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Fortaleza, CE, Brazil
Email: ∗{david.silva.medeiros05, thiago.henrique.araujo07}@aluno.ifce.edu.br † {elias, gramalho}@ifce.edu.br

Abstract—Convolutional Neural Network (CNN) has con-
tributed a lot to the advancement of autonomous navigation
techniques, and such systems can be adapted to facilitate the
movement of robots and visually impaired people. This work
presents an approach that uses images to avoid collisions and
bypass obstacles in indoor environments. The constructed dataset
uses information from forward and lateral speeds during walks to
determine collisions and obstacle avoidance. VGG16, ResNet50,
and Dronet architectures were used to evaluate the dataset.
Finally, reflections on the dataset characteristics are added, and
the CNNs performance is presented.

I. INTRODUCTION

Autonomous navigation systems have been studied to find
ways to achieve maximum performance and safety, and the
advancement of Machine Learning techniques has contributed
to improving such systems. Independent navigation systems
can be expanded to facilitate the movement of robots and
people who have visual impairments.

Vision is people’s principal sense of orientation and navi-
gation. Losing it totally or partially implies difficulties in per-
forming many tasks. The World Health Organization (WHO)
estimates that there are 252.6 million people with visual im-
pairment, of which 36 million have a total visual impairment,
and 216.6 million have mild or moderate impairment [1].

Among the problems that visually impaired people face,
mobility is one of the most studied by researchers, because it
allows greater independence to navigate indoors and outdoors.
Some strategies have been proposed using cameras as wearable
devices to help the visually impaired to be safe while walking,
as shown in [2] and [3].

This work presents an approach that uses images to avoid
collisions and bypass obstacles in indoor environments. The
proposed method consists of: (1) Capture of walking images;
(2) Image labeling with forward and lateral speed categories;
(3) Training a CNN with the generated dataset, applying
transfer-learning methods; (4) Evaluation of the dataset. The
approach uses Convolutional Neural Networks (CNN) to
classify forward and lateral speeds in intensity levels. This
method can be used for orientation in terrestrial robotics and
accessibility, guiding visually impaired people. In the future,
trained models can be deployed on embedded computers to be
adopted in robots or as wearable devices.

The orientation of visually impaired people during walks on
aisles was used as a problem to study the proposed method.

This problem was chosen because it includes all stages of the
process, from image signal capture to classifier evaluation.

II. RELATED WORKS

A. Assistive Technology

In [4] a wearable device is proposed to guide the visually
impaired to walk and run using computer vision. The device is
equipped with a monocular camera. Digital Image Processing
(DIP) techniques are used for image stabilization and detection
of regions of interest. Line detection is used to guide the
visually impaired to stay within the limits of the walking
region. This approach has been evaluated on athletics tracks
and establishes a restriction of having a line along the path.

Other approaches to navigation were explored in the liter-
ature. [5] used Fuzzy control logic to suggest obstacle avoid-
ance. The authors used indoor (office) and outdoor (grassy
parks) images and focused only on detecting collisions. Other
research using eyeglasses cameras is described in [6], which
used a variety of urban images, where objects are marked to
aid navigation.

B. CNN applied to navigation problem

Many publications studied CNN with transfer learning. Part
of these works explored the use of pre-trained models in
datasets with few samples to improve their generalization,
as in [7], which used a VGG16 for terrain classification for
autonomous robots. In [8] transfer learning was also used
as a feature extractor for UAV (Unmanned Aerial Vehicle)
navigation. The approach used achieved 99.97% accuracy
using kNN, MLP, OPF and SVM. The study does not consider
detours and collisions, and the dataset is quite different from
what is being proposed.

To assist the visually impaired navigation in outdoor envi-
ronments, [9] used some CNN architectures to conduct training
and evaluate models to classify different floors. The dataset
used is composed of images of floors with different charac-
teristics. An interesting perspective, although the experiments
were limited to only two classes, clear and non-clear path. The
authors did not comment on how this approach could face the
obstacle detour problem, as well.



III. BACKGROUND

A. Navigation problem for impaired people

According to [10] Visual Substitution can be subdivided into
Electronic Travel Aids (ETAs), Electronic Orientation Aids
(EOAs), and Position Locator Devices (PLDs). Each of these
subdivisions is responsible for solving specific navigation
problems for the visually impaired.

From definitions and characteristics of Visual Substitution
shown in [11], the approach and dataset presented in this
paper combine properties from ETA and EOA. It detects
obstacles close to the user’s body, makes the user aware of
the distance between him and the obstacles, and guides the
user by providing path signs and instructions.

B. Transfer Learning

For some purposes, it is unfeasible to collect a database to
train a CNN rightly [12]. The concept of Transfer Learning
emerged to solve this problem [13] and has been widely
used in several applications [12]. According to the concept
of Transfer Learning, the knowledge acquired during the
resolution of a problem can be used in a similar one [13].

