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Abstract—Nephropathologists typically organizes their repos-
itory of digital images of kidney biopsies in such a way that
it is difficult to retrieve cases that have images similar to a
picture under analysis. Having this in mind, we initiated the
development of PathoSpotter-Search, a Content-Based Image
Retrieval system for images of kidney biopsies. The system
operates as a cloud service to avoid the need to install any
software on the pathologist’s computer. Our approach combines
a feature extractor followed by a similarity score calculator.
We evaluated convolutional network (CN) architectures (VGG-16
(original and fine-tuned) and Inception-ResNet, and a network
used in the proprietary classifier for glomerular hypercellularity),
combined with Cosine and Euclidean distances as similarity
scores. The first results have shown that the CN of the VGG-
16 combined with cosine distance yielded the best performance
(precision =~ 53%). To assess the usability and functionality of the
PathoSpotter-Search as a cloud service, the system was tested by
nephropathologists and proved to be useful as a tool for retrieving
similar images from their local repositories. Currently, we are
working to improve the system precision to at least 70%, and
evaluating strategies to retrieve similar images based on segments
or tiles of the query image.

I. INTRODUCTION

In digital pathology, to retrieve images from a repository
is useful for supporting diagnostic tasks, comparing the pro-
gression of a given patient against others or even creating
scientific illustrations [1], [2]. Unfortunately, the typical way
a pathologist stores those images (often saving them in some
local storage) makes it difficult to index and search them
according to their similarity.

A possible solution for this problem is content-based image
retrieval (CBIR) systems [3], which are computational tools
used to retrieve relevant images from a repository based on
their visual content. CBIR systems have been used in the
medical field [4]-[7], and their performance greatly varies ac-
cording to the field of application, tending to be low when the
images from different subjects or categories have subtle differ-
ences between them, as frequently occurs in nephropathology.
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For example, in kidney biopsies, depending on the type of
lesion of interest, the images from a healthy glomerulus may
be just slightly different from the images of lesioned ones.
Such similarities become an additional challenge for building
an effective CBIR system for nephropathology. Having this
in mind, we initiated the development of PathoSpotter-Search,
a CBIR system that will be part of the set of tools of the
PathoSpotter' project, which is dedicated to creating tools
and knowledge for aiding the diagnosis and facilitating other
tasks in nephropathology, as annotation of structures in Whole
Slide Images and retrieval of similar cases based on images
of glomeruli.

To develop PathoSpotter-Search, we used a typical CBIR
architecture composed of a feature extractor followed by a
similarity-score calculator. The system will operate as a web
service, in which pathologists use the CBIR engine on their
proprietary images without the need to upload them to any
external server. This paper presents the first results obtained
by the system and the future steps to improve its performance.

II. METHODS

A CBIR system performs two essential tasks to be able to
retrieve the most relevant images. The first is to extract and
organize a set of descriptors from the images. It is typically
represented as a feature vector or embedding, with the lowest
possible dimension that still assures a robust differentiation
among classes. The second task is ranking the images ac-
cording to a similarity score between the descriptors, usually
computing the distance between the vectors and ordering them
accordingly.

The performance of a CBIR system is inherently constrained
by the features adopted to represent the images [8]. Traditional
approaches build the feature vector, combining filters and
transformations to extract the features of the image. Such
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perspectives have to deal with several specificities, such as
variations in scale and rotation. Several authors used tech-
niques like SIFT [9], SURF [10], and HOG [11] to face such
problems. Particularly for medical purposes, the development
of good feature extractors have been considered a challenging
problem [12], [13].

In the last years, Convolutional Networks (CN) have atten-
vated some problems of feature engineering by automatizing
the learning and extraction of invariant features [14]. The
combination of a CN with a Neural Network (NN), creates
a Convolutional Neural Network (CNN), which has proven
to be a successful architecture for several computer vision
tasks, particularly image classification. This has motivated the
use of Convolutional Networks as feature extractors for CBIR
systems [13], [15]-[18].

Using an approach similar to the works presented by
Swati [19] and Kumar [12], we chose the best PathoSpotter-
Search configuration assessing the precision achieved by com-
binations of CN modules of two well known CNN architec-
tures, VGG-16 [20] and Inception-ResNet [21], which have
presented good results in several classification tasks, and also a
third CN, a proprietary convolution network used in a classifier
for hypercellularity [22]. We also evaluated two functions to
compute similarity scores: cosine and Euclidean distances.

