
Retinal Images Registration via Unsupervised Deep
Learning

Giovana Augusta Benvenuto
Faculty of Science and Technology (FCT)

São Paulo State University (UNESP)
Presidente Prudente, Brazil

Email:giovana.a.benvenuto@unesp.br

Wallace Casaca
Institute of Biosciences, Letters and Exact Sciences (IBILCE)

São Paulo State University (UNESP)
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Abstract—In ophthalmology and vision science applications,
aligning a pair of retinal images is of paramount importance to
support disease diagnosis and routine eye examinations. This pa-
per introduces an end-to-end framework capable of learning the
registration task in a fully unsupervised manner. The proposed
approach combines Convolutional Neural Networks and Spatial
Transformer Network into a unified pipeline that incorporates
a similarity metric to gauge the difference between the images,
enabling image alignment without requiring any ground-truth
data. The validation study demonstrates that the model can suc-
cessfully deal with several categories of fundus images, surpassing
other recent techniques for retinal registration.

I. INTRODUCTION

The Image Registration problem consists in finding a ge-
ometric or grid transformation that precisely aligns a given
image with a reference one. This problem is of crucial impor-
tance in the field of Computer Vision, particularly in medical
applications where digital imaging is frequently employed for
diagnostic and disease monitoring purposes. This is particu-
larly relevant for conditions such as ocular pathologies and
disorders, such as glaucoma [1] and diabetic retinopathy [2].

In the context of ophthalmology, retinal (fundus) images
are frequently captured and compared to other images taken
at different times, scales, or even using different devices.
Manual inspection of potential changes between two or more
retinal images is a challenging, time-consuming, and error-
prone task. Therefore, the utilization of specific computational
techniques is necessary to automate this process. In this type
of application, challenges related to eye fundus scanning, such
as variations in lighting, scale, angulation, and positioning,
are effectively addressed and corrected during the image
registration process.

In recent years, the field of medical image registration
has considerably benefited from the advancements achieved
through the use of Deep Learning (DL). This progress has
been highlighted in the works of Litjens et al. [3], Haskins
et al. [4], and Fu et al. [5]. However, it is important to note
that there are relatively few research proposals in this domain
that specifically focus on dealing directly with fundus images,
particularly in the context of unsupervised approaches.
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Mahapatra et al. [6] employ a Generative Adversarial Net-
work (GAN), which is a DL architecture consisting of two
main components, a generator and a discriminator network,
to align pairs of fundus images. Wang et al. [7] propose a
framework that utilizes pre-trained networks for segmentation,
detection, and feature description of retinal images to perform
registration. In the work by Rivas-Villar et al. [8] a supervised
network is implemented to address the alignment problem.
Landmarks are transformed into heat maps and used by the
network to learn and predict such maps during the inference
step. However, it is noteworthy to mention that despite these
methods demonstrate the capability to solve the image regis-
tration problem, they all require some form of reference data,
such as a loss function, as part of their implementation.

In summary, most registration methods rely on supervised
learning or the creation of synthetically generated data to be
effective. While generating new labels can overcome the lack
of reference data, it also introduces an additional complication
in modeling the problem, raising the question of the reliability
of artificially induced data in the field of medical imaging.

In this research, we propose an unsupervised deep learning
strategy that combines a convolutional architecture, a spatial
transformation module, and a loss function based on a simi-
larity metric, with the goal of performing the registration task
on a pair of fundus images without the need to use or acquire
reference data (ground-truth) beforehand.

In summary, the main contributions introduced by the
proposed approach are:

• The development of an integrated computational frame-
work for performing end-to-end retina image registration
using DL techniques, all while bypassing reliance on
ground-truth data or artificially and/or manually gener-
ated reference resources.

• Establishing a functional and effective registration
method capable of adapting to a large number of distinct
classes of fundus image pairs.

• The combination of multiple DL networks with image
analysis techniques such as the Isotropic Undecimated
Wavelet and the Transformed and Linked Component
Analysis enables the registration of fundus photographs
even with segments of low quality and abrupt changes.



