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Abstract—This thesis proposes new architectures for deep
neural networks with attention enhancement and multilinear
algebra methods to increase their performance. We also explore
graph convolutions and their particularities. We focus here on the
problems related to real-time human pose estimation. We explore
different architectures to reduce computational complexity, and,
as a result, we propose two novel neural network models for 2D
and 3D pose estimation. We also introduce a new architecture
for Graph attention networks called Semantic Graph Attention.

I. INTRODUCTION

Pose estimation is a challenging problem in computer vision
with many real applications in areas including augmented
reality, virtual reality, computer animation, and 3D scene
reconstruction [1]–[5]. Usually, the problem to be addressed
involves estimating the 2D human pose, i.e., the anatomical
key points or body “parts” of persons in images or videos [6].
The use of architectures based on conventional convolutional
neural networks can achieve high accuracy in this context;
however, mistakes caused by occlusion and motion blur are not
uncommon. Those models are computationally very intensive
for real-time applications [5], [7].

Also, there is evidence that a key feature behind the success
of these methods is over-parameterization. It could help in
finding a good local minimum. However, it also leads to
a large amount of redundancy considering its parameters
[8]. Furthermore, models with a more significant number of
parameters have increased storage and are computationally
intensive. We focus on improving the efficiency of CNNs using
tensor decompositions. We consider each layer independently,
where the kernel of a convolutional layer can be seen as a
4-dimensional matrix and decomposed in a set of low-rank
approximations.

Another weakness of convolutional neural networks is that
convolution operations consider only local neighborhoods,
thus missing global information [9]. We propose a new 2D
Convolutional Pose Machine following tensor decomposition
models, and we introduce a new architecture with attention
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mechanisms [10], not only improving performance but also
reducing redundancy for pose estimation tasks.

We also explore methods to infer the 3D human pose. Sev-
eral projects use motion capture to produce computer-animated
movies, games, medical applications, or sports analyses. How-
ever, in most of these applications, its use depends typically
on multiple sensors and commercial systems. This is not only
a costly technology but also depends on specialized hardware.
Moreover, it is far from being accessible to most producers.
To overcome these problems, several papers propose solutions
using neural networks [11]–[14]. Considering this problem,
to achieve state-of-the-art performance, we propose the use
of Graph Convolutional Neural Networks, and we create a
novel gating mechanism applied to Semantic Graph Convo-
lutions(SGCs) [15] named Semantic Graph Attention (SGAT).
We enhance the analysis of global correlation, which is crucial
for understanding human actions [16]. Our new layer can
learn both channel-wise weights for edges, combine them
with kernel matrices, and features inter-dependencies over
channels. This work also proposes a novel neural network
architecture used for 3D pose estimation from 2D joints. The
main feature of this approach is our attention layer combined
with Semantic Graph Convolutions. Given a 2D human pose
as input, we predict the locations of its corresponding 3D
joints in a 3D coordinate space. The proposed method achieves
state-of-the-art performance for predicting the 3D human pose
from their 2D skeleton (4.9% better than the previous works).
Furthermore, it has 58% fewer parameters than the original
SGC model. We evaluated our approaches in the following
three datasets: Human 3.6M [17], COCO [18] and MPI-INF-
3DHP [19].

In summary, the main contributions of this thesis are:

• A novel deep neural network with streamlined architec-
ture and tensor decomposition for 2D pose estimation
with improved processing time;

• A novel attention layer for semantic graph convolutions
based on a simple but effective gating mechanism;

• A novel lightweight architecture for 3D human pose
estimation based SGCs with performance enhanced by
our attention layer.



Fig. 1: An example of our 3D human pose algorithm with a
single RGB camera. The 2D data is captured with our 2D pose
machine and after processed by the 3D neural network. It can
be used in applications such as computer animation and game
controlling.

II. POSE ESTIMATION AND MOTION CAPTURE

Wei et al. [20] introduced the Convolutional Pose Machines
(CPMs) that combines the advantages of convolutional neural
networks with pose machines. CPMs consist of a sequence
of convolutional layers that repeatedly produce 2D confidence
maps for the location of each body part. Cao et al. [6] proposed
an efficient method for 2D multi-person pose estimation with
high accuracy on multiple public datasets, extending the
original Convolutional Pose Machines. We use the concepts
from Cao et al. to create our 2D pose estimation model.

