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Abstract—Pediatric brain MRI is a useful tool in assessing the
healthy cerebral development of children. Since many pathologies
may manifest in the brainstem and cerebellum, the objective of
this study was to have an automated segmentation of pediatric
posterior fossa structures. These pathologies include a myriad of
etiologies from congenital malformations to tumors, which are
very prevalent in this age group. We propose a pediatric brain
MRI segmentation pipeline composed of preprocessing, semantic
segmentation and post-processing steps. Segmentation modules
are composed of two ensembles of networks: generalists and
specialists. The generalist networks are responsible for locating
and roughly segmenting the brain areas, yielding regions of inter-
est for each target organ. Specialist networks can then improve
the segmentation performance for underrepresented organs by
learning only from the regions of interest from the generalist net-
works. At last, post-processing consists in merging the specialist
and generalist networks predictions, and performing late fusion
across the distinct architectures to generate a final prediction.
We conduct a thorough ablation analysis on this pipeline and
assess the superiority of the methodology in segmenting the brain
stem, 4th ventricle and cerebellum. The proposed methodology
achieved a macro-averaged Dice index of 0.855 with respect to
manual segmentation, with only 32 labeled volumes used during
training. Additionally, average distances between automatically
and manually segmented surfaces remained around 1mm for the
three structures, while volumetry results revealed high agreement
between manually labeled and predicted regions.

I. INTRODUCTION

The brain develops rapidly during the third trimester of
pregnancy and can be analyzed by magnetic resonance imag-
ing (MRI) in the prenatal and postnatal periods [1]–[3]. It con-
tinues to evolve, especially in the first two years when most of
the myelination process happens. Different myelination stages
in pediatric brain Magnetic Resonance Imaging (MRI) result
in distinct water, lipid, and cholesterol content in white matter,
yielding distinct visual patterns. Pediatric brain segmentation
is hence challenging not only due to its smaller size – which
may result in partial volume effect – but also because of its
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particular contrast between white and gray matter [4]–[6]. The
lack of myelination in children younger than two years old has
also major implications because of low image contrast between
normal and abnormal appearing white matter. The difficulties
related to the myelination process in the pediatric brain impact
both computer-aided segmentation and manual methods, lead-
ing to potentially significant disagreement among experts [7].
Thus, despite the huge amount of work on segmentation [8],
the methods proposed in the adult context cannot be directly
used for segmenting pediatric brain images. This also applies
to white matter hyperintensities, where the methods developed
for adult brain images (e.g. [9]–[11]) are not appropriate, since
this T2/FLAIR hyperintensity may be physiological in children
under two years of age. This highlights the need for a robust
knowledge of normal versus pathological patterns in terms of
volume, morphology, and signal intensities.

Most existing semi-automatic or automatic methods for
classical pediatric brain segmentation are based on atlases [12],
[13] and/or shallow learning [6], [14], [15]. However, these
methods are often unable to cope with inter-individual vari-
ability and are generally not adapted to pathological cases.
Additionally, most of these methods focus on high-quality
images, acquired with 3T or stronger field MRI scanners.
Yet, until recently in clinical routine most MRI scanners
operate at field strengths around 1.5T and result in images
of inferior quality. Tasks related to segmentation concern
volumetry and regional analysis of specific structures, such
as the corpus callosum which can be involved in various
pathologies [6], [16], and of neuro-pathologies such as tumors.
Thus, developing new methods for neuro-oncology would be
of particular interest to answer important clinical needs [9],
[17], such as treatment response [9] and the effects of low-
intensity radiation [17] treatments.

Convolutional Neural Networks [18] (CNNs) have become
ubiquitous in traditional visual learning tasks such as object
classification, segmentation [19], [20], and detection [21].
Related fields also benefited from the large representation



capabilities of CNNs, including a plethora of medical image
tasks [22]. Radiology is arguably the largest beneficiary of
deep learning in medical imaging, mainly because it is a highly
data-driven field [23], and due to the inherent difficulties in
reading radiological exams. This is especially true in volumet-
ric data (e.g. MRI, Computer Tomography – CT, and Positron
Emission Tomography – PET), as monitors only allow for 2D
slices or projections of these 3D data to be viewed at any one
time, making the visual assessment a laborious task.

