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Abstract—Medical images are often expensive to acquire and
offer limited use due to legal issues besides the lack of consistency
and availability of image annotations. Thus, the use of medical
datasets can be restrictive for training deep learning models. The
generation of synthetic images along with their corresponding
annotations can therefore aid to solve this issue. In this paper,
we propose a novel Generative Adversarial Network (GAN) gen-
erator for multimodal semantic image synthesis of brain images
based on a novel denormalization block named BOundary and
sub-Region DEnormalization (BORDE). The new architecture
consists of a decoder generator that allows: (i) an effectively
sequential propagation of a-priori semantic information through
the generator, (ii) noise injection at different scales to avoid
mode-collapse, and (iii) the generation of rich and diverse
multimodal synthetic samples along with their contours. Our
model generates very realistic and plausible synthetic images that
when combined with real data helps to improve the accuracy in
brain segmentation tasks. Quantitative and qualitative results on
challenging multimodal brain imaging datasets (BraTS 2020 [1]
and ISLES 2018 [2]) demonstrate the advantages of our model
over existing image-agnostic state-of-the-art techniques, improv-
ing segmentation and semantic image synthesis tasks. This allows
us to prove the need for more domain-specific techniques in GANs
models.

I. INTRODUCTION

According to the World Health Organization (WHO), brain
stroke represents the second leading cause of death worldwide
happening every 40 seconds and every 4 minutes someone
dies from this disease around the world [4]. Besides, among
the different types of brain neoplasms, gliomas are the most
common with various heterogeneous histological sub-regions
characterized by varying intensity profiles [5] (See Fig. 1.b).
Because of these reasons, the segmentation of brain tumors in
multimodal MRI is one of the most important and challenging
tasks in medical applications [1].

Accurate segmentation of brain images like tumors (e.g.
gliomas) or strokes (e.g. ischemics) is decisive for diagnosis
and treatment. Recent advances in deep learning have shown
promising results in the automatic segmentation of brain MRI
images [6]. However, most of these approaches require a
massive amount of annotated datasets; nonetheless, especially
in the medical domain, such annotations are expensive to
acquire, require expert annotation level, and can be limited
due to privacy issues. Furthermore, due to inter-observer
variability, the annotations are not necessarily consistent.

In this context, generative models such as Generative
Adversarial Networks (GANs) [7] can be used to generate
additional annotated training data. GANs are based on the
Nash equilibrium and use a contest between a generator and
discriminator to generate highly realistic outputs [8]. Among
the first efforts in GANs, Conditional GANs (cGANs) [9] were
trained to generate realistic-looking images conditioned on the
input data (e.g. class labels, text, images). If the conditional
input data is a semantic map, then the model can be used for
semantic image synthesis tasks.

The task of semantic image synthesis is still chal-
lenging, many state-of-the-art models [10]–[12] use scene
(e.g. ADE20K, COCO-stuff, Cityscapes), or face (e.g.
CelebAMask-HQ) benchmark datasets with complex scenes
and object occlusions. We noticed that those datasets differ
quite a lot from medical images datasets:

In scene datasets like Cityscapes [3] (see Fig. 1.a) we have a
2D projection of 3D objects from specific camera coordinates
(i.e. a photo), if we vary the camera position we will see a
different image; furthermore, each object does not need more
than its segmentation mask to be generated.

On the other hand, brain images (e.g. MRI or CT) datasets
like BraTS [1] (see Fig. 1.b) are multimodal (e.g. T1, T1c,
T2, FLAIR) 2D slices from a brain (3D) in a specific plane
(e.g. axial). Ischemic strokes or tumor lesions datasets don’t
present occlusions, instead, they have sub-regions (e.g. en-
hancing tumor) of the same object (brain); additionally, due
to the type of medical condition (ischemic stroke/blood flow
block or tumor/abnormal growth of body tissue), there exists
interdependence among brain sub-regions. Moreover, medical
image segmentation usually requires additional boundary and
organ shape identification [13].