Following the success of 2D pose estimation models, several
papers propose an end-to-end model to predict the 3D human
pose from given in the wild images. Mehta et al. [13] present
the first real-time method to capture the 3D pose in a stable,
temporally-consistent manner using a single RGB camera,
named VNect. Their formulation uses a regression for 2D to
3D projection in real-time and creates a kinematic skeleton
fitting method for coherent kinematic analysis. XNect [14] is
an evolution of this work that also predicts the 3D pose of
Humans and even infer the bones rotations. They present a
real-time approach for multi-person 3D motion capture at over
30 fps. They both present complex frameworks to generate 3D
poses and motion capture information. Our model focuses on
a lightweight approach to generate 3D poses from 2D data,
which is similar to the stage 2 from XNect, but surpass its
results considering the error metric of this stage.

In a different approach, Martinez et al. [11] propose a
simple feed-forward neural network that receives the 2D joint
locations and predicts 3D positions. They “lift” the ground-
truth 2D joint locations to 3D space. However, this also has
limitations such as it does not maintain the bone proportion for
all bodies. Zhao et al. [12] has expanded this work by using
Semantic Graph Convolutions. Their architecture can be also
extended to use attention modules and to reduce the projection
error. Our approach reduces the reprojection error and network
complexity using the attention layer, a way to model inter-
dependencies in Semantic Graph Convolutions.In contrast with
these previous works, we aim to present a lightweight frame-
work for computer animation using human pose estimation.
For this purpose, our models does not need any specialized
hardware or even high-end GPU configurations.

III. METHODS

A. Tensor Decomposition

Tensor decomposition, analogously to matrix decomposi-
tion, is a way to express a tensor as a product of simpler,
usually smaller tensors. There is a rising interest in exploring
efficient architectures for Neural Networks, either for use
in embedded device applications or their use in ubiquitous
computing [21]. Hand-crafted methods can be considered
analogous to tensor decomposition, for example, the Mo-
bileNet [21], [22] and Xception [23] which decompose convo-
lutions using efficient depthwise and pointwise convolutions.
On the other hand, several works have been dedicated to
leveraging tensor decompositions to speed up computation or
to reduce the number of parameters of convolutional neural
networks. Most cases are focused on applying layer-wise
decompositions, considering the kernel of each layer. A kernel
of a 2D convolutional layer of a neural network can be
described as a 4-dimensional tensor, where its dimensions are
defined by the number of columns and rows, the number of
channels of the input, for example, the RGB channels of an
image, and the number of output channels. Kim et al. [24]
propose using HOSVD to split a regular convolution into three
others, drastically reducing the computation and model size.

1) Tensor Notation: A tensor can be seen as a high-
dimensional matrix, i.e, with three or more dimensions. The
order of a tensor T is the number of its dimensions [25]. As
matrices’ rows and columns, tensors have fibers, for example,
a matrix column is a mode-1 fiber and a matrix row is a mode-
2 fiber [25], [26].

2) Unfolding: Similar to matrix flattening we also have the
Unfolding operation, where we stack the fibers of a tensor in
a given way to obtain a matrix representation [25], [27]–[29].

3) Tensor Rank: A rank of a tensor T is the smallest
number of rank-one tensors that generate T by computing their
sum [25]. A rank-one tensor is a mode-N tensor where it can
be seen as the outer product of N vectors [25], [26]. In other
words, each element of T ∈ RI1×I2×...IN is the product of the
corresponding element-wise operation defined by Equation 1.

ti1i2...in = v
(1)
i1
v
(2)
i2
...v

(N)
iN

(1)

4) Mode-n multiplication: A multiplication of a matrix M
by a tensor T is defined by Equation 2.