II. METHODOLOGY

The purpose of the our methodology is to achieve the
unsupervised registration of a pair of fundus images, IMov

and IRef . To accomplish this objective, we first extract blood
veins, bifurcations, and other relevant components of the eye,
producing the images BMov and BRef . These images serve as
input to a Fully Convolutional Neural Network (FCNN) that
implements a U-shaped architecture and outputs a correspon-
dence grid between the images. In the subsequent learning
step, a Spatial Transformer layer uses the matching grid to
compute the transformation necessary to align the moving
image to a reference one.

The integrated architecture employed in this project learns
the task through a loss function that measures the similar-
ity between the reference and transformed images. Finally,
for refinement, we apply a mathematical morphology-based
technique called Connected Component Analysis (CCA) [9]
to remove noisy pixels that may appear during the learning
process. This post-processing step helps to improve the overall
quality of the registered images and enhance the accuracy of
the registration results.

As a result, the model is capable to learn the registration
task without the need for ground-truth annotations and any
reference data. Figure 1 illustrates the proposed registration
approach. Each stage of these pipeline is detailed in the next
sections.

A. Network Input Preparation

The first phase of the proposed computational framework
focuses on preprocessing the image pairs (IRef and IMov) to
enhance the network’s performance. Initially, the images are
resized to 512 × 512 to reduce the total number of network
parameters and then converted to grayscale.

The second step involves segmentation. This treatment
aims to emphasize structures in the images that are relevant
to solving the problem, specifically, the blood vessels and
the optic disc. This process also addresses lighting issues
and streamlines network conversion by removing unnecessary
information. We utilized the Isotropic Undecimated Wavelet
Transform (IUWT), a technique developed by [10] specifically
for detecting and measuring retinal images. The resulting
images, BRef and BMov , an be observed in the leftmost frame
in Figure 1.

B. Learning a Deep Correspondence Grid

As previously stated, the initial learning mechanism in-
corporates a U-Net-like architecture with the objective of
generating a deformation grid for the reference and moving
images. The network takes the image pair Bref and BMov , as
input, which is then processed in the initial convolutional layer
block. The first components of this architecture consists of two
downsampling blocks, each composed of a max-pooling layer
and two convolution layers. Within each block, the input size
is halved according to the image resolution, while the number
of analyzed features doubles.

During the second stage, two blocks are introduced as part
of the network’s upsampling process. These blocks consist of
a deconvolution layer, which enlarges the input size while re-
ducing the number of analyzed features, and two convolutional
layers. Regarding the second step, the output data from the
deconvolution are combined with the data obtained from the
convolution block at the corresponding level in the previous
step. This merging of data is achieved through concatenation,
as indicated by the dashed arrows in Figure 2.

Except for the final convolutional layer, all convolutional
layers in the current architecture employ the ReLU activation
function and are accompanied by a Batch Normalization layer.
The last convolutional layer utilizes a linear activation function
and reduces the number of features (kernel) in order to produce
a deformation field that matches the dimensions of the input
data.

Figure 2 illustrates the network architecture implemented
for generating a correspondence grid. Each layer is depicted
as a colored block. The resolution of the data is specified
beneath each block, while the number of kernels per layer is
indicated in the upper right corner.

C. Spatial Transformer Network

Following our model, we incorporate a modified version
of the Spatial Transformer Network (STN) architecture [11]
to obtain a transformation model for mapping the moving
image, BMov . The STN structure enables the network to
dynamically apply scaling, rotation, and cropping, as well as
non-rigid transformations to the moving image or feature map.
Importantly, these transformations can be achieved without the
need for additional training supervision or lateral optimization
processes.

The STN incorporated as part of our integrated learning
scheme consists of two core modules: grid generator and
sampler. The grid generator module aims to align the corre-
spondence positions in the target image BMov by iterating over
the matching points previously determined by the network.
Its primary objective is to generate a grid that facilitates
the alignment process. Once the matches are properly found,
the sampler module apply a bilinear interpolation to extracts
the pixel values at each position, generating the definitive
transformed image BWarp. The middle frame of Figure 1
exemplifies the outputs of the STN modules implemented.

D. Loss Function

As our registration process does not rely on labeled data, we
employ a loss function that utilizes an independent metric to
assess the similarity between images. Specifically, we utilize
the Normalized Cross-Correlation (NCC) as a mathematical
measure for the loss function. NCC allows to quantitatively
evaluate the degree of similarity between the images during
training. Below is the equation for this measurement:
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Fig. 1. Overview of the proposed framework. It includes a pre-processing step where the segmentation of the image pair occurs, followed by the learning
step formed by the U-Net, the Spatial Transformation module and the Loss Function, and finally the post-processing is applied to refine the images.