In an effort to alleviate the burden of physicians, the
main contribution of this work is the pipeline composed
of a generalist and a pair of specialist networks for fine-
grained automatic segmentation and volumetry of posterior
fossa structures. Secondary contributions include: 1) a standard
methodology for acquiring and annotating posterior fossa
structures in pediatric brain MRIs; 2) a segmentation bench-
mark for posterior fossa structure segmentation; 3) a first
effort in standardizing the volumetry measurements of the 4th

ventricle, brain stem and cerebellum for patients with ages
ranging from 0 to 18 years; and 4) experiments reported in
this manuscript have been performed in a real dataset of 32
pediatric images obtained in a large public hospital.

II. RELATED WORK

Considering the posterior fossa as a region of interest is
a common choice due to its clinical interest. Some of the
research in this region has focused on biometric analysis,
like [24] which uses a semi-automatic segmentation based
on a region growing technique to distinguish posterior fossa,
vermis, and brainstem, and then to measure its structures due
to the growth disorders that affect this region. Other works
focus on the analysis of this region of interest to find pediatric
brain tumors [25], [26] which develop more often in that
region, reaching about 55% to 70% of cases [25].

Over the last decade, deep feature learning has become the
state-of-the-art for most computer vision applications. Since
the resurgence of CNNs [18] from their first proposal [27],
this family of network architectures has become ubiquitous
in traditional visual learning tasks, such as object and scene
classification. Around the middle of the 2010’s, variations of
traditional CNNs were adapted to a broader set of problems,
such as object detection [21], semantic segmentation [19],
and video understanding [28]. Related fields also benefited
from the large representation capabilities of CNNs, including
medical image analysis [22]. Radiology is arguably the largest
beneficiary of deep learning in medical imaging, as mentioned
in the introduction. Fully Convolutional Networks (FCNs)
and variations of Encoder-Decoder architectures were quickly
adapted to perform volumetric image segmentation [20], [29]–
[32], effectively aiding physicians in diagnosis and surgery
planning.

III. DATASET DESCRIPTION

There is a lack of publicly available neonatal and pediatric
brain MRI datasets, mainly due to patient privacy and ethical
issues. Also, existing public datasets are not suitable for our

0 2 4 6 8 10 12 14 16 18
Age

0

1

2

3

4

5

6

N
um

be
r 

of
 P

at
ie

nt
s

Fig. 1. Histogram of patient ages in the dataset.
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Fig. 2. Preprocessing steps for our pediatric MRI dataset.

proposed task, since data are annotated for other purposes. For
instance, BraTS [33] contains data for tumor segmentation in
adults MRIs, and iSeg [34] consists of data for brain tissue
segmentation of neonates with ages ranging from 2 weeks to
12 months. Therefore, we found it necessary to build our own
labeled dataset.

The dataset used in this project consists of 32 T2-weighted
MRI volumes acquired using a 1.5T Philips Ingenia scanner,
11 of them being obtained in the axial plane and the other 21
in the sagittal plane. We standardized the dataset to the axial
plane view by transposing the 21 sagittal samples. Voxel sizes
varied from 0.5 × 0.5 × 0.9 to 0.9 × 0.9 × 2 mm3. Patient’s
ages in the dataset range from a few months (0 years) to 18
years. As Figure 1 shows, there is a predominance of smaller
children (0 to 4 years). Such a diversity of ages contrasts with
other datasets, such as the previously mentioned iSeg [34].

Figure 2 shows the preprocessing pipeline applied to the
dataset. First, the Brain Extraction Tool (BET) [35] is used
to skull-strip the volume, in order to remove the non-brain
voxels of the image. Then, Bias-Field Correction (BFC) [36]
is applied to compensate for inhomogeneities in the magnetic
field. The result is the input for the subsequent segmentation
methods.

MRI volumes were annotated by radiology residents using
medical image processing tools, such as Insight Toolkit (ITK)1

and 3D Slicer2, to provide reference segmentations of the
structures of interest: 4th ventricle, brain stem, and cerebellum.
The residents were supervised by two radiology experts, who
reviewed and corrected the residents’ annotations.