X =
∑
in

ti1....iNmjnin (2)

5) Tensor Decompositon: The SVD decomposition can be
generalized to High Order Tensors. It considers the orthonor-
mal spaces associated with the different modes of a tensor [24].
The High Order SVD is defined in Equation 3 as follows:

M = C × U1 × U2 × U3 (3)

where U1, U2, U3 contains the 1-mode, 2-mode, and 3-mode
singular vectors, respectively, related to the column space of
Mmode−1,Mmode−2, and Mmode−3 matrix unfoldings. C is a
core tensor with orthogonality property [30].



B. Factorized Convolutions
We apply tensor decompositions to neural networks [31]

aiming to factorize their kernels, create approximations, and
improve inference processing time. We propose a new archi-
tecture based on the concepts of Convolutional Pose Machines.
For feature extraction, we remove the 12 blocks of convolution
of a VGG-19 used in the original and replace them with a
modified architecture of a Mobilenet v2 [22]. This approach
improves performance while maintaining accuracy. Also, we
set a number of 6 stages for intermediary refinement in
the iterative prediction. The implementation details where
described in previous papers [31], [32].

To improve performance, at first, we train our neural
network normally and after decompose its kernels. We use
this strategy as an exploratory way to model a factorized
architecture formed by pointwise convolutions combined with
a regular convolution with reduced size. We aim to create
a low-rank approximation, where we model our architecture
following a one-shot whole network compression scheme [24].
It consists of two steps: rank selection and tensor decom-
position. We analyze the unfolding mode-3, and mode-4 of
each layer’s kernel with global analytic variational Bayesian
matrix factorization (VBMF) [24]. Our experiments show that
an approximation of 1/3 or 1/4 of mode-3 and mode-4 of
a tensor already presented effective results. We consider just
mode-3 and mode-4 because mode-1 and mode-2 represent
just the spatial dimension of the kernel and are pretty small.
The VBMF tries to infer an optimal low-rank selection, and
with these values, we apply the Tucker decomposition on each
kernel. Let us consider a regular convolution which maps an
input tensor into another with different size by successive
operations as one can see in Equation 4:

conv(x, y, z) =
∑
i

∑
j

∑
k

T(i,j,k,z)W(x−i,y−j,k), (4)

where T is a kernel of size IJKZ andW an input tensor with
size XYK, as we refer typically as an image, for example,
with X and Y the image dimensions and K the number of
channels. The mode-4 kernel tensor T can be seen as a kernel
in a convolution layer. All operations for its decomposition
can be written in the form described in Equation 5 [24]:

Tx,y,z,k =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

Cr1,r2,r3,r4U
1
x,r1U

2
y,r2U

3
z,r3U

4
k,r4 ,

(5)
where C is a core tensor of size (R1×R2×R3×R4) and the
U∗ matrices are factor matrices of sizes X×R1,Y ×R2,Z×R3,
and K ×R4, respectively.

We rewrite the Equation 5 to consider just the mode-3 and
mode-4:

T
′
=

R3∑
r=1

R4∑
r=1

Ci,j,r3,r4U
k
r3(k)U

z
r4(z), (6)

where Uk,r3 and Uz,r4 are the factor matrices of sizes K×R3

and Z × R4, respectively, and C is a core tensor of size

(I, J,R3, R4). As a final result, we have 2 pointwise convolu-
tions represented by the matrices U and 1 regular convolution
with reduced space represented by the core tensor. This leads
us to the convolutional block used in our architecture. Even
using the VBMF, it was empirically verified that an approxi-
mation of 1/3 or 1/4 of original output size of the convolution
operations already presented effective results considering the
performance of our network. After the decomposition, we fine-
tune our network by 50 epochs.

C. Convolutional Graph Networks (GCNs)

In this section we presents the main mechanisms of our
approach to create neural networks for 3D Human Pose
Estimation. We choose to model the problem of inferring a
3D skeleton as a graph, and we develop a Graph Convolution
Network to solve this task. Following principles of regular
Convolution Neural Networks, a Graph Convolution Network
can be considered a way to deal with arbitrary graph structures
[33]–[35]. This is highly related to our approach to analyze
human pose as a structured graph.

