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Abstract—In this work, we address the problem of unsuper-
vised image segmentation, subject to high-level constraints ex-
pected for the objects of interest. More specifically, we handle the
segmentation of a hierarchy of objects with nested boundaries,
each with its own expected boundary polarity constraint. To
this end, this work successfully extends Hierarchical Layered
Oriented Image Foresting Transform (HLOIFT), with the inclu-
sion of nested object relations, to the unsupervised segmentation
paradigm. On the other hand, this work can also be seen as an
extension of Unsupervised OIFT (UOIFT) to include structural
relationships of nested objects.

The method is demonstrated in the segmentation of three
datasets of colored images with superior performance compared
to other existing techniques in graphs, requiring a smaller
number of connected partitions to isolate the objects of interest
in the images.

I. INTRODUCTION

Image segmentation is among the most tackled problems

in computer vision, image processing, and image analysis.

It is a fundamental procedure widely used in the area of

autonomous vehicles and robotics for object detection and

content recognition [1], [2], disease identification and etiology

study in the field of medicine [3]–[5], crop area measurement

for agriculture [6], [7], and many other applications [8]–[10].

There are several distinct possible image segmentation ap-

proaches, which depend on the goal application. Semantic seg-

mentation consists of labeling all objects of the same class with

the same color [11]. Instance segmentation, however, marks

every instance of objects with a single different color [12].

Salient object segmentation focus on labeling objects which

are more visible from a human visual perspective [13]. An-

other important taxonomy of image segmentation concerns

the amount of supervision it requires. Unsupervised segmen-

tation does not require any prior training [14], self-supervised

segmentation uses unlabeled training data [15], supervised

segmentation uses labeled data for training [16], and semi-

supervised segmentation uses both labeled and unlabeled data

for training [17].

Finally, there is an effort in segmenting objects based

on known priors. These priors describe relationships among

objects such are their relative pose, size [18], boundary po-

larity [19], [20] and hierarchy [21]. For some applications,

objects may also assume shape restrictions [22].

In recent years, most of the community effort applies to

general semantic or instance segmentation for natural images.

Deep learning methods are by far the most suitable for these

applications [23]. In the case of more specific areas such as

medical imaging, methods include priors as input information

to achieve better performance [24]. There is a large gap in

the literature though with respect to the application of general

image segmentation with priors. That is because generic priors

are more abstract information, making it unfeasible to train

networks for that purpose. Even using billions of training

images, one can not train current methods to detect any set of

objects with a specific boundary polarity, with a relative size

and pose in an unsupervised way, and that is exactly the class

of problem we tackle in this paper.

We propose an unsupervised segmentation method which

accepts as priors the hierarchy of objects and their boundary

polarity. In this way, it extends both the Hierarchical Layered

Oriented Image Foresting Transform (HLOIFT) [21], with the

inclusion of nested object relations, to the unsupervised seg-

mentation paradigm and the Unsupervised OIFT (UOIFT) [20]

by including structural relationships of nested objects.

The reminder of the paper is structured as follows: Section II

describes the notations and definitions for our algorithm;

Section III reviews previous works extended by this paper;

in Section IV, we present our new segmentation method; and

in Sections V and VI we show the experimental results and

state our conclusions.

II. NOTATIONS AND DEFINITIONS

A partition of the finite set I is a set P of disjoint non-

empty subsets of I whose union is I (that is, ∀X,Y ∈ P ,

X ∩ Y = ∅ if X 6= Y and ∪{X ∈ P} = I). Any element of

a partition P of I is called a region of P .