Fig. 2. The network architecture implemented to obtain a correspondence grid
is represented by colored blocks, with each block denoting a layer. Below each
block, the data resolution is specified, and the upper right corner shows the
number of kernels per layer. The correspondence grid serves as the network’s
output, as displayed in the rightmost corner.

In Equation (1), Ti,j = t(x+i, y+j)− t̄x,y , Ri,j = r(i, j)−
r̄, and t(i, j) and r(i, j) are the pixel values at (i, j) w.r.t. the
warped and reference images, BWarp and BRef , respectively,
while r̄ and t̄ give the average pixel values w.r.t. BRef and
BWarp [12].

The NCC metric is often selected as a similarity measure
due to its robustness, as noted in [13], and its ability to provide
high accuracy and adaptability, as mentioned in [14].

III. EXPERIMENTS

In this section, we present a comprehensive description of
the materials used, the conducted experiments, and the tech-
nical details of the implementation and evaluation processes,
with the objective of providing a comprehensive understanding
of the results and findings.

A. Datasets

To evaluate the performance of the proposed methodology
for the registration task, we utilized three databases, compris-
ing two publicly available datasets and one private dataset.
Below, we provide the specifications of each database:

• FIRE - The High-resolution retinal database, available
at [15], consists of 134 image pairs categorized into
three distinct groups: A, S, and P. These categories are
differentiated based on the estimated overlap between the

pairs. Categories A and S exhibit an estimated overlap of
more than 75%, while category P demonstrates a lower
percentage of overlap.

• Image Quality Assessment Dataset (Dataset 1) - This
public dataset, captured by [16], comprises 18 retinal
image pairs, with each pair originating from a different
individual. Each pair consists of a low-quality image,
characterized by smokiness and blur, alongside a higher
quality image of the same eye.

• Private dataset (Dataset 2) - This private dataset
comprises 85 image pairs generously provided by an
ophthalmologist who collaborated with our research. The
dataset presents a real-world scenario encountered by
medical experts during their routine examinations with
real patients.

By employing diverse datasets, including both public and
private sources, we aim to thoroughly evaluate the effective-
ness and robustness of our proposed approach in different
scenarios and settings.

B. Evaluation metrics

To quantitatively assess the registration results, we adopted
well-known validation metrics that measure the alignment of
the image pairs, including the Mean Squared Error (MSE) [6],
[17], Structural Similarity Index Measure (SSIM) [17],
Dice Coefficient (Dice) [7], [18]–[21], and Gain Coefficient
(GC) [22], [23].

For the purpose of this article, we focused solely on the
Dice coefficient metric to present the results. For a more
comprehensive evaluation, we recommend referring to the
accompanying dissertation [24] and the following citations:
[25], [26]. These references provide extensive insights and dis-
cussions on the performance and effectiveness of our proposed
methodology, considering various metrics and experimental
setups.

The Dice coefficient is a widely used metric in the context
of image registration, ranging between 0 and 1, where a value



Fig. 3. Learning curve of the network after 5,000 epochs. The vertical axis
represents the value of the loss (NCC) for each epoch.

of 1 indicates a perfect overlap. The mathematical calculation
of this metric is governed by Equation (2):

Dice(BRef , BWarp) =
2× |BRef ∩BWarp|
|BRef | ∪ |BWarp|

(2)

Where BRef represents the reference region of interest
(ROI), and BWarp represents the registered ROI.

C. Implementation details

The entire pipeline of the proposed approach was imple-
mented in Python, making use of the OpenCV, Scikit-learn,
and Tensorflow libraries. The learning process was trained
using a routine consisting of eight batches of retinal image
pairs for 5000 epochs. Optimization was achieved through the
ADAM algorithm. The training was conducted on a cluster
equipped with 32GB of RAM memory and two Intel(R)
Xeon(R) E5-2690 processors.

The images used in the training were extracted from cate-
gory S of the FIRE database, with a resolution of 512× 512.
Towards the end of the training process, we observed that the
convergence of the network occurs approximately within the
first two thousand iterations. After this point, the results remain
stable with minimal fluctuations (see Figure 3).