Convolutional Graph Networks (GCNs) share the filter
parameters in the graph. The GCNs training stage consists
in learning structures capable of processing graph information
from the node matrix X ∈ RN×D (N nodes containing D
features) and the adjacency matrix A ∈ R‖N‖×‖N‖ [34], [35].

Each layer is a non-linear function as follows:

H(l+1) = f(H l, A), (7)

with H being the output of each layer and H0 = X . We can
rewrite this function following:

f(H l, A) = σ(AH lW l), (8)

where σ represents the Relu activation function and W the
weight matrix of the network layer. There are some limitations
to this approach because the multiplication by the matrix A
would only consider features from the neighborhood, but not
from the node itself. This problem is addressed by adding the
identity matrix to A (A′ = A+ I).

Furthermore, A′ should be an unitary matrix to avoid scaling
the features vector. We reach it by normalizing A′ rows using
the Normalized Laplacian Matrix D−1/2AD−1/2, where D−1

is the inverse of the diagonal matrix with the degree of the
graph nodes. Substituting in the equation 8, we have:

f(H l, A) = σ(D
′−1/2A

′
D

′−1/2H lW l). (9)

There are two clear disadvantages to make the graph convo-
lution considering a regression to work on nodes with arbitrary
topologies. The first one is the kernel matrix W is shared by all
the edges. As a result, the relationships of neighboring nodes,
i.e. internal structure, are not well explored. This is also a
limiting factor because the receptive field is fixed with ones
[12], the second disadvantage.

A CNN with a convolution kernel of size k × k learns k2

different transformation matrices. The transformation matrices
decode features within the kernel spatial dimension. This
formulation can be approximated by learning a vector of



weights ~ai for each position of a pixel in an image or a graph
node, and then combining them with a shared transformation
matrix W [12].

We can transform an image to a graph by considering the
pixels as nodes, and two neighbor pixels being connected
by an edge (8-connect neighborhood). So, a kernel size k

affects all pixels distant less than d =
k − 1

2
. We can extend

this approach for GCNs by considering that a convolution
in a graph using a kernel of size d affects all nodes in a
neighborhood of size d [12].

GCNs cannot handle convolution problems directly since it
shares the same weight matrix for all edges. Furthermore, the
filters just operate in a one step neighborhood. As a solution,
Zhao et al. [12] propose to add the weight matrix M to the
graph convolution process as follows:

f(H l, A) = σ(φ(A′ �M)H lW l), (10)

where the matrix M is a parameter to be learned on the
network, σ is a ReLU activation and φ is a softmax function
that normalizes the entries of each node, � is an element-
wise multiplication (Hadamard) that returns mij if aij = 1
or negative values with large exponents after the softmax. In
this approach, A works like a mask that forces this to the i-
th node in the graph. Also as proposed by Zhao et al. [12],
this formulation can be extended to consider multiple channels
as in traditional convolutions. In our experiments, we use
PreLU instead of ReLU activation because it shows a slightly
performance improvement.

D. Attention block for SGC

In this section we present our contribution for graph neural
networks: we propose a method to enhance the accuracy of
Semantic Graph Convolutions called Semantic Graph Atten-
tion. The intuition here is to allow the neural network to
perform feature recalibration, i.e., to emphasize more relevant
features and suppress less meaningful information. In other
words, to give weights to the features over channels of SCGs,
in a similar way to the SE-NET [10]. This also can be related
to Global Context Networks [36], when applying attention to
graph networks. We aim to solve the issues of precision and
computational complexity, considering both space storage and
time complexity, from previous related works.

Considering the computation of features for each node,
the idea of adding weights via element-wise multiplication is
natural. We intend to identify inter-dependencies between node
features. For this purpose, we propose the following gating
mechanism for each channel after a regular SGC, where we
learn a matrix of weights, presented in Equations 11 and 12:

g = A′ � φ(M1)W
l
1H

l, (11)

where g is composed by a softmax φ function over the entries
of Matrix M1. This hidden layer performs a dimensionality
reduction that reduces drastically the input space by a factor r,
where the kernel size of W l

1 ∈ R
C
r ×C . Here, C represents the

number of features and r is defined empirically.The intuition

behind this layer is similar to Principal Components Analysis.
We perform a dimensionality reduction to a space that better
represents the data given a new basis. Consider that our
Graph Neural Network has input data contained in a 2D
space. In the first layer, the neural network project the data
into frequency space. The first block of our attention module
evaluates features in frequency space and forces this neural
network stage to consider the most relevant ones as in an
orthogonal transformation. In a gating mechanism, the next
block will use the data representation in this new space,
expanding the data to the original size and given weights to
the features.