In this paper, our main contributions are: (i) we propose
a novel generator architecture, which feeds sequentially a-
priori information into the generator based on boundary and
brain sub-regions, (ii) we avoid mode-collapse during training
by injecting different scales of noise into the model, (iii)
besides generating realistic-looking multimodal brain images,
our model also generates plausible contours in a multi-task
objective, which help to improve the quality of the generated
CT and MR images, and (iv) we conduct extensive experimen-
tal studies on two public datasets (ISLES 2018 [2] and BraTS
2020 [14] datasets) and show that BORDE outperforms image-



(a) (b)

Fig. 1. Motivation: (a) Street scene of Zurich from Cityscapes dataset [3] is a 2D projection of 3D objects from specific camera coordinates, exists occlusions,
and objects are independent; (b) Slice of a flair MRI of a BraTS 2020 dataset [1] in the three possible planes (i.e. axial, sagittal, coronal), we notice that exist
sub-regions instead of objects and occur an inter-dependence between these. Scenes and Medical Images are quite different.

agnostic state-of-the-art techniques, such as SPADE [10] or
SEAN [11], when used for brain MRI segmentation tasks.
This allows us to prove the need for more domain-specific
techniques in GANs models.

II. RELATED WORK

Originally, GANs have been proposed as an unsupervised
generative framework [7], where random noise variables sam-
pled from known distributions are mapped to realistically
looking images [8]. In the ideal case, the data distribution
learned from the generator approximates the unknown data
distribution.

More recently, with the advent of conditional Generative
Adversarial Networks [9] (cGANs), GANs have been turned
into supervised generative models by conditioning both the
generator and the discriminator with prior knowledge. If the
prior knowledge is a semantic map, then we are targeting a
semantic image synthesis problem. Indeed, the literature has
shown promising approaches for GAN-based semantic image
synthesis.

One seminal work is Pix2pix [15], which comprises: (i)
an encoder-decoder generator that takes as input a semantic
map, and (ii) a PatchGAN-based classifier as a discriminator.
Thenceforth, different architectures and loss modifications
have been proposed [10], [16], [17] to improve Pix2pix’s
image synthesis quality.

In [10], the authors noticed that the normalization layers
(e.g. Batch Normalization, Instance Normalization) tend to
“wash away” the input semantic information. For example,
previous methods cause a signal collapse of semantic infor-
mation when the input consists of a uniform segmentation
map (e.g. semantic map is all sky or all grass). To address
this issue, the authors propose using the input semantic map
to denormalize or modulate the model activations through a
normalization layer named SPADE. Their model consists of
a generator based on a decoder architecture, which injects
semantic information at different scales of the model through
the addition of conditional normalization layers that achieves
superior performance in semantic image synthesis and allows
control over style using a computed embedding vector input.

More specifically, SPADE makes the denormalization part
of normalization layers dependent and also spatially-adaptive
to the semantic input. Because being a relatively simple but
effective semantic image synthesis model, SPADE has been
used in recent approaches as a baseline [11], [12], [18].

Normalization layers are basic components of CNN ar-
chitectures. They help to stabilize the learning process and
speed up the training process in two steps. First, normalization
layers normalize the network activations into zero mean and
unit deviation outputs. Second, the now normalized activa-
tions are denormalized with learnable modulation scale/shift
parameters. If the scale/shift parameters do not depend on the
external input, then the normalization layer is unconditional.
Examples of unconditional normalization layers include Batch
Normalization [19] and Instance Normalization [20].

If the scale/shift parameters depend on the external input,
then the normalization layer is conditional. Conditional nor-
malization layers have been used for style transfer tasks. The
most popular ones are Conditional Instance Normalization
(Conditional IN) [21] and Adaptive Instance Normalization
(AdaIN) [22], where the style information is denormalized in
terms of modulation scale/shift parameters.

A more recent approach is SEAN [11]. This model in-
troduces a simple but effective block conditioned on a seg-
mentation mask that describes the semantic regions in the
output image. More specifically, SEAN introduces semantic
information through normalization layers and style informa-
tion obtained from a style encoder. The generator architecture
of this model is similar StyleGAN [23] but applied to semantic
image synthesis.

III. SEMANTIC IMAGE SYNTHESIS

A. Boundary and Sub-Region Denormalization (BORDE)

Compared to existing denormalization approaches, such as
SPADE [10] or SEAN [11], we propose a novel denormal-
ization technique intended for brain image synthesis. Given
a boundary or semantic mask/map as input, we propose a
technique called BOundary and sub-Region DEnormalization
(BORDE).



Fig. 2. BORDE block: Boundary mask and a split semantic map are injected through denormalization in an incremental combination to generate realistic-
looking brain images.