This work used this technique to train CNNs with the
proposed dataset in order to improve the adjustment of weights
during the training phase.

IV. METHODOLOGY

A. The dataset

The Dataset for navigation with obstacle avoidance is one
of the contributions of this work (available upon request). All
images have a resolution of 2160x3840 pixels, captured from
a smartphone camera connected to a 4-point belt attached to
the pedestrian’s chest. The images correspond to the vision of
those who follow a path and were set in categories according
to the decisions made during the walk. Decisions are based on
obstacle avoidance and stopping intentions. During the walks,
the pedestrian passes by static objects and people in transit.

Particularly for this article, the dataset was taken indoors.
The illumination is provided by artificial lights of the build-
ings. After the acquisition, all images are resized to the input
dimensions for each CNN used.

B. The Problem modeling

The navigation problem for the visually impaired will be
explored in order to predict detours. The system must be able
to inform the visually impaired the need for a left or right
sidestep, as well as its intensity. Furthermore, the system must
be able to infer imminent collision (suggesting deceleration)
or an obstacle-free path (suggesting acceleration).

The images of aisles were labeled according to the inten-
sities of the forward and lateral speeds. Figure 1 shows the
representation of speeds during walking. Estimations of these
velocities were used to label the images, according to values
obtained from accelerometers and gyroscopes. The x-axis
represents forward velocities, and the y-axis represents laterals.
Although there are other movements related to walking, in this
work only the speeds of the x and y axes were considered.

The dataset was subdivided into subsets of forward and
lateral speeds. The set of forward speeds is composed of
images that represent the intentions to stop and accelerate
during the walk. The set of lateral speeds is composed of
images that represent the sidesteps from obstacles. For each
subset, the images were categorized into five classes with
different speeds. A larger number of classes could be used
if it is needed a smoother transition between classes. Figure 2
shows some examples of images from dataset.

Fig. 1. Representation of existing movements throughout walking. The x, y,
and z axes are linear velocities, and θ, φ, and ψ are angular velocities.

(a) Forward speed - class 4. (b) Lateral speed - class 2.

Fig. 2. Example images from aisles dataset.

1) Forward speeds dataset: The subset of forward veloci-
ties was categorized so that it was possible to infer variations
between stopping and walking acceleration. Table I shows the
categorization of this subset and the number of samples per
class that is available in each set. Velocities range from stop
(Class 0) to fast (Class 4). In the aisles dataset, 572 samples
per class were used. Figure 2(a) shows an example image that
was labeled class 4 for forward speeds.

TABLE I
FORWARD SPEEDS CLASSES AND THE NUMBER OF SAMPLES FOR EACH

CLASS.

Class Class description
Samples per class

Aisles
0 Stop

572
1 Slow speed
2 Medium speed
3 Moderately fast speed
4 Fast speed



2) Lateral speeds dataset: In the lateral speeds subset,
sidesteps to the left and the right were considered during
walking. Table II shows the categories of this set and the
number of samples per class after the mirroring operation. The
middle class was defined as no sidestep (class 2). Classes 1
and 0 represent the velocity of sidestep to the left, with class 0
being the highest intensity. Similarly, classes 3 and 4 represent
the right shift.

TABLE II
LATERAL SPEEDS CLASSES AND THE NUMBER OF SAMPLES FOR EACH

CLASS.

Class Class description
Samples per class

Aisles
0 A strong sidestep to the left

232
1 A slight sidestep to the left
2 No sidestep
3 A slight sidestep to the right
4 A strong sidestep to the right

3) Extension of lateral speeds dataset: There is a symmetry
relationship in the classes that represent sidesteps. Images that
represent left shifts can be mirrored to obtain images that
belong to right shift classes and vice versa. The number of
images indicated in Table I already includes this extension.

One question that can be asked is why not make a dataset
for a regression network? Considering the problem of guiding
a person on a path, the granularity of values given by a
regression system is not necessary. In fact, the original dataset
contains velocity values on a continuous scale. So, a test
was performed with a regression network whose output was
discretized into five classes. Its performance was compared
with a network trained as a 5-classes classifier, and the latter
had better performance.

C. Training and parameters

The CNN used for training were VGG16, ResNet50, and
Dronet. VGG16 and ResNet50 are networks explored in the
literature for multiclass problems. Dronet is a network applied
to street navigation problems [14] that have similarities with
the one studied here.

All the CNN were trained using Adam optimization with
learning rate of 10−4, exponential decay rate, and with a
batch size of 64. The datasets were divided into 70% for
training, 15% for validation, and 15% for testing. All samples
were normalized using min-max normalization. AWS GPU
instances were used for all the trainings.

D. Transfer Learning

All the experiments presented were performed using transfer
learning. The weights of the ImageNet training [15] were
used for the VGG16 and ResNet50 networks. The weights
of the convolutional layers were frozen for 20 epochs and
then thawed for 80. For Dronet, the weights provided by
the authors were used [14]. Sixty epochs with convolutional
weights frozen and 240 thawed.

