For each
editing action, two disjoint subsets of P should be defined:
• A (anchor): indices of one or more control points whose

values will be set by the user;
• D (derived): indices of zero or more control points that

may be adjusted if necessary to satisfy the constraints.
For each s ∈ A, the user specifies a new position p′s which
is mandatory. For each s ∈ D, a new position p′s is also
suggested. The 2DSD method will compute a new position
p′′s for each parameter. If s ∈ A, p′′s is equal to the given
position p′s. If s ∈ D, p′′s is close to p′s, but not necessarily
equal to it. For every s ∈ P \ (A ∪ D), the desired position
p′s and final position p′′s are equal to the current value ps, that
is, the value does not change. See an example in Fig. 2.

(a) First step. (b) Second step. (c) Result.

Fig. 2. Steps of the 2D spline deformation editing cycle with set A =
{0}, and set D = {1, 2, 3} subject to one relevant constraint (the shaded
parallelogram). (a) User-specified translation of anchor point p0 to p′0; (b)
desired positions p′1, p′2, and p′3 of the derived points; and (c) final positions
p′′1 , p′′2 , and p′′3 of the derived points.

The constraints that involve control points of A or D are called
relevant constraints, whose indices comprise the set E , a subset



of R. There are often redundant constraints, especially when
some of the control points are considered fixed. Therefore,
one of the subproblems that we need to solve is to identify
and ignore such redundant constraints. For this, the ECLES
method is used by the 2DSD algorithm.

b) Solvability condition: A pair (A, D) is said to be
strongly solvable if for any assignment of values to pA there
is p′′D that satisfies all constraints. If p′′D only exists for a
particular p′A, we say that (A, p′A, D) is weakly solvable.

c) A user editing action: A typical user editing action
which we consider is a variable-neighborhood soft translation
of one or more control points (see Fig. 1). In the initial part,
the user selects with the mouse a set A of anchor points. Then,
the set S is automatically selected by the interface as having
all points that lie within a user specified maximum distance
of A in the global Bézier control net (see Section II-A). Then
2DSD determines the final set D of derived points from the
set S, and computes a factor θ for each point. Finally, the set
of non-redundant constraints is identified.

The user then defines a displacement ~v for the anchor points
by dragging them to new positions. The 2DSD algorithm gets
called at each new position of the anchors, and computes for
each point ps a suggested translation θs~v that decreases in
magnitude as one goes away from the anchor points. The
second part of the editing action is concluded when 2DSD
computes the new positions of the anchor and derived points.

Our prototype editor also supports the operations of local
soft rotation (see Fig. 3) and local soft scaling of one or more
anchors. In rotation, the user defines an angle α and center
c ∈ R2. The suggested angle α′s of each point ps is θsα. In
scaling, the user defines a center c and a scale factor σ. The
suggested scaling for each point ps is σθs .

c

(a) First step.

c

(b) Second step.

Fig. 3. Soft rotation of an anchor point (arrow) with δmax = 8 around the
center point c.

II. TRIANGULAR SPLINE DEFORMATIONS

In this section, we review the theory of Bézier splines
defined on simplicial meshes, whose cells are geometric sim-
plices (intervals, triangles, tetrahedra, etc.). In this paper, we
consider specifically the case t = 2, so the cells are triangles.

As is well known, any polynomial f from R2 to R of degree
d can be conveniently expressed as a linear combination of the
(d + 1)(d + 2)/2 Bernstein-Bézier simplicial polynomials of
degree d relative to any simplex u, denoted Buijk [27]. That
is, let p be a point of R2, every such polynomial f can be
written uniquely as

f(p) =
∑

i+j+k=d

cijkB
u
ijk(p) (2)

where cijk are the Bézier coefficients of f relative to u [27].
Each coefficient cijk can be associated to a nominal position

uijk in the triangle u, whose barycentric coordinates β0, β1

and β2 of p relative to the vertices of u are, by definition,
(i/d, j/d, k/d).

