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Abstract—Significant advances in image-based applications
have been achieved in recent years, many of which are arguably
due to recent developments in Generative Adversarial Networks
(GANs). Although the continuous improvement in the architec-
tures of GAN has significantly increased the quality of synthetic
images, this is not without challenges such as training stability
and convergence issues, to name a few. In this work, we present
the fundamentals and notable architectures of GANs, especially
for image-based applications. We also discuss relevant issues such
as training problems, diversity generation, and quality assessment
(metrics).

Index Terms—Generative Adversarial Network, image manip-
ulation, deep image synthesis, deep neural network

I. INTRODUCTION

Generative Adversarial Networks (GANs) techniques have
received much attention in the fields of image processing,
computer vision, and computer graphics due to their appealing
results. They are based on the so-called “adversarial training”,
which consists of two components: a generator and a discrim-
inator that compete with each other [1], [2]. In particular, the
generator aims at synthesizing fake data making it realistic
enough to fool the discriminator, which in turn tries to detect
these fake instances.

Among the image-based tasks performed by GANs, we
highlight super-resolution, style transfer, image manipulation
and synthesis, and image-to-image translation (Fig. 1). How-
ever, it is worth noting that GANs are also used in other
domains, such as sequential data synthesis, text, and audio [3].

II. IMAGE-BASED APPLICATIONS

GANs that are based on convolutional neural networks
(CNNs) can learn the representation of the features of the
images during their training, which allows the development of
various applications. We mention here the transformation of
images between different domains, the composition of images
from collages of these features, style transfer, super-resolution
and even photo restoration.

A. Image translation and style transfer

Image-to-image translation transforms an input image into
an output image with different attributes. Methods such as
Pix2Pix [5] or CycleGAN [6] can translate semantic maps into
landscapes, labels into facades, horses into zebras, and even
day into night. Style transfer is another related application

where images retain their shape but receive style (mainly
color and textures) from another source. Examples include
converting photographs into paintings [6] or changing the
texture of a building [7].

B. Image synthesis

Methods such as GauGAN [4] and Pix2PixHD [8] can
reconstruct scenes and landscapes from an input in the form
of a semantic map. Their goal is to generate realistic images
based only on the latent representation learned from the
generator. Other methods focus on creating synthetic faces [9],
[10] even in different poses [11]. It has been shown that image
synthesis methods based on GANs work very well for specific
classes. However, generating images from different classes
with a single network is still a challenge [3], [12].

C. Image manipulation

In certain cases where the latent space mapped by the
network is disentangled [10], it is possible to manipulate the
properties of the synthetic images by performing operations on
their latent vectors. Karras et al. [10] demonstrate this property
by independently modifying features such as gender and age
of faces created with the StyleGAN network. To recover the
latent vector that would produce a given image in an already
trained network, and thus manipulate it, one must often use
GAN inversion techniques [13]–[15].

D. Super resolution and image repair

Super-resolution approaches estimate a high-resolution im-
age from a low-resolution input [16]. Specialized super-
resolution GANs can greatly increase the spatial resolution
of images while preserving small details [16]–[18]. Similar
techniques can be used to restore old photographs [19] or to
complete missing parts of images [20].

III. FUNDAMENTALS

A. GAN architecture and adversarial training

The Generative Adversarial Networks proposed by Goodfel-
low et al. [1] consists of two main components: a discriminator
D trained to distinguish between true and false input data, and
a generator G that generates synthetic (false) samples similar
to the true ones from a noise vector input z ∈ Z, where Z is
the latent space of the GAN, usually derived from a probability



Fig. 1. Image-based GANs applications. In “image-to-image translation,” the first image is a sketch and the second is the reconstruction of a car based on
it. In “style transfer”, the first image is the content, the last is the style, and the middle is the result of applying the style to the original picture. In “super
resolution”, the first image with dimensions 64 × 64, was scaled up to 256 × 256 (second image). In “image manipulation,” the first image is the input,
while subsequent images are manipulations of age, pose, and smile. In “image synthesis”, NVIDIA Canvas was used to create the image of a landscape from
a semantic map using GauGAN [4].

distribution. Typically, the discriminator and the generator are
built with artificial neural networks.

Let pdata be a real data distribution and pz be the distribu-
tion from which the input vectors are sampled. The generator
G, trained with parameters θz , acts as G(z, θz) : pz → pg ,
where pg is the synthetic data distribution generated by G.
The goal of the GAN is to have pg ∼ pdata after training.
For each iteration, the discriminator D receives as input both
a sample of real data xreal and a synthetic example created
by the generator G(z).