1https://itk.org/
2https://www.slicer.org/



IV. PROPOSED PIPELINE FOR POSTERIOR FOSSA
SEGMENTATION

We assess the performance of 5 architectures for the fossa
segmentation task. One of the most common architectures in
medical image segmentation is the U-Net [20], an Encoder-
Decoder architecture that uses a multitude of skip connections
via concatenation linking symmetric shallow and deep layers
to yield high resolution segmentations. Classical U-Nets were
designed for 2D images, but this architecture has been adapted
for 3D volumes all throughout the literature. Concatenations,
however, add a large amount of trainable parameters to the
network, which needs to learn trainable convolutional filters
for both shallow and deep activations on the decoders. V-
Nets [29] were proposed to mitigate this problem by replacing
concatenation by addition as their identity mapping, leveraging
the proven advantages of residual blocks [37]. HighRes3DNet
(HR3N) [30] exploits the varying receptive fields of dilated
convolutions coupled with residual connections to yield a
highly versatile and more compact architecture without losing
performance when compared with other networks in the liter-
ature. SkipDenseNet (SDN) [31] takes advantage of densely
connected blocks [38] to extract multiscale features from the
data, while, at the same time, mitigating vanishing gradi-
ents by providing shortcuts in the backpropagation. At last,
Med3D [32] showed highly adaptable representation learning
capable of performing volumetric image segmentation in a
multitude of domains.

As different architectures use distinct data flow strategies
(e.g. filter sizes, dilation, upsampling strategies, skip connec-
tions, etc.), the features learned by each of them tend to high-
light varied characteristics in the data. By exploiting this va-
riety among voxel-wise classifiers, one can build more robust
segmentation models via late fusion. The most common late
fusion technique is a majority voting among the predictions of
an ensemble of classifiers, which is the strategy employed in
our segmentation framework. More details regarding the late
fusion procedure can found in Section IV-B.

Our MRI dataset contains samples with a large variation in
the resolution along the x-, y- and z-axes, thus, in order to
standardize the sizes of the inputs, we resized all volumes and
segmentation masks during training to 128× 128× 64 voxels,
regardless of voxel size. This volume size was chosen because
exploratory experiments showed that it offered an acceptable
compromise between memory budget and volume size. We
performed online data augmentation by randomly removing up
to 10% at the beginning and end of each axis before resizing,
slightly rotating the images and masks around the craniocaudal
axis by angles θ ∼ N(0, 1), as well as randomly flipping
the image/mask pairs across the sagittal plane, leveraging the
quasi-symmetric nature of the brain. We tested a variety of
patch-wise approaches, however, as the borders of the posterior
fossa structures are often delineated in relation to surrounding
tissues, patches hampered the convergence of the networks
instead of helping. It was observed that the volume size
128 × 128 × 64 after simply resizing the volumes was too

low to achieve smooth segmentation boundaries. To overcome
this limitation we devised a scheme composed of specialist
networks able to perform fine-grained structure segmentation
on smaller Regions of Interest (ROIs), as further explained in
Section IV-A.

A. Specialist Networks

Early experiments showed that patching smaller volumes of
the MRIs severely hampered the performance of the models, as
the segmentation tasks at hand proved to be highly dependent
on the spatial context of the voxels. In other words, the
properties of the non-immediate surrounding tissue are very
important to the predicted segmentation class. In order to
avoid patching and leverage all annotated pixels in our small
labeled set, we propose a 2-step architecture: 1) rough predic-
tion by a generalist network (G); 2) fine-grained predictions
from a couple of specialist networks (S(1) and S(2)). S(1)

specializes in the region in and around the brain stem and
4th ventricle, learning to segment only a small ROI predicted
by G and resized to 64 × 64 × 128 voxels. S(2) learns to
perform fine-grained segmentation on the cerebellum, using
the bounding box predicted by G and resized to a volume
of size 64 × 128 × 64. Specialist patch sizes were chosen
empirically and based on the fact that the brain stem and
ventricle extend more on the craniocaudal axis (i.e. z-axis)
than on the posterior-anterior and latero-lateral axes, while
the cerebellum main axis stretches across the latero-lateral
axis (i.e. y-axis), not extending as far in the craniocaudal
and posterior-anterior axes. ROIs fed to both specialists are
padded with 5 voxels on each side before resizing in order
to include the full structures even in the case where G misses
large regions in the boundaries of the desired structures. A
depiction of the generalist/specialist pipeline can be seen in
Figure 3.