A. Using splines to model deformations

A deformation of a region Ω ⊆ Rt can be defined as a
function φ : Ω → Rt. A convenient way of modeling such
functions is to let each coordinate of φ(x) be a spline function
φr(x), with 0 ≤ r ≤ n; all these splines being of the same
degree and defined on the same mesh T . We call such function
a spline deformation. The function φ deforms T , the domain
mesh, into a new mesh φ(T ) with curved boundaries, the
deformed mesh. See Fig. 4.

(a) Domain mesh. (b) Deformed mesh.

Fig. 4. A deformation of R2 of the domain mesh T in the deformed φ(T ).

The Bernstein-Bézier polynomial representation can be used
to describe the deformation φ. For t = 2, let u be a triangle of
T and φu be the part of φ with domain u. For each coordinate
r (0 for x or 1 for y), the Bézier coefficient cuijk;r of φur can
be viewed as coordinate r of a point quijk, the Bézier control
point of φu with indices i, j and k. The function φu can be
modified by moving the points quijk. See Fig. 5. The triangular
grid defined by those points and the edges, shown in Fig. 5,
will be called the local Bézier control net of the triangle; the
union of all those local nets is the global Bézier control net.

(a) Nominal positions. (b) Bézier control points.

Fig. 5. Bézier control points quijk of a degree 3 patch φu from Ω → R2,
and their nominal positions uijk on the domain triangle u, showing the local
Bézier control net (dashed lines). The curved triangle on the right is the image
of u under the deformation φu.

Note that the control points quijk are distinct from their nominal
positions uijk. They are also distinct from the images φu(uijk)
of those nominal positions, except at the corners. That is,
φu(ud00) = qud00, φu(u0d0) = qu0d0 and φu(u00d) = qu00d,
but otherwise φu(uijk) 6= qijk in general.



B. Continuity constraints

We say that a deformation φ is continuous to order r (Cr)
if each coordinate of φ is continuous to order r. This is called
parametric continuity which is distinct from the geometric
continuity (Gr) sometimes used in computer graphics [14].
The latter is not appropriate here since the parametrization of
the deformed mesh is relevant, not just its shape.

Let u and v be two adjacent triangles of T . It is well known
that the condition for the spline deformation φ to be continuous
across the common edge of u and v is that quijk = qvi′j′k′ for all
i, j, k, i′, j′, k′ such that the nominal positions coincide, that
is, such that uijk = vi′j′k′ . Therefore, C0 continuity can be
achieved by representing those point pairs by a single point.

A spline is smooth along the common edge between u and v
if the first derivatives of the corresponding polynomial maps
φu and φv , in any direction, coincide at any point on that
boundary. For simplicial polynomial splines, this requirement
translates into a set of linear constraints on the Bézier points
of φu and φv . Specifically, φ has C1 continuity if and only if

qv0jk = qu0jk (3)

qv1jk = β0q
u
1,j,k + β1q

u
0,j+1,k + β2q

u
0,j,k+1 (4)

for all j, k such that j + k = d− 1, where β0, β1 and β2 are
barycentric coordinates of v0 relative to u0, u1 and u2 [27].

We call Equation (4) the quadrilateral condition. It
says that the quadrilateral formed by the control points
qv1jk, q

u
1jk, q

u
0,j+1,k, q

u
0,j,k+1 must be an affine image of the

quadrilateral formed by their nominal positions. See Fig. 6.

(a) Nominal positions. (b) Bézier control points.

Fig. 6. A deformation φ of degree 3 which satisfy C0 and C1 continuity
constraints (the gray diamonds).

C. Local control

The theory of C1-continuous 2D splines with triangular cells
has been extensively studied, for example, by Schumaker [27].
It is known that there is a minimum degree d of the inter-
polating spline that allows local editing of the spline while
maintaining its smoothness [28], [29]. If the degree d is too
low, the constraints are interconnected in such a way that the
required changes propagate from triangle to triangle over all
the domain mesh, so that local control is not possible.

In particular, for triangle meshes in R2, the smallest degree
that allows local control with C1 continuity is d = 5, which
we use in the examples that follow. In this case, each triangle
has 21 Bézier control points.