We consider a weighted digraph G as a triple 〈N ,A, ω〉,
where N is a nonempty set of vertices or nodes, A is a set

of ordered pairs of distinct vertices called arcs or directed

edges, and ω : A → R represents the weights associated with

the arcs. The digraph G is symmetric if for any of its arcs

〈s, t〉 ∈ A, the pair 〈t, s〉 is also an arc of G, but we can

have ω(〈s, t〉) 6= ω(〈t, s〉). The transpose GT of G is the

unique weighted digraph on the same set of vertices N with

all arcs (and corresponding weights) reversed compared to the

corresponding arcs in G. For a given graph G = 〈N ,A, ω〉, a

path π = 〈t1, t2, . . . , tn〉 is a sequence of adjacent nodes (i.e.,

〈ti, ti+1〉 ∈ A, i = 1, 2, . . . , n − 1) with no repeated vertices

(ti 6= tj for i 6= j). A path πt = 〈t1, t2, . . . , tn = t〉 is a path



with terminus at a node t. A path is trivial when πt = 〈t〉. A

path πt = πs · 〈s, t〉 indicates the extension of a path πs by an

arc 〈s, t〉.
Given an unweighted and symmetric graph G = 〈N ,A〉, a

subset T of N is connected if, for any two vertices x and y
of T , there exists a path from x to y in G that only passes

through vertices in T . Given a graph G = 〈N ,A〉, a partition

of N is connected (in G) if all its regions are connected.

Let I be the image domain (that is, the set of pixels in

Z
2) and let PI be an initial connected partition (considering

a 4-neighborhood graph) of I, designed to merge neighboring

pixels with similar intensity and color characteristics into a

same region, called a superpixel [25]. The image can then

be interpreted as a weighted digraph G = 〈N ,A, ω〉, whose

nodes N = PI are the superpixels and whose arcs are the

ordered pairs 〈s, t〉 ∈ A of neighboring superpixels, forming

a Region Adjacency Graph (RAG).

A connectivity function f : Π(G) → R computes a value

f(πt) for any path πt, usually based on arc weights, where

Π(G) indicates the set of all possible paths in a graph G. A

path πt is optimum if f(πt) ≤ f(τt) for any other path τt ∈
Π(G). Connectivity functions are usually described based on

a path-extension rule. For instance, the max-arc connectivity

function fmax is given by:

fmax(〈t〉) =

{

−1 if t ∈ S
+∞ otherwise

fmax(πs · 〈s, t〉) = max{fmax(πs), ω(〈s, t〉)} (1)

where S is a seed set.

III. BACKGROUND

Next, we present the two related methods that are relevant to

the present work. In order to simplify the current exposition,

the former will be presented for a general graph, while the

latter will be presented in a layered graph, where each layer

is a RAG of superpixels.

A. Oriented Image Foresting Transform (OIFT)

Image segmentation can be formulated as a graph partition

problem subject to hard constraints. In the case of binary

segmentation, we consider two non-empty disjoint seed sets

S0,S1 ⊂ N indicating, respectively, background O0 and

object O1 = N \ O0, such that S1 ⊂ O1 and S0 ⊂ O0.

The object O1 is identified with its labeling X : N → {0, 1},

so that O1 = {v ∈ N : X(v) = 1}.

The partial labeling, X(t) = 1 for all t ∈ S1 and X(t) =
0 for all t ∈ S0, given by the seeds, is propagated to all

unlabeled nodes during the OIFT algorithm [19]. The resulting

segmentation by OIFT gives, subject to the seed constraints, a

global optimum solution by maximizing the graph-cut measure

εmin defined as

εmin(X) = min{ω(〈s, t〉) : 〈s, t〉 ∈ A & X(s) > X(t)}. (2)

The OIFT segmentation, indicated by X , can be build

upon the Image Foresting Transform framework (IFT) [26]

by considering a proper connectivity function in a connected

and symmetric digraph G, as described in [19].

B. Hierarchical Layered Oriented Image Foresting Transform

(HLOIFT)

Let L = {1, . . . ,m} denote an index set, where each

element in L is associated with an object to be segmented and

m is the number of objects. The HLOIFT graph associated

with L and an image with superpixels PI will be defined

on the set of nodes N = L × PI . The HLOIFT resulted

segmentation of the image will be identified with a binary

variable X : N → {0, 1}, where, for i ∈ L, the ith object Oi

and the background O0 are defined, in superpixel resolution,

respectively, as

Oi = {t ∈ PI : X(i, t) = 1} and O0 = PI \
⋃

i∈L Oi.

(3)

Each object/background object Oi, i ∈ L ∪ {0}, will be

identified with a corresponding set Si ⊂ PI of seeds, aiming

for Si ⊆ Oi.