In addition to the preservation of the spatial context pro-
vided by our strategy, resizing coupled with specialist net-
works is also simpler and less expensive to implement to be
applied on samples with varied resolutions and voxel sizes
as the ones in this study. It is also cheaper to merge predic-
tions for ROI segmentations from specialist networks into a
single global prediction than joining a large set of smaller
overlapping patches, a process that often requires a post-
processing heuristic (e.g. mode filtering, image morphology, or
even additional Bayesian models) to be applied in the predicted
volume. Our fusion function Φ(S(1),S(2)) simply overwrites
the predicted cerebellum in ŷG with ŷ(2), and the ventricle
and brain stem by ŷ(1). At last, yet another advantage of
specialist training is the inherent mitigation of label imbalance
when using smaller volumes surrounding the ROI in the
specialists because the structures occupy larger relative sizes
in comparison with the volume.

Our pipeline is closely related to Med3D [39] in the
use of cropped ROIs, with three crucial distinctions. First,
Med3D relies heavily on transfer learning from related tasks,
while the proposed methodology did not see advantages in
pretraining from adult MRIs from BraTS2018 [33]. This could



Fig. 3. Proposed segmentation pipeline for posterior fossa structures. The whole volume XG is first fed to the generalist (G), yielding a coarse prediction
ŷG . From ŷG , two volumes are extracted: X(1), which feeds S(1) to learn predictions ŷ(1) for the 4th ventricle and brain stem; and X(2), fed to S(2) to
yield cerebellum segmentation ŷ(2). Predictions are combined via a function Φ, resulting in ŷΦ.

be attributed to the large differences in visual patterns due
to distinct myelination development stages. The second main
difference between our method and Med3D is that we do
not repurpose the generalist network for the specialized tasks.
While this has the advantage of leveraging the whole MRI
data, even outside the ROIs for the specialists, it also forces the
same network to learn multiscale information; potentially ham-
pering its performance. At last, we do not fix the architecture
of the network, instead leveraging the advantages of ensembles
by performing late fusion on 5 off-the-shelf architectures, as
presented at the beginning of Section IV.

In an effort to improve reproducibility and foster future
applications in pediatric brain MRI for automatic assessment
of child development, our implementation of semantic seg-
mentation with specialist networks can be found on the project
webpage5. We also publicize pretrained weights for generalist
and specialist networks, so other researchers can leverage the
advantages of transfer learning to related tasks and/or private
datasets.

B. Late Fusion

The late fusion strategy adopted in our pipeline can be
divided into two distinct stages: 1) fusion of intra-architecture
generalist and specialist predictions, and 2) cross-architecture
voting. While the first stage aims to improve the delineation

5https://github.com/hugo-oliveira/STAP-3DSegmentation

of organ boundaries, the second stage raises the objective
segmentation metrics by considering an ensemble of models
instead of a single network. Algorithm 1 details both stages
of the late fusion procedure for both training and test data.

Stage 1: The first stage receives training data and labels
(xtr,ytr) and test samples (xts). The ensemble of generalist
models fG is trained on {xtr,ytr} to yield a coarse segmenta-
tion prediction ŷtr

G , which can be used to crop the full volumes
into specialist Regions of Interest (xtr

(1) and xtr
(2)) together with

the cropped masks (ytr
(1) and ytr

(2)). {x
tr
(1),y

tr
(1)} is then used

to train fS(1) , while {xtr
(2),y

tr
(2)} feeds the training of fS(2) . A

fusion function Φ is then used to merge predictions ŷtr
S(1) and

ŷtr
S(2) to generate predictions ŷtr

Φ . In our implementation Φ is
simply a function that first copies ŷtr

S(2) and then overlaps it
with ŷtr

S(1) . This order was defined because it was observed that
ŷtr
S(1) better delineates the boundary between the cerebellum

and other structures.

