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Abstract—In this paper, we propose a novel approach for
few-shot semantic segmentation with sparse labeled images. We
investigate the effectiveness of our method, which is based on
the Model-Agnostic Meta-Learning (MAML) algorithm, in the
medical scenario, where the use of sparse labeling and few-
shot can alleviate the cost of producing new annotated datasets.
Our method uses sparse labels in the meta-training and dense
labels in the meta-test, thus making the model learn to predict
dense labels from sparse ones. We conducted experiments with
four Chest X-Ray datasets to evaluate two types of annotations
(grid and points). The results show that our method is the
most suitable when the target domain highly differs from source
domains, achieving Jaccard scores comparable to dense labels,
using less than 2% of the pixels of an image with labels in few-
shot scenarios.

I. INTRODUCTION

Medical images are useful tools to assist doctors in multiple
clinical scenarios and to plan for surgery. X-Ray, Magnetic
Resonance Imaging (MRI), Computed Tomography (CT) and
other imaging modalities are non-invasive methods that can
help in diagnosis, pathology localization, anatomical studies,
and other tasks [1].

Convolutional Neural Networks (CNNs) and their variants
are the state of the art for object classification, detection,
semantic segmentation and other Computer Vision problems.
Classical convolutional networks are known for their large data
requirements, often hindering their usage in scenarios were
data availability is limited, as in medical imaging. Relatively
few medical datasets are publicly available due to privacy and
ethical concerns [2]-[8].

Even among the public datasets, properly curated labeled
data is limited due to the need for specialized annotators
(i.e. radiologists), severely hampering the creation of general
models for medical image understanding. While many datasets
contain image-level annotations indicating the presence or ab-
sence of a set of medical conditions, the creation of pixel-level
labels that allow for the training of semantic segmentation
models is much more laborious. Volumetric image modalities
as MRIs or CT scans further compound these difficulties by
requiring per-slice annotations, often followed by cross-axes
analysis to detect inconsistencies, which can take hours for
one single exam. Hence, there is a need for automatic and
semi-automatic segmentation methods to assist physicians in
the annotation of these images. One way to alleviate the

burden of medical professionals in labeling the exams is to
improve the generalization capabilities of existing pretrained
models. For instance, domain adaptation can be used to
transfer knowledge from related medical imaging datasets to
improve segmentation performance in unseen target tasks.

Scenarios with low amounts of data available, often called
Few-shot, have been studied in recent years, and tasks such
as few-shot classification [9], [10] are the most explored in
the literature. As for the problem of pixel-level annotations,
one efficient option is sparse labeling, that is, specifying the
labels of a small number of pixels. Methods that can make
efficient use of few-shot and sparse labels can solve semantic
segmentation medical problems on datasets created in a labor-
efficient manner. Thus, our main contribution is the proposal
of a novel approach to few-shot semantic segmentation in
medical images from sparse labels. For that, we introduce the
Weakly-supervised Segmentation Learning (WeaSeL), which
extends the MAML [10] algorithm by introducing annotation
sparsity directly to its meta-training stage.

II. RELATED WORK

Biomedical Image Segmentation: Automatic and semi-
automatic segmentation of medical images has been studied
for decades, as such methods can considerably alleviate the
burden of physicians in labeling these data [11]. Medical
image segmentation from sparse labels can be especially
useful, since these images often have a small number of
labeled samples due to data privacy restrictions and the lack of
specialists for annotating the samples. The survey of Tajbakhsh
et. al [12] reviews a collection of Deep Learning (DL)
solutions on medical image segmentation, which includes a
section for segmentation with noisy/sparse labels. The methods
reviewed can be summarized in a selective loss with or without
mask completion. Sparse segmentation methods either use a
loss function able to ignore unlabeled pixels/voxels or employ
some technique to augment the sparse annotations to resemble
dense masks.