The discriminator is correct whenever it classifies the real
input as true and the synthetic input as false. If the discrimi-
nator is wrong, it corrects itself to perform better on the next
iteration. In turn, the generator is penalized if the discriminator
classifies G(z) as false (Fig. 2).

Fig. 2. Training an image GAN. The generator produces a synthetic (fake)
image from a noise input. The discriminator is applied to synthetic and original
images and classifies them as real (1) or fake (0). The loss is evaluated and
then the parameters of both networks are updated by backpropagation.

B. Adversarial loss

The generator and discriminator participate in a min-max
training represented by Eq. 2 [1]. Interpreting D(x) as the
probability that the data x come from the distribution pdata
rather than pg , the discriminator is trained to maximize the
probability of correctly discriminating the real images as true

(1) and discriminating the fake ones as false (0). In turn,
the generator is trained to produce synthetic images that
the discriminator assigns a high probability of being true.
Given that G∗ and D∗ represent the trained generator and
discriminator, respectively, the objective of the training is:

G∗, D∗ = min
G

max
D

L(D,G), (1)

with

L(D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z) [log(1−D(G(z)))] ,
(2)

where the first term of Eq. 2 is the expected probability of
the discriminator D to correctly classify the real input x as
taken from the distribution pdata, whereas the second term is
the expected probability of the discriminator correctly classify
the synthetic input G(z) as taken from the distribution pg , and
consequently that z is from the distribution pz . Equation 2 is
called GAN loss or adversary loss.

C. Deep Convolutional GANs

The Deep Convolutional GANs (DCGANs) [21] extended
the original GANs by using convolutional networks in their
architecture. In the generator, a noise vector input is processed
through layers of transposed convolutions that sequentially
synthesize the output image. The discriminator then receives
real and fake images and uses the convolutions to capture the
image attribute representation and guide the training of the
generator with the adversarial training strategy.

The authors [21] have shown that this architecture can
synthesize realistic images and that the trained discriminator
can also be used in image classification tasks, with competitive
performance compared to previous supervised methods.

D. Conditional GANs

An issue of the original GAN and DCGAN is that the
composition of the generated image depends almost entirely



on the information contained in the noise vector, so there is
little control over what the generator will create.

Conditional GANs (CGANs) [22] contain an additional
vector y that conditions the generation of synthetic data.
This vector may contain the class to which the data belongs,
or some other type of condition, such as natural language
annotations, or even image inputs. With the addition of y,
the loss of the CGAN is

LCGAN (D,G) = Ex∼pdata(x) [logD(x|y)]
+ Ez∼pz(z) [log(1−D(G(z|y)))] ,

(3)

while the generator and discriminator aim to optimize:

G∗, D∗ = min
G

max
D

LCGAN (D,G). (4)

In the generator, conditioning can be done by concatenating
the noise vector z with the condition vector y. Similarly, the
discriminator would obtain the concatenation of the data x
with the same condition vector y.

With CGAN, it was possible to select which characters of
the MNIST dataset would be generated instead of creating a
random character.

IV. REMARKABLE ARCHITECTURES

A. Pix2Pix

Pix2Pix [5] is a conditional GAN, designed to perform
supervised image transformations between different domains.
For example, it has been used in translating semantic anno-
tations into street photos with cars, annotations into facades,
grayscale into colored images, aerial pictures into maps, day
images into night images, and edges into photos.

This architecture is built after a conditional GAN
(CGAN [22]), where both the generator and discriminator
receive an image xA as a “condition”. However, the gener-
ator does not receive the noise input that is present in the
original CGAN (Fig. 3). Training is performed on image pairs
(xA, xB), where xA is the input image and xB is the target
to be constructed by the generator.

Pix2Pix also uses CGAN’s loss (Eq. 3) for both the
generator and the discriminator, but regularization is added
so that the synthetic image G(xA) contains the features of
the objective xB . This regularization is the pixel-to-pixel L1
distance between the synthetic image and the target. The
generator is trained to minimize LG while the discriminator
seeks to maximize LD:

LG = LCGAN (G,D) + λ∥xB −G(xA)∥1, (5)

LD = LCGAN (G,D), (6)

where LCGAN (G,D) is the CGAN loss and ∥xB −G(xA)∥1
is the L1 norm (Manhattan distance) of the images. The
parameter λ controls the effect of the L1 term on the training
of the generator.