Stage 2: With ensembles fS(1) and fS(2) properly fit, one can
then generate predictions ŷts

(1) and ŷts
(2) for cropped samples

xts
(1) and xts

(2). As in Stage 1, ŷts
(1) and ŷts

(2) are joined into ŷts
Φ .

Pixel-wise predictions from individual network architectures
(ŷts

Φ ) are then merged via majority voting to yield the final
prediction ŷts

maj .



Algorithm 1 Late fusion algorithm for specialist and generalist
networks for an ensemble of segmentation architectures on
one single fold division between training ({xtr,ytr}) and test
({xts}) sets.
Require: xtr,ytr: training volumes and labels
Require: xts,yts: test volumes and labels
Require: fG , fS(2) , fS(2) : generalist and specialist ensembles

Randomly initialize fG , fS(2) and fS(2)
// Training Procedure.
for all f iG , f iS(1) , f

i
S(2) in fG , fS(1) , fS(2) do

Train f iG on {xtr,ytr}
Compute prediction ŷtr

G ← f iG(xtr
G )

Obtain xtr
(1) and xtr

(2) by cropping xtr according to ŷtr
G

Obtain ytr
(1) and ytr

(2) by cropping ŷtr
G

Train f iS(1) on {xtr
(1),y

tr
(1)}

Train f iS(2) on {xtr
(2),y

tr
(2)}

end for
Ŷ ← {} // Prediction list.
// Evaluation Procedure.
for all f iG , f iS(1) , f

i
S(2) in fG , fS(1) , fS(2) do

Compute prediction ŷts
G ← f iG(xts)

Obtain xts
(1) and xts

(2) by cropping xts according to ŷts
G

Compute ŷts
S(1) ← f iS(1)(x

ts
(1)) and ŷts

S(2) ← f iS(2)(x
ts
(2))

ŷts
Φ ← Φ(ŷts

(1), ŷ
ts
(2)) // Stage 1 fusion.

Ŷ ← Ŷ + ŷts
Φ

end for
// Majority voting across architectures (Stage 2 fusion).
ŷts
maj ← majority voting(Ŷ)

return fused prediction ŷts
maj

V. EXPERIMENTAL PROCEDURE AND METRICS

Individual architectures were modified (e.g. number of
filters in each layer, number of layers, etc.) in order to fit
a mini-batch containing 2 samples into one single GPU with
8GB of memory or in a couple of GPUs with a mini-batch size
of 4. This setup was implemented in order to prevent individual
architectures to perform better than others simply because of
parameter capacity. Hyperparameters were also standardized
across architectures, with training lasting 400 epochs using
the Adam optimizer [40], initial learning rate of 1 × 10−2

halved each 80 epochs, L2 weight decay of 5 × 10−5 and a
momentum of 0.5. The total loss function LT used for training
of generalist and specialist networks is a composite of the
Cross Entropy (LCE) and Dice (LDice) losses:

LT = LCE + LDice. (1)

All neural networks were implemented using Pytorch3 and
post-processing used the scikit-image4 library.

In order to quantify the segmentation errors, we employ
three evaluation measures: 1) voxel-wise error in the form
of the macro-averaged Dice score (DSC) – also known as

3https://pytorch.org/
4https://scikit-image.org/

the F1-score; 2) distances between surfaces, as the average
distance (µSD) and the 95th percentile of the robust Hausdorff
distance (HD95); and 3) R2 correlation between predicted
and reference volumetry. While the voxel-wise measures report
overall scores in the performance of the algorithm, the surface
distances can estimate the upper bounds of the distances
between the manually segmented objects and network predic-
tions, thus complementing each other. Dice is the less ex-
pensive measure to compute and yields an objective per-voxel
performance evaluation, thus we drive the baseline architecture
comparison via the DSC and report surface distances and
structure volumes only for the results of majority voting.