TABLE III
EVALUATION OF FORWARD SPEEDS FOR AISLES.

Aisles Dataset
CNN Accuracy (%) F1 (%)

VGG16 90.60± 01.17 90.60± 01.17

ResNet50 91.14± 01.40 91.12± 01.41

Dronet 86.80± 01.56 86.78± 01.58

E. Evaluation Metrics

Two metrics were used to assess the classifier performance
in the presented problem: Accuracy and F1; being all of
them obtained from the confusion matrix. F1 consists in
a harmonic mean between Precision and Recall. For each
experiment (a combination of dataset and CNN), ten runs
were performed with random rearrangement of the dataset.
The results presented are the average of these runs.

V. RESULTS

A. Forward speed

Table III shows the results of forward velocities inference
for aisles dataset. The VGG16 and ResNet50 architectures
achieved best results, with accuracies greater than 90%,
being ResNet50 with the highest accuracy result, 91.14%.
The Dronet architecture achieved the worst results, but still
acceptables. Since Dronet is the shallowest of the three, it is
understandable.

In order to evaluate performance by class, the models of
each architecture that achieved the highest accuracy were
selected and results are presented in Table IV. The results for
the aisles present good uniformity in the results by class, no
matter the network used. Classes 1 and 3 have the lowest hit
rates. Apparently, the dataset offers some confusion in these
classes, suggesting that the intensity of the speed is not very
well differentiated, especially at the threshold between some
classes.

TABLE IV
BEST ACCURACY RESULTS BY CLASS FOR THE FORWARD SPEEDS.

Class
Accuracy (%)

Aisles
VGG16 ResNet50 Dronet

Stop 92.94 91.76 97.67

Reduce speed a lot 86.04 89.53 83.72

Slightly reduce speed 96.51 96.51 85.88

Keep speed 90.69 94.18 82.55

Speed up 98.83 98.83 94.18

B. Lateral speed

Table V shows the results of lateral velocities inference
for aisles. VGG16 and ResNet50 tied with more than 94%
accuracy and little advantage of 0.34% in favor of ResNet50.

To evaluate performance by class, the models of each
architecture that achieved the highest accuracy were selected,



TABLE V
EVALUATION OF LATERAL SPEEDS FOR AISLES.

Aisles Dataset
CNN Accuracy (%) F1 (%)

VGG16 94.02± 01.43 94.03± 01.43

ResNet50 94.36± 01.88 94.38± 01.86

Dronet 89.36± 02.38 89.27± 02.45

TABLE VI
BEST ACCURACY RESULTS BY CLASS FOR THE LATERAL SPEEDS.

Class
Accuracy (%)

Aisles
VGG16 ResNet50 Dronet

A strong sidestep to the left 100 100 94.28

A slight sidestep to the left 100 100 94.11

No sidestep 96.51 91.42 82.85

A slight sidestep to the right 90.69 97.05 100

A strong sidestep to the right 98.83 97.14 88.57

and results are shown in Table VI. The class that represents
no sidesteps has the lowest hit rates in most cases. Images
that indicate some sidestep always contain an easy-to-detect
pattern, with the presence of an obstacle. On the other hand,
images from the ’no sidestep’ class do not present any objec-
tive pattern, making their classification difficult.

Comparing Tables III and V, one thing can be highlighted:
It is easier to classify sidesteps (lateral movements) than the
forward speeds (forward movements). Usually, more images
improve a classifier’s hit rate, and Tables I and II show
datasets of different sizes. However, one should note that even
with a smaller dataset, the sidestep problem was solved more
successfully.

VI. CONCLUSIONS

This work presents a study on using computer vision to
guide the walking of visually impaired people. It can also be
extended to other application domains, like terrestrial robotics.
A dataset was created which allows to recommend the walking
speed and obstacle avoidance. The dataset with indoor (aisles)
images were evaluated. Sidesteps are modeled by the lateral
speeds, while the forward speeds indicate the stops and accel-
erations. Tests on VGG16, ResNet50, and Dronet architectures
were performed using transfer learning.

The ResNet50 stood out for getting the best results across all
datasets. For forward speeds, ResNet50 presented an average
accuracy superior to 91% for indoors images. For lateral
speeds, the ResNet50 achieved average accuracy bigger than
94%. Additionally, it is easier to categorize lateral movements
than the forwards. On the other hand, VGG16 achieved a
very similar result, offering a lower computational cost. This
is particularly important, considering the possibility of the
algorithm being deployed in a wearable system.

The provided dataset is relevant in three contexts: (1)
detecting obstacles close to the user, (2) making the user aware

of obstacles in the path, and (3) guiding the user by providing
path signs and instructions.

As future works, it is suggested:
• Enlarge the dataset by including external images to im-

prove its generality.
• Evaluate the performance of less-complex architectures

models (VGG16 and DroNet) in embedded platforms
aiming at their use as a wearable device.
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