Let l be the number of edges in the free border of the mesh,
it can be proved that a spline with n parts has 25

2 n + O(l)
distinct control points and 13

2 n+O(l) degrees of freedom; that
is, about 25

13 = 1.9 control points for each degree of freedom.
In comparison, a quadrangular bicubic tensor spline of

degree 3 (the smallest degree that provides local control and
C1 continuity) with n patches has 9n + O(l) control points
and 4n+O(l) degrees of freedom; that is, about 9/4 = 2.25
control points for each degree of freedom. Therefore, despite
requiring a higher degree than tensor splines to obtain locality,
the triangular spline deformation generated by each control
point is more effective.

III. THE 2DSD DEFORMATION EDITING ALGORITHM

The editing of smooth 2D spline deformations can be
considered a special case of the general problem of editing
a set of parameters with linear (or affine) constraints. In this
section, we describe the 2DSD algorithm for this problem
using the ECLES method [1], described in Section IV.

Fig. 7 shows the interaction model between the user, the
application’s user interface, our interactive algorithm 2DSD,
and the ECLES general method. This process has two steps:
the first occurs once in each editing action when the user
chooses the points to be adjusted; and the second step occurs
one or more times when the user modifies the position those
points, e.g. by dragging them with the mouse. To simplify,
only one editing operation is shown (translation of the anchor
points). Other operations, such as rotation and scaling of the
anchor points can be implemented in similar ways.

Initially, through appropriate gestures of the user interface,
the user selects a set of anchors (A) and a set of initial derived
points (S). These sets are transmitted by the interface method
(UI.Select) to the first part of the algorithm, 2DSD.Select
(see Section III-A). This procedure chooses the final derived
points (set D) based on the set S. Then, the sets A and D
of control points and the constraints matrix R are given to
ECLES.Initialize (see Section IV-A). This procedure constructs
the coefficient matrix of the linear system, in factored form
(ΠR, L, D, U , ΠC; see Section IV-A), and computes the
rank r of that matrix. Optionally, ECLES.Initialize checks the
strong solvability, and, if it is not satisfied, fails and notifies
the application.

The second part is executed when the user moves the an-
chors to new positions, summarized by a displacement vector
~v, in Fig. 7. This data is passed by the corresponding inter-
face method (UI.Drag) to 2DSD.Translate (see Section III-B)
which computes the new positions p′A of the anchors and the
suggested positions p′D for the derived points, and passes that
and other informations to ECLES.Update (see Section IV-B).

If ECLES.Initialize did not check the strong solvability, then
ECLES.Update verifies the weak solvability condition for the
given p′A. If it is not satisfied, it returns an error message to
2DSD.Translate. Otherwise, ECLES.Update computes the new
positions p′′D of the derived points satisfying the constraints.
Then, 2DSD.Translate updates the current position ps of each
control point s ∈ (A ∪ D), and gives that information to
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Fig. 7. Control flow for a typical editing action (translation of anchor points).

the user interface to display the effects of the change on the
deformed mesh and/or the deformed object.

A. The 2DSD.Select procedure

In step 2, the 2DSD.Select procedure, described in Al-
gorithm 1, expands the initial set S of derived points to
the set D, using 2DSD.ExpandDerivedSet. Then, in step 3,
2DSD.Select uses 2DSD.ComputeRelMagnitude to compute a
real coefficient θs for each control point ps, which will be
used by 2DSD.Translate to compute p′s. Finally, in step 4,
2DSD.Select calls the ECLES.Initialize procedure to identify
the relevant and non-redundant C1 continuity constraints for
the editing action, and to obtain a collection of matrices ΠR,
L, D, U , ΠC and the rank r.

Algorithm 1: 2DSD.Select
Data: A,S: set of anchor and initial derived points;

G: the control graph;
R: the constraint coefficient matrix.