As our dataset only contains a small set of labeled data, our
experimental setup aimed to use the largest possible amount of
samples in training, while also leveraging the whole labeled
set to conduct evaluation. Therefore, we employed a 5-fold
cross-validation scheme on the 32 samples of our dataset.
We report average DSC computed for the validation folds
as a whole, but surface distances and structure volumes are
computed separately for each sample, as these are inherently
instance-level annotations.

VI. RESULTS AND DISCUSSION

Tables I and II present the results from experiments accord-
ing to the voxel-wise and surface distance measures, respec-
tively. Table I depicts the improvements brought by using the
specialist networks and majority voting in comparison with
generalist single architectures. The best DSC results from
single generalist architectures reached 0.810 (HR3N), while
majority voting across G architectures achieved an DSC of
0.823. Employing specialist networks on a single architecture
showed considerable gains in performance – up to 0.07 of
DSC in the case of Med3D – however combining majority
voting with specialist networks yielded both the best overall
score and the lowest standard deviation (0.855 ± 0.012),
indicating consistent gains in segmentation performance.

Surface distances shown in Table II indicate a consistent
improvement in the use of the specialist networks, as their
focus on precomputed ROIs from G allows them to precisely
delineate fine-grained segmentation masks of posterior fossa
structures. A more precise border delineation between classes
allows for better µSD and HD95, as they measure the
average and 95th percentile of the distance of Ŷ and Y .
Generalist networks are able to achieve average distances of
1.5mm, 1.2mm, and 1.0mm for 4th ventricle, brain stem, and
cerebellum, respectively. Φ(S(1),S(2)) shrinks these values to
1.1mm, 0.8mm, and 0.8mm, respectively. For comparison,
the lower voxel size in all our 1.5T MRIs had around 0.5mm,
while around half of our samples were acquired with a voxel
size along their finer resolution axis around 0.92mm or
0.96mm. In other words, the distance µSD for all organs
is close to the scale of 1 or 2 pixels in the worst case.

Larger surface distances for the 4th ventricle can be at-
tributed to a more difficult standardization in the labeling of the
lower point in this structure, as there is no clear physiological
landmark unequivocally pointing to where the ventricle ends.



TABLE I
DSC SCORES FOR THE PREDICTIONS OF OUR PIPELINE IN PEDIATRIC BRAIN MRIS. VALUES ARE PRESENTED IN THE FORMAT µ± σ ACROSS THE

5-FOLD DIVISION DESCRIBED IN SECTION V. THE SOLE BOLD VALUE INDICATES THE BEST OVERALL DSC .

Strategy V-Net U-Net HR3N SDN Med3D Majority
G .808 ± .035 .796 ± .025 .810 ± .014 .809 ± .022 .767 ± .022 .823 ± .017

Φ(G,S1) .840 ± .021 .832 ± .029 .817 ± .039 .829 ± .023 .825 ± .024 .850 ± .018
Φ(S1,S2) .842 ± .014 .840 ± .019 .819 ± .037 .842 ± .018 .839 ± .018 .855 ± .012

This inherent inconsistency in the inter-specialist annotation
procedure may prove to be a downside of using human ob-
servers instead of our automated methodology, as the models
will tend to average the inputs of the radiologists. In this
scenario, the model would effectively create its own standard
for delineating the lower point of the 4th ventricle and other
structures that present lower contrast in comparison with
surrounding tissue.

TABLE II
SURFACE DISTANCE IN mm FOR INDIVIDUAL POSTERIOR FOSSA

STRUCTURES PREDICTED FROM THE MAJORITY VOTING OF GENERALIST
AND SPECIALIST STRATEGIES.