Meta-Learning: Few-shot learning has attracted considerable
attention over the last years, mainly due to recent advances
in Deep Learning for Self-Supervised learning [13] and Meta-
Learning [9], [10]. Meta-Learning has become a proliferous
research topic in Deep Learning, as the literature aims to
improve on the generalization capabilities of Deep Neural



Networks (DNNs). Within Meta-Learning, two prominent
and distinct methodologies gained attention: Gradient-based
and Metric learning. Finn et al. [10] proposed the MAML
framework, based on the trend of Gradient-based approaches.
MAML uses multiple tasks — that is, multiple data/sample
pairs and a loss function — during its meta-training to create
a generalizable model able to perform quick adaptation and
feature reuse to infer over unseen related tasks. Meta-Learning
arose at first for object classification tasks, while tasks such
as detection and segmentation still lacking development. Ad-
ditionally, the intersection of few-shot learning and medical
image segmentation from sparse labels has proven to be quite
a challenging task, with very few methods being described in
the literature [14].

Few-shot Semantic Segmentation: Few-shot segmentation
became a relevant topic only recently. Several methods [15]-
[19] were recently proposed to make use of the small subset
of labeled images, often called support set, to segment a query
image. However, the vast majority of few-shot segmentation
methods in the literature do not explore sparsely labeled
images in the support set, only dealing with densely labeled
samples. Rakelly et al. [20] proposed the first algorithm for
few-shot sparse segmentation: Guided Networks. Guided Nets
use a pretrained CNN backbone to extract features of both the
support set and the query image. The weakly labeled support
samples and sparse segmentation masks are combined, pooled,
and subsequently used as weights to segment the query. The
vast majority of few-shot segmentation methods [15]-[20]
were originally proposed to RGB images as the ones seen
in datasets such as the Pascal VOC [21], thus, most of the
literature on this topic rely on pretrained CNN or even Fully
Convolutional Networks (FCNs) backbones.

1II. METHODOLOGY

We define a segmentation task S = {D*"P, D"V ¢}, where
D is a dataset with partitions D9"Y (or query set) and D"P
(or support set) such that, D9"¥ N D5“P = (), The class c is
the positive/foreground class for the task. A dataset D is a set
of pairs (x,y), where x is an image and y is the respective
semantic label, with y being a dense mask for images in D"
and a sparsely annotated mask for the D*“P set. In particular,
we define a few-shot segmentation task F as a task wherein
D*"P has a small amount of labeled samples (e.g. 20 or less)
and D?Y labels are absent or unknown. We refer to a few-
shot task as k-shot when k = |D*“P|, that is, the number of
samples in its support set is k.

Thus, given a set of segmentation tasks S =
{851,8,...,8,}, and a target few-shot task F, we want to
segment the images from D% ¥ using information from both
S and DF”. Also, it holds that no pair of image/semantic
label of F is present in any task S; in either gry or sup
partition.

A. Gradient-based Segmentation from Sparse Labels

As previously mentioned, we propose WeaSeL, an gradient-
based approach for semantic segmentation derived from
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Fig. 1. Visualization of the proposed approach. The parameters 0; are
optimized using sparse labels from support sets. The optimal 67 would be
obtained if dense labels were presented in meta-training, as the ones in the
query set used to compute the task outer loss. The model learns to intrinsically
minimize this difference A between parameters, and thus fastly adapt to the
few-shot task.

MAML [10]. A graphical representation of our method can
be seen in Figure 1.

We define a meta task 7 = {£,D*“?, D?"Y ¢} comprised
of a loss function £ and a pair of datasets D*"“P and DY —
the meta-train and meta-test sets, respectively — and a class c.
This is an extension of the segmentation task definition from
Section III. We assume a distribution over tasks p(7) that our
model fy (parametrized by 0) is desired to be able to adapt to.
A description of this supervised training adaptation of MAML
can be seen in Algorithm 1.

Algorithm 1 Model-Agnostic Meta Learning: Weakly Super-
vised
Require: p(7): distributions over tasks
Require: «, 3: step size hyperparameters
Randomly initialize 6
while not done do
Sample batch of tasks 7; ~ p(7T)
for all 7; do
Sample batch of datapoints S; = {(x,y)} from DI*
Compute VoL, (fp) using S; and L,
Update adapted parameters using gradient descent:
91- =60- OéVgﬁTi (fg)
Sample batch of datapoints @Q; = {(x,y)} from DT
end for
Update 0 < 0 — 8V > 1 1) L£7.(fs,) using each Q;
and L;
end while

During meta-training, in contrast with MAML, the inner
loss is computed using the sparse labels from samples of D%“P,
while the outer loss component takes into account the dense



labels from samples of D9"Y. This strategy directly encourages
the model to generate dense segmentation from the sparse
labels fed on the tuning phase.