Equation 12 represents the expansion back to the original
input size:

s(g) = α(A′ � φ(M2)σ1(g)W
l
2), (12)

where kernels W l
2 ∈ RC×C

r , σ represent a PReLU function,
α represents a sigmoid activation. In our experiments, we use
a value r = 16, similarly to Hu et. al. [10]. With the output of
function s(g) for each channel, we perform an element-wise
multiplication operation to give weights to the input data as
in Equation 13:

H l+1 = H l ◦ s(g). (13)

At the final process, the channels are also concatenated.
Such a gating operation allows us to consider more relevant
features after each convolution operation, and thus refine our
regression process for the following pose estimation case. As
we will see in our experiments, this formulation enhanced our
neural network’s overall performance and drastically reduced
its complexity.

IV. 3D POSE ESTIMATION FRAMEWORK

We propose a 3D human pose estimation framework. The
method takes as input a 2D human skeleton detected by our
2D Pose Machine. However, we can use any way to calculate
these 2D joints from a single RGB image.The framework starts
by calculating the 2D keypoints for each person in a given
image using a 2D neural network. Our 3D model only needs
the 2D keypoints as input. It makes our architecture flexible
and not dependent on a specific 2D pose model to generate
keypoints. Afterward, our neural network exploits the power
of the semantic graph convolution with a gating mechanism.
Our model has an input layer with an SGC followed by batch
normalization and a PReLU activation. The building blocks of
our network’s internal layers are composed of two SGC layers,
also followed by batch normalization and PReLU activation.
The output of the second SGC layer is used as the input for
our gating mechanism. This is repeated twice, and the blocks
also use residual connections. We consider 128 channels for 16
graph nodes in the internal layers, where each node represents
a human keypoint. The output layer comprises an SGC layer
with the 16 nodes and the 3D positions as output data. Our
3D network model was trained over 100 epochs, using the
Adam optimizer with a learning rate of 1e− 3, rate decay of



0.5, and batches of size 64. We also use the Xavier normal
function to initialize the weights of each layer. Furthermore,
we use a function based on the Mean Squared Error as our
loss function. More details about the implementation can be
found in the full thesis text.

V. RESULTS

In terms of runtime performance comparisons for our 2D
pose machine, we began with the test of the CNN processing.
Considering just one image with 23 people, we compared our
approach with OpenPose. The tests were performed in a GPU
Nvidia RTX 2060 with 6GB of memory, where we varied
the scale of the image tested by a factor of 0.5 and repeated
each test 1000 times. Our network achieves a performance
of almost 20 frames per second with a network resolution
of 656 × 368. We also test a non-factorized version of our
network. In general, it has achieved a performance of almost
12 frames per second for the exact resolution. As we can see
in Table I, on average, our approach has a better performance
when compared with the OpenPose, considering our factorized
version.

Image Resolution OpenPose Ours
328 x 193 ∼55,08 ms ∼ 45 ms
656 x 368 ∼120.224 ms ∼ 51.26 ms
984 x 579 ∼174,75 ms ∼ 80.72 ms
1312 x 772 ∼320,18 ms ∼ 112 ms

TABLE I: CNN processing time for OpenPose and our Model.
We vary the scale of the input tested by a factor of 0.5
considering 4 image scales. We do this only for the network
input, the final result is scaled in the original image size.

We also perform tests in the CPU. On average, our approach
has better performance, considering frames per second, while
the original OpenPose is unpractical to be used, as we can see
in Table II. We evaluate the precision and recall of our 2D
model in COCO dataset [18], where we achieve an accuracy
of 0.743 and recall 0.702.