The hierarchy between the objects is understood as a prior

knowledge on any pair 〈Oi, Oj〉 of objects we consider: either

Oi ∩ Oj = ∅ (exclusion relation), or one of them is properly

contained in the other (inclusion relation). Here, we consider

only the inclusion relation, represented as a function h : L →
L, so that h(i) = j if, and only if, Oj is the smallest of the

objects properly containing Oi. If h(i) = j, then we will refer

to Oj as the parent of Oi. In this work, we consider a set

of objects with nested boundaries, such that h(i) = i + 1,

i = 1, . . . ,m− 1.

The first step of HLOIFT is to create a set of m layers,

where each layer Hi, i ∈ L, is used to represent a single

corresponding object Oi. A layer Hi = 〈Ni,Ai, ωi〉 is a

weighted digraph, where Ni = {i} × PI and each node

t = (i, v) ∈ Ni corresponds to the image superpixel p(t) = v.

Thus, the node set N of HLOIFT digraph is defined as

L×PI =
⋃

i∈L Ni and p : N → PI is the projection onto the

second coordinate, while λ : N → L will denote the projection

onto the first coordinate, that is, λ(t) = i means that t belongs

to the ith layer of the graph. We define the set of intra-layer

arcs Ai on Hi, i = 1, . . . ,m, as 〈s, t〉 ∈ Ai if, and only

if, p(s) and p(t) are neighboring superpixels in the RAG

of superpixels. Regarding the weight function ωi, it should

highlight the desired boundaries for Oi as clearly as possible

and we would like to incorporate in its definition the higher

level priors whenever it is appropriate. In particular, to utilize

the object-contour orientations, that is, the boundary polarity

priors, for colored images, we use in our experiments ωi as

defined by the following formula:

ωi(〈s, t〉) =







‖I(t)− I(s)‖ × (1 + αi) if ls > lt
‖I(t)− I(s)‖ × (1− αi) if ls < lt
‖I(t)− I(s)‖ otherwise

(4)

where I(s) = 〈ls, as, bs〉 and I(t) = 〈lt, at, bt〉 are the mean

colors of superpixels p(s) and p(t) in CIELAB color space,

the symbol ‖·‖ denotes the vector norm, and αi is a polarity

parameter. In this setting, each object Oi has its own constant

αi ∈ [−1, 1], so that we can favor the segmentation of Oi

with transitions from bright to dark pixels with αi > 0, or



the opposite orientation, with αi < 0. Note that αi = 0 can

be used to indicate that Oi has no boundary polarity prior. In

general, we have ωi(〈s, t〉) 6= ωi(〈t, s〉) for αi 6= 0.

In the second step, HLOIFT generates a hierarchical layered

weighted digraph H as the union of all layered graphs Hi,

i = 1, . . . ,m, with additional inter-layer arcs connecting only

some of the distinct layers. Here, we consider the inclusion

relation only. That is, if Oj is the parent of Oi (i.e., h(i) =
j), then we define ω(t, s) = ∞ and ω(s, t) = −∞, for all

s = (i, v) ∈ Ni and t = (j, u) ∈ Nj such that u and v are

neighboring superpixels or u = v. The reason for also using

the neighboring superpixels is to guarantee that Oj will be

bigger than Oi, in order to prevent Oj = Oi.

Finally, in the last step, a modified OIFT algorithm is

applied over H to compute the segmentation map X : N →
{0, 1}. However, in the case where only the inclusion relation

is considered, as done in this work, this algorithm becomes

the regular OIFT (Section III-A) over the graph H.

In HLOIFT, given a set of m objects satisfying the seed and

inclusion constraints (that is, a valid solution), the energy of

the object Oi in the Hi layer is given by:

e(Oi) = min
〈s,t〉∈Ai

{ωi(〈s, t〉) : p(s) ∈ Oi & p(t) /∈ Oi}. (5)

The final energy of the set of m objects is given by:

e(〈O1, . . . , Om〉) = min
i∈L

e(Oi). (6)

Note that for a valid solution, we have e(〈O1, . . . , Om〉) =
εmin(X), as defined by Equation 2.