Given that our problem is semantic segmentation, we define
the loss function Lr; for all tasks 7; ~ p(T) as the Cross-
Entropy loss, ignoring the pixels with unknown labels. This
is achieved by computing a weighted Cross-Entropy loss in a
pixel-wise fashion, with the caveat that unknown pixels have
weight 0.

When the meta-training process is finished, we fine-tune the
model on the target F task, through a conventional supervised

training on the D3 set, again, with a weighted cross-entropy
loss.

IV. EXPERIMENTAL SETUP
A. Datasets

As MAML requires a bundle of tasks to properly learn to
learn from few-shot examples, we constructed a Meta-Dataset
of radiological image segmentation tasks from publicly avail-
able datasets. More specifically, we build this Meta-Dataset
using six Chest X-Ray (CXR) [3], [22]-[25], two Mammo-
graphic X-Ray (MXR) [5], [8] and two Dental X-Ray (DXR)
[6], [7] datasets. Some of these datasets contain segmentation
masks for multiple organs, which were all included in the
Meta-Dataset.

In Table I, we list all datasets used in the experiments. Some
datasets present more than one class, and in these cases the
datasets were binarized to construct the tasks. To define a task,
we select a dataset and one class as foreground. The pixels of
all remaining classes are treated as background.

In order to assess the performance of WeaSeL in a certain
setting, we employ a Leave-One-Task-Out methodology. That
is, all tasks but the pair (dataset, class) chosen as the Few-
shot task (F) are used in the Meta-Dataset, reserving F for
the tuning/testing phase. This strategy serves to simultaneously
hide the target task from the meta-training, while also allow-
ing the experiments to evaluate the proposed algorithm and
baselines in a myriad of scenarios. Such scenarios include: 1)
target tasks with both large (e.g. JSRT [2]) and small (e.g.
Montgomery [3]) domain shifts compared to the ones in the
meta-training set; 2) F tasks with image samples seen in
other tasks used during meta-training, but with different target
classes (e.g. JSRT [2]); and 3) F tasks with foreground class
absent in all other tasks used during meta-training (e.g. JSRT
heart segmentation).

B. Architecture and Hyperparameters

Due to, mostly, the large memory use necessary for second-
order optimization, we propose an architecture called mini-
UNet'. It is a adaptation of the usual U-Net architecture with
minor changes. The network is comprised of three encoder
blocks, a center block, three decoder blocks and a 1 x 1
convolutional layer that works as a pixel-classification layer.

IThe code for WeaSeL, including the miniUNet architecture, will be
available on GitHub upon the publication of this paper.

TABLE I
LIST OF DATASETS INCLUDED IN THE META-DATASET.

Dataset Image Type # of Images Classes
. Lungs, Clavicles
JSRT [22] X-rays 247 and Hearts
Montgomery [3] X-rays 138 Lungs
Shenzhen [3] X-rays 662 Lungs
NIH-labeled [24] X-rays 100 Lungs
OpenlST [23] X-rays 225 Lungs
LIDC-IDRI-DRR [25] CT-scans 835 Ribs
MIAS [5] Mammograms 322 Pect(gal Muscle,
reasts
INbreast [8] Mammograms 410 Pectol;a] Muscle,
reasts
Panoramic [7] X-rays 116 Mandibles
UFBA-UESC [6] X-rays 1500 Teeths

Similar to the U-Net architecture skip connections between
symmetric layers are present in miniUNet, with each decoder
block receiving the concatenation of the last block output and
its corresponding encoder output as inputs.

C. Evaluation Protocol and Metrics

We use a 5-fold cross validation protocol in the experiments,
wherein datasets were divided in training and validation sets
for each fold. Support sets are obtained from the training
partition, while the query sets are the entire validation par-
tition. All images and labels are resized to 128 x 128 prior
to being fed to the models in order to standardize the input
size and minimize the memory footprint of MAML on high-
dimensional outputs. The metric within a fold is computed
for all images in the query set according to the dense labels,
resulting in the final values reported in Section V, which are
computed by averaging the performance across all folds. The
metric used is the Jaccard score (or Intersection over Union —
IoU) of the validation images, a common metric for semantic
segmentation.

