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Université de Rennes 1
Rennes, France

ewa.kijak@irisa.fr

Simon Malinowski
Linkmedia, IRISA

Université de Rennes 1
Rennes, France

simon.malinowski@irisa.fr

Silvio Jamil F. Guimarães
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Abstract—Creating an image gradient is a transformation
process that aims to enhance desirable properties of an image,
whilst leaving aside noise and non-descriptive characteristics.
Many algorithms in image processing rely on a good image
gradient to perform properly on tasks such as edge detection and
segmentation. In this work, we propose a novel method to create a
very descriptive image gradient using edge-weighted graphs as a
structured input for the random forest algorithm. On the one side,
the spatial connectivity of the image pixels gives us a structured
representation of a grid graph, creating a particular transformed
space close to the spatial domain of the images, but strengthened
with relational aspects. On the other side, random forest is a fast,
simple and scalable machine learning method, suited to work with
high-dimensional and small samples of data. The local variation
representation of the edge-weighted graph, aggregated with the
random forest implicit regularization process, serves as a gradient
operator delimited by the graph adjacency relation in which
noises are mitigated and desirable characteristics reinforced. In
this work, we discuss the graph structure, machine learning on
graphs and the random forest operating on graphs for image
processing. We tested the created gradients on the hierarchical
watershed algorithm, a segmentation method that is dependent
on the input gradient. The segmentation results obtained from
the proposed method demonstrated to be superior compared to
other popular gradients methods.

I. INTRODUCTION

Image segmentation may be considered as a semantic task
and it is an active topic of research [1]. This task consists
in partitioning perceptually similar pixels into sets of regions
representing areas of interest. Usually this task is done in two
stages: (i) the extraction of image characteristics that facilitates
interpretation and further analysis; and (ii) the mapping of
these characteristics into coherent regions. A coherent region is
a subjective concept, but according to [2], it must present char-
acteristics such as: (i) uniformity; (ii) continuity; (iii) contrast
between adjacent regions; and (iv) well-defined boundaries.
Independently on how well-designed a mapping method is,
most of them are limited by the characteristics extracted on the
first stage. For instance, taking the grey-level contrast on the

first stage produces a great variation between regions, but have
absolute values very distinct, making it harder to determine
which value actually represents a region change.

Image gradients are known to facilitate the analysis by
enhancing desirable properties, extracting structural elements
of an image usually based on pixel intensities. Fast and

(a) Input image (b) Ground-truth

(c) SED (d) Sobel

(e) Laplacian (f) Proposed

Fig. 1. Examples of gradient computation, for the input image (a). In (c),
the SED gradient presents reinforced fuzzy borders of the main objects and
small details are in large ignored. Sobel (d) presents very thin edges for both
large and small objects, while large uniform regions, such as the asphalt and
vegetation are discretely represented. For Laplacian in (e), it is perceived a
large amount of noise for objects, edges and patterns. The proposed in (f)
computed enhanced borders for both large and small objects and image
textures are firmly represented with different simplified patterns.



inexpensive to compute, they are commonly used as a pre-
processing step in multiple applications, such as medical
analysis [3], [4], text extraction [5], video processing [6],
[7] and segmentation [8], [9]. Even with the advent of deep
networks, gradient use continues to be relevant due to its
performance. Also, the gradients are used as support for some
networks, providing enhanced features or reducing computa-
tion complexity [10]–[12]. Traditional gradient methods, such
as Laplacian and Sobel, are kernel filters for local variation,
highlighting the borders of objects and are usually very
sensitive to abrupt changes on the original image. In 2014, [13]
proposed a method for structured edge detection (SED) that is
fast and precise to predict object edges, and became a common
approach as image gradient creator for the segmentation task.
SED extends the Random Forest (RF) [14] formalism to
a general structured output space, using local patches to
map similar structured labels to the same discrete label. The
gradients produced by SED have enlarged fuzzy borders of
the main objects present on the image, while small details
and other regions are in large omitted. In Fig. 1, we illustrate
the gradient computed by SED, Sobel and Laplacian (Fig. 1
(c), (d) and (e) respectively) from the input image in Fig. 1(a).

The kernel methods and SED are widely used [3]–[12],
achieving their goal of enhancing the borders and partially
the contrast between regions. In this work, we argue that
although the borders constitute an important characteristic of
the objects depicted in images, other properties that reflect the
uniformity, homogeneity and continuity are also important for
the interpretation of coherent regions, particularly on the task
of image segmentation.