IV. UNSUPERVISED HLOIFT

In order to perform an unsupervised segmentation of op-

timum energy on the layered graph of an image, which

exploits the inclusion relation of HLOIFT, we need a way

to automatically find the seeds. If we assume that the object

of interest is fully included in the image domain, we can

sample a superpixel at the border of the image and take it

as a background seed (e.g., the first top/left superpixel in the

image, as used in [20]).

Therefore, the problem boils down to finding an appropriate

object seed for O1, because in HLOIFT only the seeds of the

innermost objects and background are actually required. Note

that, as we are interested in the automatic selection of a set

of objects resulting from a map X of maximum energy εmin

(Equation 2) in the graph H, the specification of additional un-

necessary seeds would only increase the number of constraints

in the optimization problem, consequently reducing the energy

obtained, therefore not being a valid option.

According to Lemma 1 from [27], it is known that for a

given configuration of background seeds, the energy resulting

from a segmentation for each possible individual object seed

can be calculated by IFT [26] with the connectivity function

fmax (Equation 1), that gives the highest arc weight value

along the path, but considering its calculation in the transpose

graph HT and only from the background seeds.

However, as pointed out in [20], this approach has the draw-

back of indicating several nodes as having the same energy

within each object, which actually correspond to equivalent

seeds that are redundant, among other problems that make its

use unfeasible for ranking the nodes to select the k − 1 best

ones, aiming at a partition of the image into k regions.

In [20], a solution is proposed for ranking the seeds based

on a connectivity function that gives the last weight in the path

as its cost in the transpose graph, in order to identify for each

object a single node with energy given by the weight of its

weakest outgoing arc. However, this solution given in [20] is

not valid in the case of the layered graph H that is now being

used, since the energy values that will be used for the ranking

of seeds of O1 correspond to the observed path cost values in

Layer 1, that is, the costs of the vertices of H1. However, the

energy must now reflect the weight of the weakest outgoing arc

of the object boundaries of the various layers, and therefore

a cost function of the type fmax is necessary so that these

weights obtained in the upper layers are properly propagated

to the first layer.

In order to solve the aforementioned problem, but main-

taining the feasibility for the ranking of candidate seeds, we

propose the usage of the following connectivity function:

fε(〈t〉)=

{

−1 if t = (i, v) and v ∈ S0

+∞ otherwise

fε(πs · 〈s, t〉)=















max{fε(πs), ω(〈s, t〉)} if s = (i, v) and

i > 1

ω(〈s, t〉) otherwise

(7)

Figure 1 presents an example of the calculation of function

fε in the transpose graph HT of a synthetic image. The arc

weights used were computed by Equation 4, but changing

‖I(t) − I(s)‖ to |lt − ls|, since it is a grayscale image.

The example shows two pairs of objects with nested bound-

aries 〈O1, O2〉 and 〈O′
1, O

′
2〉, which are shown in Figure 1b,

in yellow and pink colors, respectively, being O1 and O′
1

defined in the first layer, while O2 and O′
2 are defined in

the second layer. The first pair 〈O1, O2〉 (on the left) has

energy e(〈O1, O2〉) = min{6, 9} = 6 (Equation 6), while

the second pair 〈O′
1, O

′
2〉 (on the right) has a worse energy of

e(〈O′
1, O

′
2〉) = min{12, 3} = 3.

Note that the cost referring to the arc weight of value

3 of O′
2 is successfully transferred from the second layer

to the first layer by the maximum weight function used by

fε (Equation 7), when the arc between layers is processed.

However, after its arrival in the first layer, function fε starts

to behave as a function of last weight, so that only a single

node of O′
1 receives the cost of 3. In the end, in layer 1, we

end up with a single node of H1 having the maximum energy

6 and the second largest node of H1 having energy 3, so it is

possible to rank the seeds in H1 for the selection of the best

pair of nested boundaries (that is, the pair 〈O1, O2〉).
Following this seed ranking scheme by function fε, we can

create a hierarchy of partitions according to the following

proposed algorithm:



Algorithm 1. – UNSUPERVISED HLOIFT ALGORITHM

(UHLOIFT)

INPUT: Hierarchical layered digraph H = 〈N ,A, ω〉, a
background reference superpixel r and the desired
number of regions k.