During training, we use the Adam optimizer with learning
rate 0.001, weight decay 0.0005, and momentum 0.9. Our
batch size was set to 5. The number of tasks sampled for
the inner loop of WeaSeL was set to 6 in the experiments.

D. Baselines and Sparsity Modalities

We use two baselines: 1) From Scratch training on the sparse
labels; and 2) Fine-Tuning a pretrained model from a source
dataset with dense labels. During the meta-training phase of
WeaSeL, the tuning phase of Fine-Tuning, and From Scratch
training, the sparse labels are simulated for each sample from
their the dense mask.

Although being a few-shot sparse segmentation method, we
do not present the Guided Nets [20] as a baseline. Even to the
best of our efforts, the episodic training of the original model
was not able to converge to a usable model with the same
medical Meta-Dataset used by WeaSeL. Thus, it did not seem
fair to compare the Guided Nets to our approach.

We evaluate two types of sparse labeling, namely, points
and grid, as well as their comparison to the performance of
the models trained on the full masks. The points labels are a
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Fig. 2. Example of the evaluated type of annotations. Top Row: the ground
truth labels of all pixels. Middle Row: the points annotation, n(5) pixels of
background/foreground are labeled. Bottom Row: the grid annotation, pixels
spaced by s(20) are selected and properly labeled.

selection from pixels of the image, where the annotator alter-
nately chooses pixels from the foreground and background. In
the grid labeling the annotator receives a pre-selected group of
pixels and change the class of the ones they consider positive.
These pixels are disposed in a grid manner in the image. A
visualization of these styles are presented in Figure 2.

We simulate this two types of annotations from ground truth
labels. For the points labels, given a parameter n, we randomly
select n pixels from the foreground class, and n from the
background. For the grid annotation, given a parameter s, we
choose pixels spaced, horizontally and vertically, by s, starting
from a random distance in the range (0—s) from the upper-left
corner. For a consistent evaluation, a random seed for the Few-
Shot F task labels is fixed for each image, ensuring that all
methods use the same sparse labels for the fine-tuning process.
In experiments, we vary the parameters n and s, and analyze
the impact of the sparsity of the labels.

V. RESULTS

We perform experiments to access the performance of
WeaSeL in all CXR datasets. That is, we evaluate the Few-
shot task segmentation of lungs in all five datasets, and hearts
and clavicles segmentation in the JSRT dataset. For brevity,
we include only a subset of the results.

In Figure 3 we see the results of experiments in the lungs
class. The results of Montgomery and Shenzhen datasets are
similar to the OpenIST, thus we only present the later. WeaSeLL
shows better metrics than the From Scratch baseline in all
cases. As expected, increasing the amount of annotated pixels
(e.g. by increasing n, or decreasing the grid spacing s), as
well as having more training samples (larger k-shots), have a
direct impact in IoU. For JSRT (Figure 3a), WeaSeL yields
better performance than Fine-Tuning from all datasets, in
contrast with OpenlIST (Figure 3b) where the source dataset
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Fig. 3. Jaccard results for lung segmentation in two target datasets: JSRT (a)
and OpenIST (b). Solid lines indicate the performance of the methods using
sparse label (Points on the top and Grid on the bottom), while the dashed
line presents the performance of the methods trained with the dense masks.

was decisive in the performance of Fine-Tuning. The net-
works pretrained on JSRT achieved performances lower than
WeaSeL, while the pretraining from Shenzhen or Montgomery
yielded better results than our approach. This discrepancy can
be explained by the different domains, as the JSRT dataset is
the most singular within the five CXR datasets — that is, the
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Fig. 4. Jaccard results for heart segmentation in JSRT dataset.

domain shift between JSRT and the other datasets is larger
than the shift between the other four. It should be noticed that
real-world scenarios may not allow for a fair evaluation of the
domain shift between the source and target datasets, making
WeaSeL the safer choice in this case.

In Figure 4 we see the results for the heart class in JSRT.
This, and the clavicles class, are only present in the JSRT
dataset. Since these classes are only present in JSRT, for the
Fine-Tuning baselines we choose the pairs of JSRT dataset and
one of the remaining classes as source tasks (e.g., for hearts
we use the pairs (JSRT,lungs), and (JSRT, clavicles)).
Again, the From Scratch baseline is the worst performer,
with the WeaSeL being the superior in most scenarios. The
clavicles, display a similar tendency, although their IoU score,
in majority of the cases, is lower than the heart class scores.