Mode formally, given the a-priori information M (boundary
mask, foreground or sub-regions mask/map), the goal of the
BORDE block is to inject the a-priori information directly on
the denormalization layer.

Let C, H , and W denote respectively the number of
channels, height, and width of the activation layer. Then, the
activation value at site (c ∈ C, y ∈ H,x ∈W ) is given by:

γc,y,x(M)

(
hc,y,x − µc

σc

)
+ βc,y,x(M) (1)

where hc,y,x is the activation to be normalized by the mean
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We can see that the denormalization process is given by
the calculation of the parameters γ and β and applied to
the normalized activation map considering two important
characteristics: (i) spatial-variance by multiplying and adding
respectively the parameters γ and β based on the (y, x) posi-
tions. In fact, by making the modulation parameters spatially-
invariant (i.e. γ and µ vary only through c) and replacing
M with a real image, we can arrive at a similar formulation
as AdaIN [22], (ii) instance-specific normalization, since the
parameters γ and β are computed per instance. Indeed, by
using batch processing we can arrive at the SPADE [10]
formulation, (iii) a-priori semantic segmentation information.
In effect, by replacing M with style information and by
calculating the parameters γ and β per batch, we can arrive
at Conditional Batch Normalization [21].

These properties allow improving the image quality, espe-
cially in smaller sub-regions, by incrementally injecting a-
priori information.

B. BORDE block

Given an a-priori input, such as a boundary or semantic
mask/map, we propose a block called BORDE to generate
realistic-looking brain images with very fine details character-
ized by precise contours and localized texture information. An
illustration of the proposed block is presented in Figure 2.

In a BORDE block, the input information is split over dif-
ferent normalization layers. Intuitively, all these masks/maps
account for a-priori information. First, a binary boundary mask
is computed to characterize the shape information of the brain
sub-regions. The boundary mask is next fed into a set of
convolutional and activation layers to learn the denormaliza-
tion/modulation parameters to adapt the scales and biases of
generator activations. Second, a foreground/background mask
used as additional input is injected to guide the attention
of the brain style generation. As such, irrelevant background
information becomes less relevant. Third, successive semantic
masks/maps of sub-regions are used as auxiliary inputs to
the BORDE block. This helps to generate semantic-coherent
synthetic images.

All the aforementioned input masks/maps are fed into a
set of convolutional blocks: First, an intermediate embedding
space of 128 is generated through a convolution layer (3× 3
kernel, padding 1, and stride 1) followed by a ReLU acti-
vation function. Second, two separated convolutions layers
(3 × 3 kernel, padding 1, and stride 1) are applied to learn
the denormalization specific-parameters, such as scale/shift.
All these convolutional and activation layers that learn the
denormalization parameters are replicated for each auxiliary
input to the BORDE block.



Fig. 3. BORDE generator: it is built upon BORDE blocks and incorporates residual random noise at different levels to (i) generate fine-detailed brain images
and (ii) to avoid mode-collapse. Additionally, it is based on residual learning to make the training process more stable and to avoid the gradient vanishing
problem.

After every input mask/maps injection, an activation func-
tion (ReLU) followed by a convolutional operation (1 × 1
kernel, stride 1 with zero-padding) is performed. At this point,
the number of channels is divided by 2 through the convolution
layer in a dimensionality reduction way [24]. Throughout the
BORDER block, the size of the activation maps is maintained.

Furthermore, note that each BORDE block operates at
different scales. Therefore, we downsample the a-priori infor-
mation to match the corresponding spatial resolution. Thus,
our model is capable of generating realistic-looking multi-
resolution brain images.

It is important to note that the structure of the BORDE block
is not static and varies according to the number of subregions
in the problem. The presented BORDE block in Fig. 2 is based
on the BRATS 2020 dataset [1].

C. BORDE Generator

An overview of our generator based on BORDE blocks
is given in Figure 3. Our generator relies on a decoder
architecture built by BORDE blocks. At each stage, the feature
maps are first upsampled (2×) using bilinear interpolation and
fed successively into a BORDE block (where semantic and
other information are injected). Furthermore, noise is injected
into the model in two different ways: (i) a constant Gaussian
input noise of size 256 to represent the general sketch of
brain images, (ii) different auxiliary inputs in the form of per
channel noise scaled vectors. In addition, residual connections
are added at each stage to make the training more stable and to
avoid gradient vanishing problems [25]. Finally, upon reaching
the desired output size, an additional convolution block is
used to match the number of output channels followed by
an activation function (hyperbolic tangent).