We started by using the approach proposed by Tajbakhsh et
al. [23], which indicates that a pre-trained CNN with adequate
fine-tuning outperformed or, in the worst case, performed as
well as a CNN trained from scratch. Even so, because of the
computational resources to fine-tune the Inception network, at
this moment we just have finished the fine-tuning of VGG-16.
The fine-tuning of VGG-16 was made using the public Kimia
Path960 dataset [24] with 960 histopathology images of 20
different classes.

III. EXPERIMENTS

We performed experiments for assessing the performance
of the system in two different contexts, both using the ar-
chitecture depicted in Figure 1. In one context, evaluate the
performance of the system using a dataset with different types
of glomerular lesions (Experiment 1). For this task, differ-
ent lesions produce images with artifacts that are relatively
easy to differentiate. In the other context, we evaluated the
performance of the system using a dataset with variants of
the hypercellularity lesion, in which the differences between
images are more subtle (Experiment 2). In total, we assessed
eight CBIR configurations based on four feature extractors
(VGG-16 original and fine-tuned, Inception and Proprietary)
and two similarity functions (cosine and Euclidean distances).

In Experiment 1, we used the dataset described in Table I,
which is composed of images from three types of glomerular
lesions (membranous thickness, sclerosis, hypercellularity) and
images from normal glomeruli. In Experiment 2, we used
811 images of glomeruli separated into four classes: normal
glomeruli and three types of lesion for hypercellularity (endo-
capillary, endomesangial and mesangial). The distribution of
images per class is presented in Table II.

TABLE I
ARRANGEMENT OF THE FIRST DATASET.
Class Images
Membranous thickness 869
Sclerosis 759
Hypercellularity 507
Normal 465
Total 2600
TABLE II
ARRANGEMENT OF THE SECOND DATASET.
Class Images
Endocapillary 90
Endomesangial 179
Mesangial 238
Normal 304
Total 811

Provided that the images of the datasets are grouped into
classes, to assess the precision of each CBIR configuration,
we counted the number of images correctly retrieved using
all images of the dataset as a query image in each test. An
image was considered as correctly retrieved if it belonged
to the same class as the query image. For example, if the
query image presented a sclerosis, the k-retrieved images must
present sclerosis. The precision for each class was calculated
dividing the number of correct images retrieved by the total
number of images in the class. We are aware that this is not
the standard way to assess the performance of a CBIR system,
which is the calculation of the mean average precision (mAP).
Nevertheless, our interest was to gain information about the
performance of this simple approach, in order to define a
baseline to the system.

IV. RESULTS

The results of the Experiment 1 and are available in Table
IIT and Table IV, and Table V and Table VI, respectively.
Before the experiments, we hypothesized that the feature
extractor (convolutional network) of the proprietary classifier
would achieve the best performance, since it was trained
with glomeruli images. However, that hypotheses was not
confirmed by the results. Furthermore, neither one of the tested
networks performed significantly better than the others, nor
the networks presented a stable behavior between classes.
Likewise, none of the distance methods generated a noticeably
superior performance in the results.

TABLE III

PRECISION FOR EXPERIMENT 1 USING COSINE DISTANCE.

Class Prop. VGG-16 | Inception | VGG-16(ft)
thickness | 51.4% 52.7% 44.3% 51.9%
sclerosis 42.9% 40.1% 45.0% 42.5%
hypercell. | 47.6% | 61.5% 53.6% 58.9%

normal 42.1% 41.0% 41.9% 34.4%
average 46.5% | 48.7% 45.9% 47.4%

Although there is no defined standard in literature, we
established that a reasonable precision would be at least 70%.
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Fig. 1. Architecture of the experiments. For each convolution network, a
set of feature vectors is calculated for all images in the datasets. Then, the
similarity scores between each image in the dataset (working as a “query”
image) and the remaining images are computed. The performance analysis
evaluates how many of the K more similar images belongs to the class of the
query image.