OUTPUT: Graph partition of the first layerH1 into k regions.

1. Compute the cost map V ∗ : N → R by IFT with fε (Eq. 7)

and S0 = {r} in the transpose graph HT .
2. Sort the nodes of N1 \ {(1, r)} in a non-increasing order

of costs in V ∗, getting {t1, t2, . . . , tn}, such that
V ∗(ti) ≥ V ∗(ti+1), i = 1, . . . , n− 1, where n = |N1| − 1.

3. Set S0 ← {(1, r), . . . , (m, r)}.
4. For each ti, i = 1, . . . , k − 1, do

5. Set S1 ← {ti}.
6. Compute the labeling function X by OIFT with

seed sets S0 e S1 in H.
7. Set C ← {〈s, t〉 ∈ A1 : X(s) 6= X(t)}.
8. Remove all arcs in C from A1 (i.e., A1 ← A1 \ C).
9. Insert ti in S0 (i.e., S0 ← S0 ∪ {ti}).
10. Returns the partition of layer H1 into k regions,

by labeling its connected components.

Algorithm 1 generates a hierarchical segmentation by suc-

cessive binary divisions of layer H1, leading at the end to a

segmentation with k partitions.

Although Figure 1 presents an example with m = 2,

Algorithm 1 can be executed for an arbitrary number m ≥ 1 of

nested objects. Even though we are showing in the proposed

output (Line 10) only the partition into k regions referring

to the object in the first layer, it is important to note that

the execution of OIFT in Line 6 generates the complete

segmentation of the m objects in all layers.

The sorting of Line 2 can be done in the worst case in

O(n log n) complexity, where n = |N1|−1, but in practice as

we only need the first k − 1 values (Line 4), when k ≪ |N1|
then even faster solutions are possible. The IFT of Line 1

and the OIFT of Line 6 can both be calculated in O(n log n),
with n = |N |. Therefore, the complexity of Algorithm 1

is O(kn log n), with n = |N |. In practice, however, the

algorithm is quite efficient, due to the usage of a graph of

superpixels, which considerably reduces the cardinality of the

set N .

V. EXPERIMENTAL RESULTS

In our experiments, we only consider methods that have

some level of direct control over the number of generated

connected regions, since our objective is to measure which

methods can generate the objects of interest with the fewest

connected regions in the image partition, by monitoring their

accuracy for increasing values of k.

We conducted experiments, comparing UHLOIFT with

other graph-based methods. In the following, MST denotes the

clustering of RAG nodes, obtained by successive removals of

edges of maximum weight from the minimum spanning tree,

where ω(〈s, t〉) = ‖I(t)− I(s)‖, which is related to the top-

down version of nearest-neighbor (single-linkage) algorithm.

MST has linearithmic complexity O(n log n) in the number

of RAG nodes n. UOIFT denotes the Unsupervised OIFT

from [20] computed over a digraph of superpixels, which

allows the usage of the boundary polarity of objects through

Equation 4. HFH denotes the method obtained by Hierar-

chizing Felzenszwalb-Huttenlocher segmentation from [28] as

proposed by [29], with an area-filtering post-processing to

eliminate small components with the superpixel size. EF+WS

indicates the IFT-based watershed transform, after a volume

extinction filter [30] set to preserve k leaves of the Min-tree, in

order to consider only the most relevant catchment basins of a

morphological gradient by a disk of radius 1. We used the code

for the extinction filter available in the iamxt toolbox [31]. Its

Min-tree can be computed in O(N × h + M), where N is

the number of pixels, h the number of levels of the image

and M = κ × N , being κ the number of neighbors of each

pixel [30]. We also included SICLE to segment the image into

k regions, denoting the recent method to compute superpixels

from [32], using its default configuration, without saliency

estimation, from the code available online1.