Device OpenPose Ours
AMD Ryzen 7 1700 3.5GHZ 0.3 FPS 13 FPS
Mac Pro Intel Core I7 2.7GHZ 0.1 FPS 6 FPS

TABLE II: CNN processing time for OpenPose and our Model
in CPU.

We also compare our 3D pose estimation network with
state-of-the-art approaches. We first evaluate different design
choices on a separate validation set for Human3.6, and then,
we use the best choice to compare to SGC [12] and Martinez
et al. [11]. We compare our model with the state-of-art
approaches for 2D joints to 3D pose regression, following two
configurations: with and without the attention layer. Table III
reports the result.

Our technique outperforms the state-of-the-art SGC, for 3D
pose regression, [12] by 4.9%. Also, our model with attention
layers surpasses the model only with regular SGCs (without
attention) by almost 10%. It is noteworthy that our approach
has much fewer parameters, meaning that using the atten-
tion module drastically reduces the network’s computational

Fig. 2: Visual results of our method on in-the-wild images
from COCO dataset [18] . In most cases, our technique can
effectively predict 3d joints in different situations. Small errors
can be seen considering the image scale and camera projection.
In the last row, in an example with self-occlusion, our model
cannot predict data from incomplete data.

complexity and improves the overall performance. We have
approximately 58% fewer parameters than the baseline SGC
[12] and 95% fewer parameters than the model from Martinez
et al. [11].

We evaluated our 3D unprojection model following the
dataset Human 3.6M. Table IV shows the result using 2D
ground-truth of Human3.6M, our CPM, and Stacked Hour-
Glass predictions for testing. We consider our model trained
and tested with ground-truth data as an upper bound of our
method since it uses only 2D ground truth (GT) as the input.

Consider that most other methods have sophisticated frame-
works [37]–[39] or learning strategies [39], [40]. It was
expected that they have better performance, including ground
truth, than our approach. However, this is not true. Our model
surpasses most of the previous works, considering the Mean
Per Joint Position Error (MPJPE), proving the potential of the
attention layer. The tests consider each action of the motion
capture dataset. Table IV shows the error in millimeters for
each step following the MPJPE. In Table V, we compare
the 3D pose output on the MPI-INF-3DHP dataset [19] using
the 3D Percentage of Correct Keypoints (3DPCK) (higher is
better) and MPJPE. We prove the robustness of our method.
Again, note that most of these methods are built over so-
phisticated frameworks and can predict multi-person poses
and shapes. As we can see when considering our 2D CPM
detection, our performance is reduced but still competitive.

Model # of Parameters MPJPE (mm)
SGC [12] 0.43 M 43.8

Martinez et al. [11] 4.29 M 45.5
Ours without attention (2 blocks and 128 ch) 0.16 M 46.71

Ours with attention (2 blocks and 128 ch) 0.18 M 41.75

TABLE III: 3D pose regression errors and the parameter num-
bers of our networks with different settings on Human3.6M.
For each technique, we use the 2D ground truth data for the
training and evaluation.



Protocol Direct Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walking WalkT Average
Martinez et al. ICCV’17 [11] 51.8 56.2 58.1 59 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Yang et al. CVPR’18 [37] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Mehta et al. SIGGRAPH’17 [13] 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8 106.6 138.7 78.8 73.9 82.0 55.8 59.6 80.5
Hossain & Little ECCV’18 [38] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Zhao et al CVPR’19 [12] 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Pavllo et al. CVPR’19 [39] 45.1 47.4 42.0 46.0 49.1 56.7 44.5 44.4 57.2 66.1 47.5 44.8 49.2 32.6 34.0 47.1
Dabra et al ECCV’18 [40] 44.8 50.4 44.7 49.0 52.9 43.5 45.5 63.1 87.3 51.7 61.4 48.5 37.6 52.2 41.9 52.1

Our Model (CPM) 52.3 62.8 60.4 62.14 87.73 79.76 58.33 60.44 85.42 88.64 69.82 64.69 66.67 52.92 55.19 69.5
Our Model (GT) 38.07 44.83 36.68 38.14 41.74 49.73 40.82 38.02 50.43 59.19 41.91 40.78 41.30 30.78 33.70 41.75

TABLE IV: Results under Protocol of Mean Per Joint Position Error on Human3.6M (no rigid alignment in post-processing).
We show the results of our model (trained and tested with ground truth data(GT) and 2D predictions from a Convolutional
Pose Machine (CPM). Note that, on average, our model surpasses the previous state-of-the-art approach. The results of all
approaches are obtained from the original papers.