TABLE IV
PRECISION FOR EXPERIMENT 1 USING EUCLIDEAN DISTANCE.
Class Prop. | VGG-16 | Inception | VGG-16(ft)
thickness | 52.3% | 59.0% 43.7% 57.4%
sclerosis | 41.3% 33.0% 42.3% 40.0%
hypercell. | 46.9% | 48.3% 49.9% 52.2%
normal 40.2% | 46.2% 41.4% 36.6%
average | 45.9% | 47.0% 44.1% 47.6%

In Experiment 1 using images of different glomerular lesions,
the VGG-16 architecture yielded the best average precision,
although its performance was inconsistent between classes.
This same architecture also outperformed its counterparts in
Experiment 2, in which the images tend to be more similar

TABLE V
PRECISION FOR EXPERIMENT 2 USING COSINE DISTANCE.
Class Prop. VGG-16 | Inception | VGG-16(ft)
endocapillary | 14.9% 19.4% 15.4% 20.7%
endomesangial | 27.4% | 40.3% 40.0% 40.1%
mesangial 40.7% | 42.7% 42.0% 45.3%
normal 61.2% | 79.7% 72.3% 71.9%
average 42.6% | 53.4% 50.0% 51.4%
TABLE VI
PRECISION FOR EXPERIMENT 2 USING EUCLIDEAN DISTANCE.
Class Prop. | VGG-16 | Inception | VGG-16(ft)
thickness | 14.6% 18.3% 13.2% 23.4%
sclerosis | 28.1% 24.1% 39.9% 28.0%
hypercell. | 39.4% 35.7% 40.7% 40.4%
normal 61.8% | 87.7% 69.8% 79.8%
average | 42.6% | 52.9% 48.4% 52.7%

to each other since they are related to the same glomerular
lesion (hypercellularity). It can be noted that the average
precision of the Experiment 2 was greater than the ones
from Experiment 1 (except for the proprietary network), that
may indicate that both, VGG and Inception, were capable to
compute better discriminant features for hypercellularity than
for other lesions.

It was somewhat a surprise that the feature extractor of
the proprietary classifier performed poorly when compared to
others. We initially hypothesized that the CN of this classifier
would be able to generate good discriminative features for
the classes. Although the classifier yielded an accuracy above
80% for hypercellularity multi-class classification [22], it is
clear that is not generating features discriminative enough to
yield a good performance for a generic CBIR system.

A. PathoSpotter-Search Cloud Service

Using the configuration with the best results (VGG-16 with-
out fine-tuning and cosine distance), we publish the system as
a cloud service, so it could be tested by the pathologists of the
PathoSpotter project. Although the performance is still below
our 70% goal, the system received positive reviews for its
usability and functionality, indicating its usefulness as a tool
to aid nephropathologists in their daily tasks.
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Fig. 2. Cloud service operation. In Phase 1 the system creates a database
with feature vectors of the images in the repository. In Phase 2, the system
retrieves K images from the repository according to their similarity with the
query image.

The system operates as depicted in Figure 2. In Phase
1 (repository characterization), the pathologist indicates the
folder with the repository of images of interest. Then the
system creates a database of the feature vectors of those
images. Finally, the pathologist saves this database for reusing
it to retrieve images from this repository. It is worthy to
note that, to assure the confidentiality of the information, no
image upload is required for the system to operate, as all the
computation of the feature vectors is done locally.



In Phase 2 (retrieving), the pathologist indicates the database
of the feature vectors for the images of interest (built pre-
viously). Then the user loads the query image and informs
how many (K) similar images the system must retrieve, and
the system returns K images from higher to lower similarity
scores.

V. CONCLUSION

This paper presents the initial results of the PathoSpotter-
Search system, a CBIR system for digital images of kidney
biopsies. As far as we know, PathoSpotter-Search is the first
approach to build a CBIR system specific for nephropathology
images. Using a traditional CBIR configuration, we evalu-
ated the performance of four architectures of convolutional
networks (original and fine-tuned VGG-16, Inception and
a proprietary network) combined with two distance metrics
(Euclidean and cosine) and tested them over two different
data sets. Best result was obtained with VGG-16 original
convolutional network as feature extractor, associated with
cosine distance.

We are investigating why using fine-tuning in VGG-16
did not lead to a better performance for the system. It is
also an open question why the proprietary CN used in the
PathoSpotter-Classifier did not get higher results. The final
CBIR was tested by nephropathologists using it as a cloud
service, and proved to be useful as a tool to help in collecting
similar images from datasets. Currently, we are improving the
system performance to reach at least 70% of mAP, by evalu-
ating other feature extractors and analyzing feature sensitivity.
We also are evaluating strategies to retrieve similar images
based on segments or tiles of the query image.
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