Result: D,F : set of derived and fixed points;
θ: relative magnitude to the displacement of point;
ΠR, L, D, U , ΠC, r: matrices and rank r obtained

from ECLES.Initialize.
1 begin
2 D ← 2DSD.ExpandDerivedSet (A, S, G)
3 θ ← 2DSD.ComputeRelMagnitude (A, D, G)
4 (F ,ΠR, L,D,U,ΠC, r) ← ECLES.Initialize

(A,D, R)

Initially, 2DSD.ExpandDerivedSet sets D ← S . Then, for each
s ∈ (A ∪ D), the algorithm finds all quadrilateral conditions
that involve the control point ps; and then adds the indices of
zero or more control points that enter into these conditions to
the set D. The process is iterated until all points in A∪D have
been examined. When d ≥ 5, the final set of derived control
points D can be confined to the triangles that own the control
points in (A ∪ S) and only a few adjacent triangles.

For the purpose of this step, each Bézier control point
ps = quijk is classified into six types according to its nominal
position uijk in the triangle u. See Fig. 8. The type of the point
p determines the set of quadrilateral constraints that apply to
that point and the additional points inserted in the set D. A

point p of type interior does not take part in any quadrilateral
condition, so it does not contribute to the set D. A point p of
any other type contributes additional derived points according
to rules are shown in Fig. 9.

corner

edge
edge corner

inner corner
inner edge
interior

Type Description
corner i = d or j = d or k = d.
edge corner i = 0 and (j = 1 or k = 1) or

j = 0 and (i = 1 or k = 1) or
k = 0 and (i = 1 or j = 1).

edge none other above and (i = 0 or j = 0 or k = 0).
inner corner i = j = 1 or i = k = 1 or j = k = 1.
inner edge none other above and (i = 1 or j = 1 or k = 1).
interior i ≥ 2 and j ≥ 2 and k ≥ 2.

Fig. 8. Classification of control points of a Bézier patch of degree 6.

When applying these rules, the algorithm skips any control
points that would lie on non-existing triangles, and any
quadrilateral conditions that would depend on them. These
rules ensure that there is at least one derived point for each
quadrilateral involved in the editing action. The set D obtained
ensures the strong solvability condition of the ECLES.

The 2DSD.ComputeRelMagnitude procedure computes the
value θs, which defines the relative magnitude of the desired
displacement of each point ps, that is, how much the suggested
position p′s is affected by the specified displacement ~v of the
anchor points. The value θs is a number between 0 and 1 given
by the formula

θs =
δ′′s

δ′s + δ′′s
(5)

where δ′s is the distance between the point ps and the nearest
anchor point; and δ′′s is the distance between the point ps and
the nearest fixed point. Both δ′s and δ′′s are graph-theoretical
distances measured on the global Bézier control net G. The
distances are computed by Dijkstra’s algorithm [30]. The value
θs computed for anchor points is 1, and for fixed points is 0.
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Fig. 9. Relevant constraints (gray diamonds) and derived points added to D (solid dots) for a control point ps with s ∈ A ∪ D (open dot). For each type,
the upper figure shows a typical situation where the point p is sufficiently far from the triangulation’s border. The lower figure shows a situation near the
border where some of those points and constraints are missing. These diagrams are generalized to vertices of arbitrary degree in the obvious way.

B. The 2DSD.Translate procedure
In step 2, the 2DSD.Translate procedure, described in Algo-

rithm 2, computes the suggested positions p′s of each control
point using the value θs. Then, in step 3, the new positions p′′s
of the derived points are computed by ECLES.Update. Finally,
in steps 4 and 5, 2DSD.Translate sets the final position ps of
each control point.

Algorithm 2: 2DSD.Translate
Data: ~v: displacement applied to the anchor points;

Q: independent terms of the constraints;
A,D,F : set of anchor, derived and fixed points;
θ: relative magnitude to the displacement of points;
ΠR, L, D, U , ΠC, r: matrices and rank r returned

by ECLES.Initialize;
p: matrix of coordinates of the current positions of

the control points.
Result: p: updated matrix of coordinates of the control

points.
1 begin
2 for each s ∈ P do p′s ← ps + θs~v
3 p′′D ←ECLES.Update (A, F , E , Q, R, ΠR, L, D, U ,

ΠC, r, p′)
4 for each s ∈ D do ps ← p′′s
5 for each s ∈ A do ps ← p′s

IV. THE ECLES METHOD

In this section, we describe the ECLES method specialized
for editing the Bézier control points of the spline (defined on
a mesh T ), subjected to the C1 quadrilateral constraints.