As seen in both experiments, the performance of the grid
annotation is higher than the points annotation, in virtually
all cases. In order to assess the efficiency of this annotations
we constructed the graph in Figure 5. The x axis represents
the average number of inputs per image, and was computed
considering each positive labeled pixel in an image as an user
input, and then average across all images. In the figure, we
confirm the overall better performance of the grid annotation,
and a better efficiency as the score of the method with the
same number of inputs is higher using this annotation over the
point annotation. One explanation is that even in the larger
spacing scenario(s = 20) the number of annotated pixels is
greater than the the 2n pixels in any points labeling case. Thus,
even with a likely class imbalance in the grid scenario — the
foreground objects is usually smaller than the background, and
with a fixed grid will probably have fewer labeled pixels —,
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Fig. 5. Jaccard results of the WeaSeL. method in the JSRT Lungs task by the
average number of inputs.

the simple presence of more data increases the metric score
for this type of annotation.

Sparse annotation show competitive results with dense
labels, given the much smaller labeled data. The case with
most labeled data is the grid annotation with s = 20,
that have approximately 2% of annotated pixels. In some
cases, the methods using sparse labels are equivalent to
using dense labels ground truths, specially with the grid
annotation. In the lungs segmentation in the OpenlIST (and
Montgomery/Shenzhen) dataset (Figure 3b), the Fine-tuning
baselines from similar datasets seem indifferent to sparse
or dense labels. As aforementioned, the small domain shifts
between these datasets and the pretraining with dense labels
explain this results.

VI. QUALITATIVE ANALYSIS

In Figures 6-8 we show visual segmentation examples of
WeaSeL on three tasks: JSRT Lungs, OpenIST Lungs and
JSRT Heart, respectively. In each example, lines represent the
number of shots in the experiment, while columns vary the
sparsity parameters: n for points (first four columns) and s
for grids (last four columns). These sparsity scenarios were
used to simulate the sparse labels of the support set on the
target few-shot task.

As one can observe in these visual results, increasing the
annotation density — that is, increasing the number of points n
or using a smaller spacing s — yields a larger improvement in
the predictions than increasing the number of labeled images;
that is, the number of shots. Even the 1-shot scenario achieved
acceptable results for the lung tasks (Figures 6, 7) when given



a sufficient number of labeled pixels, e.g. at least 20 labeled
pixels for each class. For heart segmentation (Figure 8),
we observe a great difference between the points and grid
annotations. Since this is a unique task — i.e. the only task
in the meta-dataset with heart as a target class, which is only
present in the JSRT dataset — the model requires more support
samples/labels to adapt to this task. This requirement is not
fully achieved by the points annotation with one and five shots,
but is obtained by less sparse grid annotations in all observed
number of shots. Again, the total number of labeled pixels in
the grid annotation seems to compensate the lack of images
for training.

It is clear that having a larger number of annotated images
impacts the final results, especially for harder, or more distinct,
datasets or tasks as is the case of JSRT. Consequently, a middle
ground in relation to the number of images and the sparsity
of annotations seems to be a good compromise to achieve
reasonable results with limited human intervention. That is,
annotating five or more images with at least five pixels labeled
per class can lead to good results with a very low labeling
burden. However, if the target task is truly few-shot, increasing
the number of samples in the support set may be costly or
even impossible. In this case, one can instead increase the per
sample label density.

VII. CONCLUSION

We evaluated WeaSeL., our proposed adaptation of MAML,
in multiple few-shot segmentation tasks with sparse labels.
WeaSeLL showed to be a viable solution to most tasks, and
a suitable option when there are very discrepant target and
source tasks. Since in real-world scenarios is difficult to access
the domain shift between the datasets, WeaSeL seems to be the
safer choice in these cases. The method have some limitations,
like the cost of computing second-derivatives in the outer loop.
This limited the size of training images to 128 x 128, which
can hinder task with small target objects (e.g. clavicles).

Future works include the use of approximations to the
second derivative and how this affects the performance, as
well as analyzing different types of sparse labels annotations
also in 3D volumes. Additionally, we intend to adapt other
first- and second-order Meta-Learning methods for sparsely
labeled semantic segmentation.
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