To reflect these characteristics, we propose a novel method
to create gradients that firmly depicts edges of large and
small objects as well as uniform regions and patterns on
the image, making it a very descriptive image gradient. It
is proposed to use edge-weighted graphs aggregated with the
Random Forest (RF) [14]. This approach is motivated because
the spatial connectivity of the pixels of an image gives us a
structured representation of a grid graph, creating a particular
transformed space close to the spatial domain of the images,
but strengthened with relational aspects. The edge-weighted
graph as an image gradient operator acts as a transformation
filter on the image, but as in the case of many spatial filters
based on local differences, it is subjected to respond strongly
to noise. We expect that the attribute selection and implicit
regularization process [15] on the RF trees can mitigate this
aspect while reinforcing desirable characteristics.

As in many machine learning algorithms, RF requires a
systematic input and a strategy must be placed to deal with the
dynamic structure of the graphs. The goal is to maintain the
main characteristics of the graph—e.g., topology, relationships,
essential features—without loosing too much information. A
popular approach is graph embedding [16]–[21] that creates
good vectorial representations, but is extremely expensive for
image graphs in terms of computational resources and time.

Alternatively to graph embedding, authors working with
graphs as input for the RF also proposed to create a regular
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Fig. 2. Illustration of the proposed gradient (GIG) applied as pre-processing
step to the task of image segmentation. GIG assisted the segmentation method
to retrieve most of the delicate tissue, the main person with integrity and
small details like the smaller person, vegetation and building. Presented in
comparison with other popular gradient methods, SED and Sobel, that do not
retrieve as successfully the same components.

representation by the use of: (i) graph adjacency matrix [22];
(ii) graph topology measures (e.g., centrality, community) [23],
[24]; (iii) selection of attributes [25], [26]; (iv) pairwise com-
parison of graph components [27]; and (v) feature inference
methods [28]. We propose to make a selection of attributes
that preserves the main features of the original image and
incorporates the relational aspects of the graph.

The main contributions of this work are three-fold:
1) The use of graph representations of images as input of

Random Forests, in which: (i) the regions of analysis are



delineated in the neighborhoods inside the graph; (ii) the
feature space is defined in terms of graph attributes;
and (iii) the discrete label attribution is centered on the
components, therefore the entirety of a neighborhood is
assigned to a single label. It aims to keep the main
features of the original image and the information about
relational aspects of the graph. Also, the standard discrete
label is considerably faster to train than the complex
structured output space mapping in SED—to be precise,
experiments training each tree of the proposed method
and SED took approximately 2 seconds for the former
and 4 hours for the latter, using the same CPU.

2) A straightforward strategy to create a systematic input
to implement machine learning on grid graphs, a topic
of great interest recently due to: (i) its autonomy—the
source data becomes virtually irrelevant once the learning
system operates on graphs; (ii) the multiple possibilities
of applications; and (iii) the graph capacity to represent
multivariate information.

3) The description of how RF could be used for image
processing by mapping the RF predictions back to the
image space in the form of very descriptive image gra-
dients. The quality of the obtained gradients is assessed
qualitatively and quantitatively on a segmentation task.
Some segmentation samples are presented in Fig. 2,
obtained from the proposed method, SED and Sobel.

From now on, we will refer to the proposed method as graph-
based image gradient (GIG), illustrated in Fig. 1(e).

This work is organized as follows. In Section II, we give
a brief description of graphs, their components and termi-
nologies. An overview on RF and the proposed strategy to
apply the graph structured input with attribute selection for
learning are given in Section III. In Section IV, we provide
some experimental results to demonstrate how these proposed
gradients could be successfully used to improve segmentation
results of one well-known segmentation algorithm, called
hierarchies of watershed [29], in contrast with other popular
methods for the gradient, illustrated in Fig. 1. And finally, in
Section V, we draw some conclusions.

II. EDGE-WEIGHTED IMAGE GRAPHS

The main concern in graph theory is the interconnection
of objects, depicting many data. In this section, we provide a
brief description of its components and terminologies, mostly
following the notations in [30].

Definition 1. A (undirected) graph G = (V,E) consists of a
finite nonempty set of vertices, denoted by V , and a finite set
of edges {{u, v} | u, v ∈ V }, denoted by E ⊆ V × V .