In [26], the authors proposed a generation of intermediate
boundary image of the segmentation map, in a coarse-to-fine
boundary-aware GAN, to improve brain tumor segmentation.
We transform that idea making out generator be multi-task
generating images of the required modalities (i.e. T1, T1c,
T2, FLAIR) and also an image of the segmentation contours
(boundary) where the foreground contour is also included.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

We base our discriminator on the pix2pixHD architec-
ture [15] which concatenates the segmentation map with the
image generated as input. Within the network, a convolution
(4 × 4 kernel, 2 stride) reducing the image size by 2 and
doubling the number of channels (the output channel size of
the first convolution is 64) is performed. Followed by instance
normalization [20] and LeakyReLU activation function (slope
of 0.2) are performed. These 3 layers are repeated until the
size of the output is 16x16, where a 1×1 convolution is finally
applied.

We train our model using the Adam optimizer [27] with
an initial learning rate of 1e − 4 and set the momentum rate
to 0.5. All other parameters are set to the default optimizer
values, i.e. β1 = 0 and β2 = 0.999. Furthermore, to measure
the difference between the input images and the reconstructed
images, we use the adversarial-hinge loss [10].

BORDE is trained for 100 epochs and it takes about 21
hours for the model to converge. Our algorithm is implemented
in PyTorch and is trained on an NVIDIA RTX 2060 SUPER.
For all experiments, we consider a batch size of 8 and
randomly initialize the network weights.

B. Datasets

We separately train and evaluate our model on two public
multimodal brain image segmentation datasets and report
quantitative and qualitative results:

1) BraTS 2020: The Multimodal Brain Tumor Segmenta-
tion Challenge (BraTS) contains multimodal MRI scans from
369 different patients [1], [14], [28]. For each patient, there
are 4 different scans, which include: (i) native (T1), (ii) post-
contrast T1-weighted, (iii) T2-weighted, and (iv) T2 Fluid
Attenuated Inversion Recovery (FLAIR) modalities. Each MRI
scan has been resampled and interpolated into a volume of
240×240×155 voxels. Furthermore, the dataset contains 293
patients with high-grade glioma (HGG) and 76 patients with
low-grade glioma (LGG). All the scans have been manually
annotated by experienced radiologists and the segmentation



map contains three sub-regions, which denote either GD-
enhancing tumor (ET), the peritumoral edema (ED), and the
necrotic and non-enhancing tumor core (NCR/NET).

2) ISLES 2018: The Ischemic Stroke Lesion Segmentation
challenge (ISLES) contains 63 different multimodal CT perfu-
sion scans [2], [29]. Each scan contains 4 different perfusion
maps (CBV, CBF, Tmax, and MTT), which include: cerebral
blood volume (CBV), cerebral blood flow (CBF), time to peak
of the residue function (TMax), and mean transit time (MTT).
Each scan has a size of 256× 256 along the axial dimension
with a variable number of slices ranging from 2 to 18. The
scans have been manually annotated by radiologists and the
segmentation masks contain two sub-regions, which denote
either stroke lesions or healthy tissues.

3) Pre-processing: For both datasets, we first convert the
3D volumes and their annotations into stacks of 2D images and
add the foreground of the brain as part of the segmentation
map. Each 2D semantic map is then fed into BORDE block
as input. All 2D slices are resized to a resolution of 256×256
using bilinear interpolation.

C. Baselines

We compare BORDE with 2 leading semantic image synthe-
sis models: SPADE [10] and SEAN [11]; considering SPADE
as the current state-of-the-art on semantic image synthesis
framework, and SEAN as work with uses style information
to improve semantic image synthesis. Furthermore, we com-
pare our results with the best values in the available online
leaderboard of both datasets.

D. Evaluation

1) Quantitative results: We train our proposal and baselines
with both datasets to generate synthetic images and use
them as Data Augmentation (DA) in a segmentation network,
namely a U-Net [30] to measure the performance. We use
the same training parameters as BORDE to train our in-house
developed U-Net and use a cross-entropy loss for pixel-wise
label segmentation.