Metric Strategy 4th ventricle Stem Cerebellum

µSD
G 1.5 ± 1.7 1.2 ± 0.6 1.0 ± 0.5

Φ(G,S(1)) 1.0 ± 0.8 0.8 ± 0.5 1.0 ± 0.5
Φ(S(1),S(2)) 1.1 ± 0.8 0.8 ± 0.5 0.8 ± 0.7

MHD
G 7.4 ± 5.3 5.3 ± 3.1 3.4 ± 1.8

Φ(G,S(1)) 5.6 ± 3.6 4.4 ± 3.1 3.4 ± 1.8
Φ(S(1),S(2)) 6.2 ± 3.3 4.5 ± 3.2 3.2 ± 2.3

The last set of objective measures in this work is composed
of volumetry comparisons. Figure 4 shows these volumes for
the three structures annotated in our dataset, both in correlation
to the manually labeled images and by age. Correlations
between G and reference segmentation masks are much smaller
than the R2 values from the specialist networks, again evi-
dencing that our 2-step scheme indeed quantitatively improves
predictions and may lead to automatic extraction of valuable
clinical information in child development. The influence of age
in the volume of the brain stem and cerebellum is clearly seen
in the rightmost column of the figure, while, due to its smaller
size and larger discrepancies in the annotation procedure, the
growth of the 4th ventricle is not as evident.

Figure 5 shows qualitative results from 3 samples in our
dataset, their respective ROIs surrounding the brain stem and
4th ventricle, and reference segmentations and predictions
by distinct models. G and Φ(G,S(2)) produce coarse class
borders, in contrast to Φ(S(1)S(2)), which yields more accurate
delineations between classes with fine-grained resolution, also
taking into account the physiological properties of the struc-
tures. For instance, there is no gap between the 4th ventricle
and brain stem/cerebellum and Φ(G,S(1)) incorrectly predicts
background voxels in this region due to the low resolution of
ŶG .

VII. CONCLUSION

Our pipeline composed of a generalist network and a couple
of specialist networks proved to be the best alternative both

quantitatively and qualitatively to segment posterior fossa
structures. Specialist networks were able to achieve better
voxel-wise, surface distance, and structure volume agreement
scores than the baseline approaches. Hence, automatic volume-
try of posterior fossa structures seems to be a viable approach
for aiding physicians in determining healthy biometry stan-
dards in neurological child development.

Future works include performing the same evaluations on
a larger unlabeled sample of pediatric MRIs and extracting
standards for structure volumes and other measurements that
can be computed according to the automatic segmentation
masks. Additionally, leveraging the models developed in this
work, we aim to grow our dataset by integrating pathological
samples and comparing them with our healthy pediatric MRIs.
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[8] I. Despotović, B. Goossens, and W. Philips, “MRI segmentation of the
human brain: challenges, methods, and applications,” Computational and
Mathematical Methods in Medicine, vol. 2015, 2015.

[9] D. Rodriguez Gutierrez, M. Manita, T. Jaspan, R. A. Dineen, R. G.
Grundy, and D. P. Auer, “Serial MR diffusion to predict treatment
response in high-grade pediatric brain tumors: a comparison of regional
and voxel-based diffusion change metrics,” Neuro-oncology, vol. 15,
no. 8, pp. 981–989, 2013.

[10] M. E. Caligiuri, P. Perrotta, A. Augimeri, F. Rocca, A. Quattrone, and
A. Cherubini, “Automatic detection of white matter hyperintensities
in healthy aging and pathology using magnetic resonance imaging: a
review,” Neuroinformatics, vol. 13, no. 3, pp. 261–276, 2015.

[11] L. Griffanti, G. Zamboni, A. Khan, L. Li, G. Bonifacio, V. Sundaresan,
U. G. Schulz, W. Kuker, M. Battaglini, P. M. Rothwell et al., “Bianca
(brain intensity abnormality classification algorithm): A new tool for
automated segmentation of white matter hyperintensities,” Neuroimage,
vol. 141, pp. 191–205, 2016.

[12] I. S. Gousias, A. D. Edwards, M. A. Rutherford, S. J. Counsell, J. V.
Hajnal, D. Rueckert, and A. Hammers, “Magnetic resonance imaging of
the newborn brain: manual segmentation of labelled atlases in term-born
and preterm infants,” Neuroimage, vol. 62, no. 3, pp. 1499–1509, 2012.

[13] M. J. Cardoso, A. Melbourne, G. S. Kendall, M. Modat, N. J. Robertson,
N. Marlow, and S. Ourselin, “AdaPT: an adaptive preterm segmentation

algorithm for neonatal brain MRI,” NeuroImage, vol. 65, pp. 97–108,
2013.

[14] P. Moeskops, M. J. Benders, S. M. Chiţǎ, K. J. Kersbergen, F. Groe-
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