IV. RESULTS AND DISCUSSION

The results obtained from the developed methodology are
discussed through both quantitative and qualitative evaluations.
The qualitative observation was conducted through a visual
inspection of the achieved registrations produced by our pro-
posed approach, comparing them to registrations obtained us-
ing other methods from the literature. This qualitative analysis
provides valuable insights into the visual quality and accuracy
of the registrations, complementing the quantitative metrics
and offering a comprehensive assessment of the proposed
methodology’s performance.

For the quantitative evaluation, we applied similarity metrics
to quantify the percentage of overlap between the reference
image BRef and the warped image BWarp. In this article, we
specifically focus on demonstrating the results achieved by the
Dice Coefficient metric. For a more comprehensive evaluation,
see the citations mentioned in Section III-B.

TABLE I
COMPARISON OF REGISTRATION METHODS USING DICE COEFFICIENT.

THE VALUES IN BOLD INDICATE THE BEST PERFORMANCE.

Métodos FIRE Dataset 1 Dataset 2A S P
Before 0.2982 0.3418 0.1245 0.2922 0.3805
GFEMR 0.6023 0.8022 0.5919 0.6565 0.8009
VOTUS 0.6105 0.8702 0.6149 0.8064 0.8188
DIRNet 0.4982 0.6020 0.2630 0.5145 0.5744
Hu et al 0.6303 0.6948 0.5505 0.6155 0.6588
Proposed 0.9505 0.9580 0.9109 0.9477 0.9467

A. Comparison with State-of-the-Art and Deep Learning Tech-
niques

To assess the competitiveness of our framework, we com-
pared the achieved results with those obtained using other
registration techniques. In the context of traditional methods,
which employ optimization techniques for registration tasks,
we considered the GFEMR [27] and VOTUS [23] algorithms.

To observe our results compared with other deep learning
techniques, we also analyzed the DIRNet [28] network and
the weakly supervised method proposed by Hu et al. [29]. For
conducting these evaluations, we employed the same training
process as utilized in our own framework. Following the
specifications of each algorithm, we trained them using the
same set of training images and the same number of epochs to
ensure a consistent and fair comparison between our proposed
approach and these state-of-the-art deep learning methods.

Table I presents a quantitative assessment of the results ob-
tained by applying the Dice Coefficient metric to the compared
registration methods. The rows represent the methods, while
the columns demonstrate the average values achieved by each
method for all applicable image pairs from each database.
The row labeled ’Before’ corresponds to the results without
aligning the image pairs.

Observing the bold values in the table, which indicate
superior performance, our proposed framework outperforms all
the compared methods, regardless of the different databases.
When compared to the second-best results (indicated by ital-
icized values), our framework also demonstrates a significant
improvement.

To analyze the distributional performance of the registration
for the image pairs, we chose the box plot graph representa-
tion. In Figure 4, we can observe the variation of the metric
results on the overlap of the reference and registered images
for each method and database.

This graphical representation confirms our previous analysis
and also reveals that among the compared methods, our
proposed approach demonstrates the lowest variation in the
registration values. This consistency highlights its ability to
achieve high overlap registrations regardless of the pair of
images being processed. This finding further emphasizes the
robustness and reliability of our method across diverse image
pairs and datasets.

In summary, it is noticeable that the traditional methods
[23], [27] present better results when compared to the other



Fig. 4. Box plot representations of the results using the Dice Coefficient metric, with values closer to 1 indicating the best performance.

two deep learning methods [28], [29]. One plausible reason
for this discrepancy in results is that deep learning approaches
rely on the quantity of data and the number of training
epochs to achieve the desired accuracy. On the other hand,
such techniques are capable of generating transformed images
independently of the input image pair, unlike optimization-
based techniques which, in some cases, especially those that
are initially more distinct, may fail to produce the registration.
For instance, in the category P of the FIRE database, the
GFEMR method failed to register 4 images, and VOTUS was
unable to register 6 images.

Our framework not only generated a registered image for all
tested pairs but also demonstrated good convergence with the
volume of data on which it was trained, consistently achieving
the best results in all tests conducted. It is noteworthy that the
best results obtained by our architecture are in the category
of the database on which it was trained (column FIRE S), but
they are closely followed by the results from other databases.
This indicates that the network has the ability to generalize
the learned parameters to different image pairs, showcasing
its versatility and adaptability to diverse datasets.