Fig. 3: Visual results of our method on Human3.6M [17]. As we can see, our method is robust but still has minor issues
considering joint rotations.

Model MPJPE (mm) 3D PCK
Vnect [13] 124.7 76.7

M3DHP [19] 117.6 75.7
Mehta [41] 122.2 75.2

Xnect (stage 2) [14] 98.4 82.8
Xnect (stage 3) [14] 115.0 77.8

Kanazawa [42] 124.2 72.9
Kundu [43] 103.8 82.1
VIBE [44] 96.6 89.3

Ours (CPM) 105.17 81.27
Ours (GT H3.6) 80.28 91.0

Ours (GT) 76.39 92.0

TABLE V: Comparison on the single person MPI-INF-3DHP
dataset. Top part are methods designed and trained for single-
person capture.The Xnect is multi-person method, however
we evaluate only single person predictions. We tested mod-
els trained over the 2D ground-truth from Human3.6M, 2D
predictions from a CPM, and ground truth data of MPI-INF-
3DHP.

We also tested our model trained on 2D ground truth data for
Human 3.6 on MPI-INF-3DHP test data. Moreover, consider-
ing runtime performance, our 3D network took, on average,
10 seconds to evaluate 1062 poses. The tests were performed
in a GPU Nvidia RTX 2060 with 6GB of memory, where
we repeated each test 1000 times. In terms of the number of
parameters, our network has 0.18M, while the model proposed
by Zhao et al. [12] has 0.43M.

A. Qualitative results

Figure 2 illustrates some results generated using images
from COCO dataset [18]. Our model can accurately predict
3D poses from these images indicating that it effectively
encodes relationships among body joints and can generalize

the results to different situations. The input of the method
is the 2D joints generated using our 2D Pose Machine. One
of our limitations is when we are using data predicted by
a CPM, if the 2D detector output fails to detect all body
keypoints, it is impossible for our model to recover the missing
information. Also, it is not uncommon to see images with
occluded or incomplete poses for in the wild examples. Figure
3 shows the results of our technique applied on Human3.6M.
In another approach, the input is generated by our pose
estimation framework, and from the output, we created a BVH
model to generate 3D animations.

VI. PUBLICATIONS

As results of this thesis, we published in several top tier con-
ferences and journals including Eurographics [45], Computers
& Graphics [31] and SIBGRAPI [32].Also, the presented
framework were used in several projects that includes motion
capture and digital humans [31], [45].

VII. CONCLUSION

We propose novel architectures for 2D and 3D Pose es-
timation. Also we propose a novel attention layer for graph
convolutions. With this approach, we build a lightweight 3D
human pose estimation framework to project 2D keypoints
from the output of our 2D pose network in a 3D space.
The use of tensor decomposition reduces the computational
complexity and improve real time performance of our 2D pose
estimation model. Also, for the 3D, the combination of SGCs
with attention layers achieve state-of-the-art performance with
58% fewer parameters.



REFERENCES

[1] R. Ranjan, V. M. Patel, and R. Chellappa, “Hyperface: A deep multi-
task learning framework for face detection, landmark localization, pose
estimation, and gender recognition,” IEEE TPAMI, vol. 41, no. 1, pp.
121–135, 2019.

[2] V. A. Sindagi and V. M. Patel, “A survey of recent advances in cnn-
based single image crowd counting and density estimation,” Pattern
Recognition Letters, vol. 107, pp. 3–16, 2018.

[3] L. Ge, “Real-time 3d hand pose estimation from depth images,” Ph.D.
dissertation, 2018.