We adopt the same official evaluation protocols provided in
the brain segmentation challenges for the quantitative results:
For BraTS 2020, we report results on DICE [31] and sensitiv-
ity scores. For ISLES 2018, we calculate the DICE, precision,
and recall metrics [32].

Table I reports the quantitative results in the semantic
segmentation task on the BraTS 2020 dataset. When the
generated images from BORDE are used as additional training
data for the U-Net, our model improves by at least 7% and
12% in DICE coefficient and the sensitivity respectively com-
pared to the baselines models on Enhancing Tumor (ET) and
Tumor Core (TC) regions. Additionally, our model is slightly
below SEAN on Whole Tumor (WT) DICE and sensitivity on
semantic segmentation task. On average our BORDE model
outperforms the results of other models as Data Augmentation
in segmentation task on BraTS 2020 dataset.

On the other hand, Table II reports quantitative results on the
ISLES 2018 dataset. Our model applied as Data Augmentation

TABLE I
QUANTITATIVE RESULTS IN SEMANTIC SEGMENTATION TASK ON BRATS

2020 DATASET AND METRICS

Method DICE ↑ Sensitivity ↑
ET WT TC ET WT TC

wo/DA 0.69 0.85 0.79 0.59 0.88 0.84
w/typical DA 0.73 0.89 0.88 0.69 0.91 0.89
SPADE [10] 0.75 0.89 0.89 0.67 0.90 0.90
SEAN [11] 0.82 0.92 0.88 0.77 0.94 0.91

BORDE (ours) 0.88 0.91 0.91 0.87 0.92 0.94
Leaderboard 0.93 0.94 0.95 0.96 0.99 0.96

on U-Net improving by at least 2%, 2%, and 4% in DICE,
recall, and precision respectively. Clearly, our BORDE model
outperforms the results of other models as Data Augmentation
in segmentation task on ISLES 2018 dataset.

TABLE II
QUANTITATIVE RESULTS IN SEMANTIC SEGMENTATION TASK ON ISLES

2018 DATASET AND METRICS

Method DICE ↑ Precision ↑ Recall ↑
wo/DA 0.60 0.63 0.66

w/typical DA 0.68 0.68 0.75
SPADE [10] 0.70 0.69 0.80
SEAN [11] 0.73 0.73 0.81

BORDE (ours) 0.75 0.76 0.83
Leaderboard 0.90 0.94 1.00

We can note that our results are closer to the leader-
board in the BraTS 2020 dataset than in ISLES 2018. It’s
important to consider that the BraTS 2020 challenge has
4 sub-regions (foreground, enhancing tumor, edema, and
necrotic/non-enhancing) and ISLES only 2 sub-regions (fore-
ground and lesion) Since the BORDE block varies according
to the number of sub-regions in the dataset due to its incre-
mental characteristic. We estimate that the above is decisive
for taking more or less advantage so that the results in BraTS
2020 dataset are closer to the leaderboard than in ISLES 2018.
However, the results are modestly good considering that we
are using a basic U-Net segmentation network

Additionally, we evaluate our proposal and baselines in
Frechet Inception Distance (FID) [33] to measure the distribu-
tion between the real images and the generated outputs from
BORDE and our baselines using 10,000 randomly selected
slices on the BraTS 2020 dataset and ensuring the selection
of slices with the most number of sub-regions. Table III shows
an improvement by at least 19% in FID value in comparison
of baseline models, lower scores identify better models.

TABLE III
QUANTITATIVE RESULTS IN FID METRIC ON BRATS 2020 DATASET

Method FID ↓
SPADE [10] 11.84
SEAN [11] 8.81

BORDE (ours) 7.12

2) Qualitative results: Aside from the quantitative compar-
ison, we provide qualitative results on the BraTS 2020 dataset.



Fig. 4. T1c modality semantic image synthesis of BraTS 2020 dataset. Other models generate artifacts or wash away small sub-regions information. Our
model successfully synthesizes all sub-regions details from incremental injection in BORDE blocks.

Fig. 4 shows a qualitative comparison of different semantic
image synthesis results of three T1c MRI brain slices. In
the case of SPADE, we can see artifacts related to the
non-incremental generation of the slide (problem noticed in
Section I). Additionally, SEAN does not present artifacts but
washes away tumor core information. Finally, BORDE (ours)
presents plausible results keeping the information of all sub-
regions in the final generated image, with better visual quality
and fewer visible artifacts.