If the coordinates of the vertices of the domain mesh are
rational, each constraint can be expressed by a linear equation
with integer coefficients. Therefore, we can use the ECLES
general method, which consists of the ECLES.Initialize and
ECLES.Update procedures, as part of our algorithm 2DSD
for editing of 2D spline deformations, in order to adjust the
control points preserving the C1 continuity of the spline while
trying to obey the changes indicated by the user.

A. The ECLES.Initialize procedure

The sets A and D of control points and the constraints
matrix R are given by 2DSD.Translate to ECLES.Initialize.
Based on these informations, the ECLES.Initialize procedure
identifies the set E of m relevant constraints, and the set F of
the relevant fixed points, that occur in some equation of E but
are not in A or D. Then, ECLES.Initialize extracts a linear
system AP ′′D = B that express the set E written in matrix
form, namely

REDP
′′

D = QE −REAP
′

A −REFP
′

F (6)

where the matrices RED, REA and REF are m × n, m × a
and m × f matrices with the coefficients of the points D, A
and F in the equations E , respectively. The n× 2 matrix P

′′

D
consists of the n computed positions p′′s of each derived point.
The m×2 matrix QE contains the m elements of the constant
matrix Q corresponding to the equations E . The a× 2 matrix
P

′

A contains the a user-specified positions p′s of each anchor
point; and P

′

F is a f × 2 matrix with the f current positions
p′s = ps of each relevant fixed points.

In general, there may be redundancies in system (6).
The ECLES.Initialize procedure finds the rank r of the ma-
trix RED and factors the matrix RED into integer matrices
Lm×r, Dr×r, Ur×n, and permutation matrices ΠR (rows) and
ΠC (columns), such that RED = ΠRLD

−1UΠC, using the
fraction-free Gaussian LU factoring method [31]. The first r
rows of Π−1

R RED are a set of non-redundant equations.
If the strong solvability condition is required but is not

satisfied, then an error flag is returned and the ECLES.Update
is not called.

B. The ECLES.Update procedure

If the system (6) has redundant equations (r < m), the
problem is reduced to the non-redundant linear system

ÂP ′′D = B̂ (7)

where Â is the first r rows of Π−1
R A = LD−1UΠC, and B̂ is

the first r rows of Π−1
R B = Π−1

R (QE−REAP
′

A−REFP
′

F ) [1].
If the system (7) has a single solution, it is solved directly.

Otherwise, if it is indeterminate (r < n), ECLES.Update uses



the least squares criterion to minimize the distance between
each new position p′′s and the desired position p′s, while
satisfying the non-redundant constraints. That is, the goal
function that we want minimize is

S(p′′) =

n∑
s=1

|p′′s − p′s|2. (8)

In order to minimize the goal function (8) while satisfying the
constraints (7), it is necessary the gradient of the function be
perpendicular to solution of the constraints, that is

2P ′′D + Â>λ = 2P ′D (9)

where λ is a column vector with the Lagrange multipliers
λ1, ..., λr. Equation (9) combined with the constraints (7)
yields a least squares linear system which can be solved in
two steps; namely, solving

1

2
ÂÂ>λ = ÂP ′D − B̂ (10)

for λ, and then computing P ′′D by solving

2P ′′D = 2P ′D − Â>λ. (11)

C. An example of user editing action

Suppose that the set A is the point p = qu032 between the
triangles u (right) and v (left), shown in Fig. 10.

Fig. 10. Editing point qu032 with the derived points qv122, qu122, qv131, qu131.