Fig. 3. Pix2Pix simplified architecture. On the top, a sketch input x is
presented to the generator G, which produces a synthetic image G(x).
The discriminator D receives a set containing this image as well as the
original image x and should classify this set as “fake”. On the bottom, the
discriminator is presented with a real image y along with the sketch input x,
and in this case the discriminator should classify the set as “real”. With an
ideal generator, the image y and the synthetic image y∗ = G∗(x) should be
identical.

B. CycleGAN

CycleGAN [6] proposes an unsupervised approach to
image-to-image translation between two different domains
based on cycle-consistent GANs, i.e., consistently transform-
ing images from one domain to the other and returning to the
original domain with only a small reconstruction error. Since
CycleGAN is unsupervised, there is no need to use paired
databases like those used by Pix2Pix.

Let A and B be two different domains, but with comparable
properties, such as horses and zebras, or landscape pictures
and paintings. A generator GA : A → B performs the
transformation xB = GA(xA), which transforms the image xA

from domain A to a synthetic image xB corresponding to its
equivalent in domain B. Similarly, a generator GB : B → A
transforms an image yB in domain B into the corresponding
image yA = GB(yB) in domain A.

To ensure that the transformation A → B proceeds cor-
rectly, there is a discriminator DB that classifies images as
belonging or not belonging to B, trained with real images of
B and images synthesized from inputs of A. There is also
a discriminator DA that similarly evaluates whether images
belong to A or not. A sketch of the architecture can be seen
in Figure 4.

Fig. 4. CycleGAN Architecture. The generator GA transforms an image from
domain A to domain B, while GB does the reverse. DA is a discriminator
that evaluates whether the images belong to domain A and DB does the same
for domain B. By inputting an image xA sequentially through GA and GB

gives x̂A, and the distance from the original image is the cycle consistency
loss.

However, cycle consistency can only be achieved if any
image xA can undergo two successive transformations, return-



ing to its original domain as x̂A = GB(GA(xA)), and if the
distance |xA − x̂A| is within a small permissible error range
(Fig. 4). This must also be true for any image from domain
B. The authors then proposed a cycle consistency loss:

Lcyc(GA, GB) = ∥GB(GA(xA))− xA∥1
+ ∥GA(GB(xB))− xB∥1.

(7)

With this new restriction, both generators are encouraged
to make only small changes to the shape and focus on trans-
forming only the most important attributes that distinguish the
images of A from those in B. The complete system loss is
defined by:

L(GA, GB , DA, DB) = LCGAN (GA, DB)

+ LCGAN (GB , DA)

+ γLcyc(GA, GB),

(8)

where LCGAN is the CGAN adversarial loss, and γ is used to
control the impact of the cycle-consistency loss on the training.

Although the CycleGAN architecture has the advantage of
being an unsupervised method, it is not capable of drastically
changing the shape and structure of the depicted objects, but
is mainly suitable for texture-based transformations.

C. ProGAN

Karras et al. [9] proposed a training strategy for GANs
that can generate realistic images at high resolution (10242).
In this method, both the generator and discriminator start
their training with low-resolution images (42) and gradually
increase the resolution by adding more layers. This progressive
growth GAN is called ProGAN and is shown in Fig. 5.

Fig. 5. ProGAN: progressive growth of GANs. The generator and discrimi-
nator networks first operate on low-resolution images (4×4) for a predefined
number of epochs (iterations). Then another set of layers is added, and the
network begins to work with (8×8) images. This method grows step by step
until the network reaches the target resolution of 1024× 1024.

Other differences of this approach compared to other net-
works are the use of PixelNorm as the normalization layer
and the use of a balanced learning rate, which ensures that
the learning speed is the same for all weights. The loss used
in this architecture is Wasserstein loss with Gradient Penalty
(WGAN-GP) [23], [24].

The progressive training approach leads to a more stable
training of GANs [9] and allowed the development of more
advanced techniques with even better results [10], [25].

D. StyleGAN

The StyleGAN architecture is based on ProGAN, but with
new additions to the generator [10]. One of the most important
changes is the mapping network, which consists of eight Dense
MLP layers that transform the input noise vector z into another
vector w, effectively changing the shape of the latent space
learned by the network.

As a consequence, the learned representation exhibits a high
level of disentanglement, meaning that the image features
in the latent space W [10] are linearly separable and the
feature regions are well-defined so that they can be used in a
binary setup (e.g., young vs. old). This allows manipulation
of individual facial features by simple operations on the
intermediate vector in the latent space W [10], [15].