The notion of vertices relates to the representation of the
basic components of the data and the edges to the connections
and dynamic between them. Furthermore, multiple functions
could be associated with each vertex and/or edge, in order
to enhance the relational aspects, interpretation of different
adjacency relations and insertion of metric properties.

Definition 2. An edge-weighted graph could be denoted by
(G,F) in which F : V × V → R is a function that weights
the edges of G. The set of all functions that could be used to
weight the edges of a graph is denoted by F(E).

The preserved characteristics on the graph depend on the
nature of F and the problem of selecting a function to weight
an edge could be considered as a problem of measuring the
similarity between two finite sets of points.

Definition 3. The set E induces a unique adjacency relation Γ
on V , which associates u ∈ V with Γ(u) = {v ∈ V |(u, v) ∈
E}. Γ is reflexive ((u, u) ∈ Γ(u)) and symmetric ((u, v) ∈
Γ(u) ⇐⇒ (v, u) ∈ Γ(v)).

The discussions about graph creation and manipulation can
be made generic enough to model any data, but, for instance,
we are interested on image graphs, in which the spatial
connectivity of the pixels gives us a structured representation
of a grid graph, close to the spatial domain and strengthened
with relational aspects. For the image graph G defined on the
image domain, the adjacency relation Γ between the pixels
is typically obtained by a structured adjacency relation, such
as 4- or 8-adjacency in a grid form, and the set of vertices
V = {v1, v2, . . . , vN} represents the N pixels of the image.

The set of functions associated with each vertex is denoted
by f : V ⊂ Z2 → R. Common functions in f include low-level
descriptors, variations in the color space or in the gray-scale
magnitudes. The latter being notably important as the most
common source to calculate the weighting function.

For the set of weighting functions F(E) of G(V,F), the
best candidates are the ones that could characterize similarities,
and for such, the Euclidean distance is the most common,
defined in E as Feuc(u, v) =

√
(f(u)− f(v))2. The edge

weights may represent the local variation around a vertex,
and serve as an image gradient operator bounded by the
adjacency relation. The interaction between the image data
and the preserved characteristics on the edge-weighted graph
is conditioned by the topology choices, such as the adjacency
relation and the properties of the weighting function.

III. IMAGE GRADIENTS FROM RANDOM FOREST
PREDICTIONS

Weighting edges as an image gradient operator, like many
gradient operators, acts as a transformation filter on the image
creating a transformed space by changing the contrast of the
original image and spreading the intensity levels.

Definition 4. The graph-based gradient operator for edge-
weighted graph (G,F) at vertex u could be defined as:

∇Ff(u) = (∂v1f(u), . . . , ∂vkf(u)),∀vi ∈ Γ(u) (1)

where ∂vf(u) is the edge derivative of f at a vertex u ∈ V
along the edge e = (u, v) ∈ E:

∂vf(u) =
∂f

∂e

∣∣∣∣
u

= F(u, v) (2)
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Fig. 3. Proposed framework steps from the input image to the Random forest predictions to compute the gradients. From the set of input images, we transform
each image to gray-scale magnitudes, in order to compute the weights for vertices associated with each pixel of the image. The edge-weighted graphs created
are grid graphs, here illustrated with the 4-adjacency relation for simplicity. The next step transform the graph structure to a regular representation with the
selected attributes, in order to serve as input for the Random Forest model. The regular input for the training set includes the label associated with each
vertex created using the unique discrete label on the edge detection ground-truth. During test, each vertex of the test graphs is subjected to the Random Forest
prediction, where the estimated values are mapped back to the image coordinates as an intensity value to create the image gradient.

As in the case of many spatial filters based on local
differences, the graph-based gradient operator defined for Feuc

is subjected to respond strongly to noise. We expect that the
attribute selection on the RF trees can mitigate this aspect
and also any eventual poor topology choice while reinforcing
desirable characteristics.

A. Random Forest as regularizers

A RF is a non parametric machine learning method that can
be used both for classification and regression. The RF predictor
consists of M randomized trees. The core of RF algorithm,
as proposed by [14], is the randomization of sampled data
distributed to supervise the training of independent decision
trees, and the aggregation of the results for the final prediction.