B. Visual assessment of the comparison of results

To conduct a visually qualitative analysis of the images
generated by each method, we can refer to Figure 5. This
figure, obtained from the approach adopted in [23], presents
the segmented images BRef and BWarp in green and magenta,
respectively. Since these colors are complementary in the RGB
spectrum, their combination results in the color white. Conse-
quently, the white pixels in each image indicate the extent
of overlap between them. This visual representation offers
valuable insights into the accuracy and alignment achieved
by the registration methods, allowing for a comprehensive
assessment of their performance.

Analyzing the image registration methods via AP (DIRNet
and Hu et al lines), both perform non-rigid registrations, which
means that the transformations applied, in some cases, result
in deformations in the images, causing them to lack the desired
overlap.

The proposed framework, despite also employing non-rigid
registration, considers a deformation field with the same
dimensions as the input image pair in the network output.
Consequently, when mapped for transformation, each point
corresponds to a pixel, causing the applied deformation to
distort the image BMov towards the reference image BRef .
The structures in the transformed image BWarp may exhibit
differences from the original image BMov to make it visually
closer to its reference, thus maximizing the overlap between
both images as much as possible.

Another aspect that we can observe from Figure 5 is the
role of segmentation in this framework. This process enables
the registration of images acquired under diverse conditions.
The column corresponding to Dataset 1 presents an image pair
with low illumination and a smoky occlusion. Through seg-
mentation, it was possible to highlight the vascular structure
of these images and perform the registration. In a practical
sense, segmentation allows images in poor conditions to be
registered, facilitating an initial observation in cases where
there is a need for a new examination to replace the damaged
image or even avoid a new procedure.

Despite the advantages of applying segmentation to the
framework, it also represents a limitation of the proposed
methodology since the network only generates segmented
registrations.

The ultimate objective of image registration is to facilitate
the comparison between pairs of fundus images, enabling
ophthalmology professionals to quickly identify signals that
indicate alterations, aiding in diagnosis and monitoring. The
adopted visualization technique for this evaluation effectively
highlights areas where structural changes exist between the
reference and registered images.

Figure 6 illustrates the sequence of processing steps leading
to the generation of the registration figure and the overlapped
visualization. In this specific case, it is noticeable that certain
vessel structures present in the reference image are absent in
the second image, these are highlighted in green in the final
image.

This visualization and comparison approach enhances the
effectiveness of medical examinations, enabling practitioners



Fig. 5. Demonstration of the overlap between the reference and registered
images. The original images from each database are displayed in the first two
rows, while the subsequent rows show the overlaps between BRef in green
and BWarp in magenta for each compared method.

to identify and analyze relevant information efficiently, ul-
timately contributing to improved patient care and accurate
diagnoses.

V. CONCLUSION

In this work, we addressed the problem of digital retinal
image registration. We proposed our solution through an
unsupervised computational framework that performs end-to-
end registration of retinal images. This approach combines two
neural networks that employ deep learning architectures.

The proposed framework is focused on the registration
of segmented retinal images, as segmentation enables the
accomplishment of this task even with low-quality images and
makes it feasible for the technique to learn without the need
for reference data, using a similarity metric instead.

By leveraging the benefits of segmentation, our framework
becomes robust to image variations and allows for the regis-
tration of retinal images under diverse conditions, enhancing

Fig. 6. Demonstration of the processing steps of the original image pair up
to the superimposition of the final registration with the reference image.

its practical applicability in real-world medical scenarios. The
use of unsupervised learning and similarity metrics further
simplifies the registration process and reduces the dependency
on labeled data, facilitating the integration of our method into
existing medical imaging workflows.

The results obtained when comparing our proposed frame-
work to other methods from the literature, including traditional
optimization-based approaches using key-points and other
strategies employing neural networks, demonstrated higher
accuracy for all the employed databases and across all applied
evaluation metrics.

Our proposed framework outperformed the compared meth-
ods in terms of registration accuracy, showcasing its su-
periority in handling diverse datasets and image variations.
These results validate the effectiveness and robustness of
our approach in achieving more accurate and reliable image
registration outcomes.
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