In the generator architecture, the vector w is added to
each resolution layer and carries its information to guide the
creation of details at different scales. A fixed Gaussian noise
array is also added to these layers so that the generator can
produce stochastic details such as hair or freckles.

V. DISCUSSION TOPICS

A. Training challenges

A notorious fact regarding GANs is the difficulty to train
them correctly, mainly due to convergence and stability is-
sues [3], [26], [27].

One of the main problems is mode collapse, where the
gradient of the discriminator tends to guide the generator in
creating images from a single mode [26], resulting in very
similar images with few variations. Another common issue
is the vanishing gradient that occurs when the discriminator
approaches its saturation [23], [27].

After Arjovsky et al. showed that one of the main causes
of instability in GAN training is the use of the KL-divergence
as the original loss [27], they proposed the use of the Earth
Mover distance (EM), or Wasserstein metric, to compose a
nonsaturating adversarial loss, and called the resulting network
Wasserstein-GAN (WGAN), thereby significantly reducing
the effects of mode collapse and vanishing gradient [23],
[24]. Other methods also used various loss functions and
regularization terms to address these issues [3], [12].

The progressive training technique also helps to increase sta-
bility by splitting the learning task, which should be performed
simultaneously by the entire network, into a layered approach.
In this approach, for each new layer, the representation of
the lower resolutions should have already been learned by the
previous layers, so they only need slight updates to refine this
representation, effectively reducing the instability of the whole
network.

B. Diversity generation

One of the most challenging tasks for GANs is to train
a single network capable of generating images for different



classes. It implies that a specialized GAN trained to create
human faces might not be able to generate images from other
domains, like animals or houses. Usually, GANs trained to
create images from different domains cannot do so with the
same level of quality as a specialized GAN would do in its
own domain [3].

Regardless, some interesting approaches, such as Self-
Attention GAN (SAGAN) [28] and BigGAN [29], use dif-
ferent architectures to address this problem. SAGAN uses
a self-attention mechanism to capture global image features,
complementing the convolution’s emphasis on local features
and allowing the learning of more diverse structures. The
BigGAN was built based on the SAGAN architecture, and
adds techniques to stably increase the network size (number
of channels or layers), consequently increasing the number of
trainable parameters and allowing the network to learn even
more representations.

C. Quality evaluation

A widely discussed problem in the image synthesis area is
evaluating the perceived quality of the generated images [12].
The authors of Pix2Pix [5] and CycleGAN [6] strived to create
natural and realistic images. To this end, they evaluate the
visual quality of the synthetic images using human questioning
through perceptual studies on crowdsourcing platforms.

On computational assessments, Radford et al. [26] took
advantage of the satisfactory performance of the InceptionV3
network in classifying images of the 1000 different ImageNet
classes [30] to propose the Inception Score (IS), which consists
in feeding synthetic images into this network, obtaining the
conditional probabilities for each label and evaluating a score
based on them. Although this metric correlates well with
human judgement [26], it can present good results even for
networks in mode-collapsed generators [12], [31].

Based on the Inception Score, Heusel et al. [31] proposed
the Fréchet Inception Distance (FID), which uses the Incep-
tionV3 network in both the real and fake image sets, thus
generating two probability distributions which are compared
by using the Fréchet distance. Even though the original
FID uses InceptionV3 as the basis for the evaluation, other
networks can also be used [12], [32].

At the moment, FID is one of the most used metrics to
compare the result of different GANs, but this comparison is
not always fair. Within the same architecture, an improvement
in the FID is correlated with an improvement in the perceived
quality of the created images. Nonetheless, when comparing
different architectures, a better numeric value might not nec-
essarily indicate a better GAN. It is due to the fact that FID
is very dependent on the ImageNet classes in its evaluation,
usually affected by textures more than by shapes [32].

Other measurements, such as KID [33] or MS-SSIM [34],
can also be used, but they all have downsides. Because of
this, the common practice to compare different methods has
been to use more than one metric to evaluate the quality of
the generated images.

D. Computing capacity

A particular point for attention when working with GANs is
the computational cost associated with their development and
training. Since they are composed of at least two networks
with thousands of parameters to be adjusted, training can take
hours or days.

One example of how expensive this can be, during all the
development of the StyleGAN3, one or more NVIDIA DGX-1
clusters were used, consuming the equivalent of 91.77 years
of processing of a single Volta GPU, and approximately 225
MWh of electricity [11].