In each internal node k of a tree in the forest, there is a
split function h(x, θk) for a query point x with parameters
θk. During training, the parameters θk are learned, usually by
maximizing the information gain Ik to split the data samples
covered by k into two subsets with the maximum proportion
of instances belonging to the same label. On the test phase,
an unseen set of data is applied to h at each split node and
the result of the test determines the path the data will perform
until it reaches a terminal node with the label prediction.

RF are empirically successful in suppressing noise, although
the statistical and mathematical properties of the procedure are
still obscure [31]. Some consensus is that the randomness in
RF performs as an implicit regularization process, behaving as
interpolating classifiers that encourage large consistent regions
and reduce the effect of noise [15].

B. Applying Random Forest to edge-weighted graphs

To use the RF implicit regularization process with the
local variation representation of the edge-weighted graph, we
propose to use the information on the graph edges and vertices
to represent the graph on the framework. We represent the
regular input of the RF as:

Definition 5. Dn = ((X1,Y1), . . . , (Xn,Yn)) with n ⊆ |V |
samples of vertices of the edge-weighted graph (G,F), each
represented as a vector X ∈ Rp and label Y.

In our application, edge-weighted graphs are created from
images, each vertice thus corresponds to a pixel. X is a vector
with dimension p = |Gatt| for Gatt representing a set of
selected attributes of the vertices of (G,F). In this work, the
selected attributes belong to two categories:
• vertex attributes (XV ), belonging to the set of vertices

functions f . Each v ∈ V is mapped into a set of low-level
color descriptors proposed in [32]: from RGB colors of
an image pixel, 3 color channels in CIE-LUV color space,
2 normalized gradient magnitude channels and 8 gradient
orientation channels are calculated;

• edge weights (XF ), for a given vertex v and all its adja-
cent vertices, it is represented by the set of edge weights
between them. Therefore XF = {Feuc(u, v) | ∀u ∈
Γ(v)}. In this work, we go further the immediate neigh-
bours of v and include also the neighbours in the adja-
cency of the immediate neighbours. Therefore,

XF = {Feuc(u, v),Feuc(w, u)}

for all u ∈ Γ(v) and ∀w ∈ Γ(u).
We thus end with X = Gatt = {XV XF}, by concatenating

the two sets of selected attributes.

C. Using Random forest to compute gradients

In order to obtain gradients, RF is trained on an edge de-
tection task. Because each vertex of the graph is created from
a pixel of the image with a unique label on the ground-truth,
all the n entries X have a unique discrete label Y ∈ {0, 1}
on the task of edge detection.

To obtain the image gradient on this framework, all vertices
of a test graph are subjected to the estimations of the RF
trained on the input data sample Dn. At inference, instead of



Input & ground-truth SED Sobel Laplace GIG

Fig. 4. 1st row: Input image and the gradients created by the compared methods. 2nd row: Boundary ground-truth and watershed hierarchies represented as
saliency maps that allow us to visualize the hierarchy of regions. 3rd row: Segmentation ground-truth and the segmented images with 10 regions as criterion.

taking the label prediction, we use the RF as a regression
estimator, producing an estimate mM,n from the M trees
composing the RF.

Following the notations presented in [33], for a query point
X, the j-th tree in M gives the estimate m : X → R:

m(X; Θj ,D) =
∑

i∈D∗(Θj)

1Xi∈A(X;Θj ,D)Yi

N(X; Θj ,D)
, (3)

where:
Θj is the random variable for re-sampling and se-

lecting the split directions;
D∗(Θj) is the set of sampled data points for the tree

construction;
A(X; Θj ,D) is the tree terminal node containing X;
N(X; Θj ,D) is the number of data points falling in this

terminal node.
The final estimated value, mM,n(X), obtained by averaging

the M estimates m(X; Θj ,D) is thus taken as a confidence
value that a certain vertex X indeed represents an edge. These
estimated values for vertices are mapped back to the image
coordinates as an intensity value to create the image gradient.

An illustration of the proposed framework is provided in
Fig. 3 with simplified examples.

IV. EXPERIMENTS

We evaluate the proposed GIG both qualitatively and
quantitatively, and compared it to the widely used gradients
from SED, Sobel and Laplacian methods. We perform the
evaluation through a hierarchical image segmentation task
performed on the Berkeley Segmentation Dataset and Bench-
mark (BSDS500) [34], consisting of 500 RGB images (200
train, 100 validation and 200 test), each with human labeled
segmentations and boundaries. For the qualitative analysis, we

provide some resulting gradients and segmentation images and
discuss the impact of the different gradients in hierarchical
image segmentation. For the quantitative analysis, we use two
image partition interpretation metrics on the BSDS dataset.