Moreover, Fig. 5 shows different visual results of mul-
timodal brain MRI slices together with their corresponding
ground truths. Our synthetic images have high image fidelity in
all modalities, showing good capabilities in multimodal image
generation. A little number of the FLAIR scans in the dataset
(shown in rows 3 and 4) were taken in a non-axial plane
causing the images to be blurry, this is where we can see
that the quality of our generated images is superior.

3) Ablation study: We conduct two ablation studies on the
BraTS 2020 dataset and evaluate different configurations of
both the BORDE block and the BORDE generator.

Table IV shows possible configurations of the BORDE
block. First, it is possible to see a moderate improvement when
the boundary is injected along with the semantic map. Second,
we can see that the injection of boundary plus sub-regions, in
a sequential way, improves significantly the performance over
injection of the semantic map in a one-shot manner. Third,
we found out that the best performance is on 3 sub-regions
(foreground mask, edema mask, tumor-core map) injection
over other configurations.

A possible explanation for this behavior is that with 2 sub-
regions the incremental process is too short (foreground +
lesion) and more similar to a model that injects information
non-incrementally without splitting the semantic map. Whilst
with 4 sub-regions the process is too large and the incre-

mental injection of information becomes very cumbersome,
together with the fact that information from smaller regions
(i.e. necrotic and non-enhancing tumor core sub-region) is not
present in all the slices. We fixed this BORDE block configu-
ration and use it for quantitative and qualitative experiments,
and the next ablation study.

TABLE IV
ABLATION STUDY RESULTS IN BORDE BLOCK ON BRATS 2020 DATASET

AND METRICS.

Configuration DICE ↑ Sensitivity ↑
ET WT TC ET WT TC

semantic map 0.77 0.89 0.89 0.72 0.89 0.89
boundary + sem. map 0.78 0.89 0.90 0.75 0.89 0.89
boundary + 2 sub-reg. 0.85 0.88 0.89 0.77 0.90 0.90
boundary + 3 sub-reg. 0.87 0.91 0.91 0.87 0.93 0.94
boundary + 4 sub-reg. 0.83 0.90 0.92 0.84 0.91 0.95

TABLE V
ABLATION STUDY RESULTS IN BORDE GENERATOR ON BRATS 2020

DATASET AND METRICS.

Configuration DICE ↑ Sensitivity ↑
ET WT TC ET WT TC

BORDE blocks 0.80 0.88 0.90 0.77 0.88 0.89
prev. + multi-task 0.83 0.89 0.89 0.79 0.90 0.92
prev. + residual 0.85 0.87 0.90 0.85 0.91 0.93

prev. + noise 0.87 0.91 0.91 0.87 0.93 0.94

Table V shows the possible configurations of the BORDE
generator. First, we show results using only BORDE blocks
and generating multimodal outputs. Second, using the previous
configuration (BORDE blocks) and generating multimodal
outputs along with their contours. This can be seen as a
multi-task learning process. Third, the previous configuration
(BORDE blocks + multi-task) and adding residual connec-
tions. Fourth, using the previous configuration (BORDE blocks



Fig. 5. Our model attains multimodal semantic image synthesis capability and high fidelity. For reference, the ground truth image is shown next to our
synthesized images in all cases. It shows that FLAIR ground truth images are blurry due to non-axial MRI reconstruction.

+ multi-task + residual connections) and adding noise as
an additional input into each model stage. We can see that
each additional component helps to improve the quantitative
results. More precisely, the use of a multi-task objective allows
having a generator that is more aware of tumor sub-regions. In
addition, the injection of multi-stage noise helps to generate
more diverse images.

V. CONCLUSION

We have proposed BORDE, a normalization block, which
feeds sequentially a-priori information into the BORDE gen-
erator in the form of boundaries and sub-regions through
learned denormalization parameters. In addition, we propose
a generator, which is formed by BORDE blocks with residual
connections, multi-scale noise injection, and multi-task objec-
tives that produce realistic multimodal brain images of tumor



lesions or ischemic strokes. We further demonstrate that our
model outperforms different SOTA baselines, such as SPADE
or SEAN by decreasing respectively the FID score by 1.69
points. Also, when our synthesized images are used as an
additional training source, for semantic image segmentation
tasks, BORDE helps to increase the DICE score by 7% and
sensitivity by 12%.
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