According to Fig. 9, the algorithm will select the four derived
control points D = {qv122, qu122, qv131, qu131} (large black dots
in Fig. 10). Based on these points and on the anchor point qu032,
ECLES.Initialize identifies two relevant constraints, which are
included in the set E .

−(β)qv122 + (β0)qu122 + (β1)qu032 + (β2)qu023 = 0 (12)
−(β)qv131 + (β0)qu131 + (β1)qu041 + (β2)qu032 = 0 (13)

where β = β0+β1+β2, and β0, β1, and β2 are the barycentric
coordinates of v0 relative to u0, u1, and u2. The set F has
the two points qu023 = qv023 and qu041 = qv041.

The matrix form of equations (12) and (13) is[
−β 0 β0 0
0 −β 0 β0

]
P

′′

D = −
[
β1

β2

]
P

′

A −
[
β2 0
0 β1

]
P

′

F

(14)
where the constant matrix QE is zero.

In this example, the equations are linearly independent and
the system is indeterminate. Therefore, the new positions P ′′D
are computed by ECLES.Update which solves the system (14)
using the least squares criterion.

V. APPLICATION: 2.5D SPACE DEFORMATIONS

We have used the 2DSD deformation algorithm, described in
Section III, to improve the editor of C1-continuous 2.5D space
deformations, described by Rodrigues et al [7]. This editor
was used to deform 3D models of cells and other organisms
to match them with images of real specimens viewed through
an optical microscope. A typical result is shown in Fig. 12.

(a) 2D view of basic model. (b) 3D view of basic model.

(c) An actual image [32]. (d) 2D view of result. (e) 3D view of result.

Fig. 11. Prismatic control mesh and 3D model of the nematode Caenorhab-
ditis elegans (provided by Rodrigues et al. [7]) deformed by our editor.

The improvements include the use of the ECLES method and
the extension of editing actions. The use of ECLES removed
the rounding errors and numerical instabilities of the previous
floating-point implementation. See Fig. 12.

(a) Floating-point version. (b) ECLES version.

Fig. 12. Example where a floating-point version of 2DSD (a) eliminate one
constraint that is not redundant and is preserved by ECLES version (b).

The use of ECLES also allows more general constraints. As
observed in Section I-A the enhancements afforded by 2DSD
included additional editing operations (such as local rotation
and scaling), multiple anchor points, semiautomatic selection
of derived points (explicitly by distance and implicitly by the
solvability condition) and an improved goal function for the
least squares.

In this application, we assume that the embedded model is
given as a dense triangular mesh with tens of thousands of



triangles. Although the models for this application are three-
dimensional, the deformations are essentially two-dimensional
with little change in depth, because the third dimension cannot
be easily perceived through a microscope. Thus, the defor-
mations allowed by this system consist of a 2D deformation
in the x and y directions combined with a (x, y)-dependent
1D stretching map in the z direction. The editor has separate
modes for adjusting the (x, y) deformation (a spline mapping
φ : R2 → R2) and the top and bottom surfaces (two spline
functions σ0, σ1 : R2 → R). Each function has pieces of
degree 5 and is defined by Bézier control points (21 per
triangle) according to Section II.

Our algorithm 2DSD is used in the editor’s “XY mode”, to
edit the φ mapping, and in the “Z0 mode” and “Z1 mode”, to
edit the functions σ0 and σ1.

VI. CONCLUSION

We described a general modeling technique for interactive
editing of C1-continuous two-dimensional deformations using
triangular elements with Bézier control nets. The method
described, the 2DSD algorithm, supports splines of degree 5
or higher and allows convenient editing of the deformation
while preserving the C1 continuity of the surface. The main
contribution of this paper is the use of the integer-based
ECLES general method to combine the user editing actions
and the continuity constraints in a reliable and efficient way,
avoiding the fatal failures that could arise from floating-point
rounding errors. The 2DSD algorithm developed was used as
part of an effective and user-friendly editor of 2.5D space
deformations that can be used, for example, to reproduce
the deformation of 3D models of non-rigid cells and other
organisms viewed through optical microscopes.
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