We performed quantitative experiments for colored images

of 640 × 480 pixels for three different databases with 15,

70 and 61 images, respectively, which are available to the

community2. Sample images of the three bases are shown in

Figure 2. We computed the mean accuracy curves by Dice

Coefficient between the ground truth and the best union of

segmented regions leading to the object for all the methods

and different values of k (Figure 3). We considered superpixels

of size 10 × 10 = 100 pixels, for all RAG-based methods.

UHLOIFT is the method that requires fewer partitions in

order to get the desired segmented regions, demonstrating the

usefulness of the inclusion relation of nested boundaries. For

the first base, we use m = 3 with α1 = α3 = 0.9 and

α2 = −0.9, while for the second base, we use m = 3 with

α1 = α3 = −0.9 and α2 = 0.9, and for the third, we use

m = 2 with α1 = −0.9 and α2 = 0.9. UOIFT is usually the

second best method, with its polarity given by α1. An example

of segmentation is shown in Figure 4.

Regarding the computational time, for a 640× 480 image,

to compute superpixels of size 10×10 by IFT-SLIC [25] takes

621.8 ms and the final clustering into 5 regions by UHLOIFT

with three layers (m = 3) in the RAG takes only 16.83 ms,

in an Intel Core i5-10210U CPU @ 1.60GHz×8.

VI. CONCLUSION

In this work, the HLOIFT method with inclusion relations

was successfully extended to the unsupervised paradigm. As

attested in the experiments, with the simple specification of the

expected high-level constraints of the desired nested objects,

the method can be quickly employed in new applications

without the need to have a previously built training base.

As future work, we intend to compute UHLOIFT even more

efficiently, by using the differential OIFT algorithm [18]. We

also intend to extend the proposed method to include the

exclusion relation between sibling objects, and to investigate

1https://github.com/LIDS-UNICAMP/SICLE
2http://www.vision.ime.usp.br/∼pmiranda/downloads.html

https://github.com/LIDS-UNICAMP/SICLE
http://www.vision.ime.usp.br/~pmiranda/downloads.html


12
6

8 8 0

3
9 6

2

1
3

12

4

9
3 2

6

3
1

4

12

-�

Layer 1

Layer 2

9
3 2

6

3
1

4

12

3
9 6

2

1
3

12

4

-�

Layer 1

Layer 2

9
3 2

6

3
1

4

12

3
9 6

2

1
3

12

4

-�

Layer 1

Layer 2

0

0

9
9

3
4

0

0

6 0
0

0

3

3 0

0

0
(a)

(b) (c) (d)

Fig. 1. UHLOIFT computing example: (a) Synthetic image with intensity values indicated within each homogeneous region. (b) The hierarchical layered
digraph H with two layers using α1 = −0.5 and α2 = 0.5. (c) The transpose graph HT . (d) The computed energy map for seed ranking in N1 using fε.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Sample images with 640 × 480 pixels. (a-b) Stop signs written in
Portuguese to segment the four letters of the word “PARE”. (c-d) QR codes
to segment the center squares of the three position markers. (e-f) State flags
of São Paulo to segment the geographic silhouette of Brazil inside the white
circle in their upper left corner.

other ways of combining the energies from the various layers,

in addition to the solution already proposed by Equation 6.
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Fig. 3. The mean accuracy curves by Dice of the best union of produced
connected regions for different values of k and methods, to segment: (a) The
four letters of the stop sign written in Portuguese (Figures 2a-b). (b) The
center squares of the three position markers of a QR code (Figures 2c-d). (c)
The geographic silhouette of Brazil inside the white circle in the upper left
corner of the state flag of São Paulo (Figures 2e-f).



(a) Input image (b) UHLOIFTk=4 (c) UOIFTk=17 (d) MSTk=22 (e) HFHk=30 (f) SICLEk=30

Fig. 4. (a) QR code image with 640 × 480 pixels to segment the central square of the three position markers. (b) The proposed result by UHLOIFT can
solve the problem with k = 4. (c) UOIFT [20] with polarity favoring transitions from dark to bright pixels requires k = 17. (d) The segmentation by a
single-linkage algorithm using the MST of the RAG requires k = 22. (e-f) The results for k = 30 by HFH and SICLE, respectively, fail to segment all three
central black squares.
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