This computational scale can make it difficult or even
impossible for smaller research groups to be able to compete
and even reproduce results such as those. Regardless, there is
a significant potential for creating more cost-effective GANs.

E. Additional discussion topics

Even with the many advances of GANs on image synthesis
tasks, there is still room for improvement in the training
stability and generation of diverse, multi-class images. Further
advancement may still come from the application of GANs
in specific situations, such as video processing [35] and the
generation of images from text, in which denoising diffusion
probabilistic models [36] such as DALL-E 2 [37] and Ima-
gen [38] have shown impressive results.

A substantial impact of generating plausible synthetic im-
ages is the inappropriate usage in forgery applications, which
can harm people and institutions or transmit false information.
Further studies could concentrate on detecting false images to
avoid those situations [12].

VI. CLOSING REMARKS

We close this work with the very recent observation by Xiao
et al. [39] since it complements our discussion (Sec. V) and
opens doors for reflections and future improvements and appli-
cations. The authors argued that there are three requirements
pursued by deep generative methods: (a) generating high-
quality samples, (b) fast sampling, and (c) generating diversity
samples/mode coverage. However, the generative approaches
had only partially dealt with these requirements, defining the
generative learning trilemma [39]. Works such as Denoising
Diffusion GAN [39] and StyleGAN-XL [40] aim to tackle
all three requirements. We believe that, from now on, the
most relevant research advances will use this trilemma as their
starting point. Besides, they will focus on hybrid approaches,
mixing GANs, VAEs [41], [42], and diffusion models [43],
expanding the domain of the generative models applications.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.



REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[3] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks in
computer vision: A survey and taxonomy,” ACM Computing Surveys
(CSUR), vol. 54, no. 2, pp. 1–38, 2021.

[4] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic image
synthesis with spatially-adaptive normalization,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 2337–2346.

[5] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–
1134.

[6] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[7] T. Park, J.-Y. Zhu, O. Wang, J. Lu, E. Shechtman, A. Efros, and
R. Zhang, “Swapping autoencoder for deep image manipulation,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 7198–
7211, 2020.

[8] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with condi-
tional gans,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 8798–8807.

[9] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of
GANs for Improved Quality, Stability, and Variation,” in International
Conference on Learning Representations, 2018.

[10] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4401–4410.

[11] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and
T. Aila, “Alias-free generative adversarial networks,” in Proc. NeurIPS,
2021.

[12] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative
adversarial networks: Algorithms, theory, and applications,” IEEE Trans-
actions on Knowledge and Data Engineering, 2021.

[13] R. Abdal, Y. Qin, and P. Wonka, “Image2stylegan: How to embed
images into the stylegan latent space?” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 4432–4441.

[14] ——, “Image2stylegan++: How to edit the embedded images?” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 8296–8305.

[15] J. Zhu, Y. Shen, D. Zhao, and B. Zhou, “In-domain gan inversion for real
image editing,” in European conference on computer vision. Springer,
2020, pp. 592–608.

[16] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4681–4690.

[17] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. C. Loy,
“Esrgan: Enhanced super-resolution generative adversarial networks,” in
The European Conference on Computer Vision Workshops (ECCVW),
September 2018.

[18] X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-esrgan: Training real-
world blind super-resolution with pure synthetic data,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 1905–1914.

[19] X. Wang, Y. Li, H. Zhang, and Y. Shan, “Towards real-world blind face
restoration with generative facial prior,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[20] Y. Li, S. Liu, J. Yang, and M.-H. Yang, “Generative face completion,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 5892–5900.

[21] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
in International Conference on Learning Representations, 2016.

[22] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[23] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International conference on machine learning.
PMLR, 2017, pp. 214–223.

[24] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” Advances in neural information
processing systems, vol. 30, 2017.

[25] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “An-
alyzing and improving the image quality of stylegan,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 8110–8119.

[26] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” Advances in neural
information processing systems, vol. 29, pp. 2234–2242, 2016.

[27] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” in International Conference on Learn-
ing Representations, 2017.

[28] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in International conference on machine
learning. PMLR, 2019, pp. 7354–7363.

[29] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training
for high fidelity natural image synthesis,” in International Conference
on Learning Representations, 2019.

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[31] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” Advances in neural information processing systems,
vol. 30, 2017.

[32] T. Kynkäänniemi, T. Karras, M. Aittala, T. Aila, and J. Lehtinen, “The
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