[4] S. Schwarcz and T. Pollard, “3d human pose estimation from deep
multi-view 2d pose,” in 2018 24th International Conference on Pattern
Recognition (ICPR). IEEE, 2018, pp. 2326–2331.

[5] M. Lin, L. Lin, X. Liang, K. Wang, and H. Cheng, “Recurrent 3d pose
sequence machines,” in Proceedings of the IEEE CVPR, 2017, pp. 810–
819.

[6] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in CVPR, 2017.

[7] Y. Luo, J. Ren, Z. Wang, W. Sun, J. Pan, J. Liu, J. Pang, and L. Lin,
“Lstm pose machines,” in Proceedings of the IEEE CVPR, 2018, pp.
5207–5215.

[8] J. Kossaifi, A. Bulat, G. Tzimiropoulos, and M. Pantic, “T-net:
Parametrizing fully convolutional nets with a single high-order tensor,”
in Proceedings of the IEEE CVPR, 2019, pp. 7822–7831.

[9] I. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le, “Attention
augmented convolutional networks,” arXiv preprint arXiv:1904.09925,
2019.

[10] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE CVPR, 2018, pp. 7132–7141.

[11] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet
effective baseline for 3d human pose estimation,” in Proceedings of the
IEEE ICCV, 2017, pp. 2640–2649.

[12] L. Zhao, X. Peng, Y. Tian, M. Kapadia, and D. N. Metaxas, “Semantic
graph convolutional networks for 3d human pose regression,” in Pro-
ceedings of the IEEE CVPR, 2019, pp. 3425–3435.

[13] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-
P. Seidel, W. Xu, D. Casas, and C. Theobalt, “Vnect: Real-time 3d
human pose estimation with a single rgb camera,” ACM Transactions
on Graphics, 2017.

[14] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, M. Elgharib, P. Fua,
H.-P. Seidel, H. Rhodin, G. Pons-Moll, and C. Theobalt, “Xnect: Real-
time multi-person 3d motion capture with a single rgb camera,” ACM
Transactions on Graphics (TOG), vol. 39, no. 4, pp. 82–1, 2020.

[15] B. Zhao, X. Wu, J. Feng, Q. Peng, and S. Yan, “Diversified visual atten-
tion networks for fine-grained object classification,” IEEE Transactions
on Multimedia, vol. 19, no. 6, pp. 1245–1256, 2017.

[16] Q. Huang, F. Zhou, J. He, Y. Zhao, and R. Qin, “Spatial–temporal graph
attention networks for skeleton-based action recognition,” Journal of
Electronic Imaging, vol. 29, no. 5, p. 053003, 2020.

[17] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m:
Large scale datasets and predictive methods for 3d human sensing in
natural environments,” IEEE TPAMI, vol. 36, no. 7, pp. 1325–1339,
2013.

[18] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[19] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and
C. Theobalt, “Monocular 3d human pose estimation in the wild using
improved cnn supervision,” in 2017 Proceedings of 3DV. IEEE, 2017,
pp. 506–516.

[20] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional
pose machines,” in Proceedings of the IEEE CVPR, 2016, pp. 4724–
4732.

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE CVPR, 2018, pp. 4510–4520.

[23] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings of the IEEE CVPR, 2017, pp. 1251–1258.

[24] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” arXiv preprint arXiv:1511.06530, 2015.

[25] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[26] S. Smith and G. Karypis, “Accelerating the tucker decomposition
with compressed sparse tensors,” in European Conference on Parallel
Processing. Springer, 2017, pp. 653–668.

[27] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative
matrix and tensor factorizations: applications to exploratory multi-way
data analysis and blind source separation. John Wiley & Sons, 2009.

[28] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[29] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[30] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, “A unified frame-
work for providing recommendations in social tagging systems based on
ternary semantic analysis,” IEEE Transactions on Knowledge and Data
Engineering, vol. 22, no. 2, pp. 179–192, 2010.

[31] L. J. S. Silva, D. L. S. da Silva, A. B. Raposo, L. Velho, and
H. C. V. Lopes, “Tensorpose: Real-time pose estimation for interactive
applications,” Computers & Graphics, 2019.
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