A. Experimental setup

From the input images, the graphs are created as undirected
graphs with structured 8-adjacency relation. For the vectorial
representation of the vertex attributes, we explore the low-
level descriptors discussed in Sec. III, therefore |XV | = 13.
For the weighted edges attributes, we use F(E) = {Feuc} to
weight the 8 direct adjacent vertices of a certain vertex and
each of their subsequent neighbors, therefore |XF | = 64. Not
all values are unique in this representation as the vertices on
the path share some neighbours. For the vertices that do not
have all neighbors considered on the path, such as the ones
created from the pixels on the border of the image, we added
a padding value to the missing neighbors.

The training set Dn is composed of n = 7, 720, 050 vertices,
corresponding to a balanced sub-sample of 25% of all vertices
from the 200 training images, each labeled with the pixel
ground-truth label for the boundaries. We explored training
parameters on the validation set. The RF is trained with
M = 150. All the 77 input features of X are considered at
each split during training (no random feature selection). The
quantitative results are presented on the test set, the gradient
images being created by the estimated values predicted by the
trained RF.

In this work, we do not propose a segmentation approach,
we present instead a strategy to extract image characteristics
that facilitate interpretation and further analysis. Therefore, in
order to evaluate the quality of the gradients, we propose to
apply the compared methods on the watershed hierarchies [29].
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Fig. 5. Segmentation results obtained from GIG, SED and Sobel gradients with varying number of regions (Left: 3, middle: 5, right: 1000).

This intuitive algorithm maps image gradients to segmentation
and its performance depends on the gradient input, making
it the ideal candidate to evaluate our approach. For the
segmentation step, we have used a hierarchical segmentation:
the watershed by area. It is worth to mention that, thanks to this
hierarchical structure, it is very easy to compute segmentation
with an exact number of regions, for instance, from 2 to
5000 regions. This allows us to analyze a small number of
regions closer to the ground-truth, as well as a medium number
of regions for region consistency, and very large number of
regions (1000 and 5000), in which results are similar to a
super-pixel segmentation method.

B. Qualitative analysis

We present in Fig. 4 the gradient images obtained from
the compared methods for the input images on first row. As
SED is a method for edge detection, it generally produces
gradient images with soft edges close to the ground-truth
boundaries, which guaranties its success on the edge detection
task. Nonetheless, other aspects present on the input image,
such as textures and small details, are wildly ignored. Sobel
present more details, without big distinction (in terms of
magnitude of values) for components other than the main
object. Laplace in turn is permeated by noise on the object
and background (see Fig. 4, 1rst row, for computed gradients).
It is important to consider that Sobel and Laplacian depend
on parameters definition, such as kernel size. For Sobel we
represent the gradient magnitude with the L2 norm and kernel
of size of 3 calculated from the gray-scale image. For the
Laplacian we represent the zero-crossing with threshold at
0.04 of maximum value. For the proposed GIG, we have
a balance between highlighted strong edges, and different
textures and uniform regions presented with homogeneous
values distinguishing them.

In the Fig. 4, 2nd row, we present visual representations
of the watershed hierarchies created from the gradients. The
hierarchies are presented as saliency maps (discussed in [29])
that allow us to visualize and understand the hierarchies. With
the saliency maps, we can see the regions of importance
mapped by the watershed method, indicating the strength and
limitations for the final segmentation. As watershed is a hier-
archical model, the regions are stable and causal, meaning that
no new region is created or removed, only merged and split,
depending on the number of regions criteria. Therefore, the
borders visualized on the saliency maps will not change their
contours and their strength indicates the regions proximity.
Knowing that, we can see on the 3rd row of Fig. 4 the result
of the segmentation created using 10 regions as criterion. The
strong contours on SED and GIG gives us a good delineation
of the main object, while it invades part of the plane with
Sobel. All details are lost using SED gradient, while we can
recover partially the cross using Sobel, the paddle with GIG
and the wheel on both. The background invades both the object
and details using Laplace, as result of the noise on the gradient.

In Fig. 5, we present more examples of segmented im-
ages from GIG, SED and Sobel gradients, illustrating some
variation on the number of regions, including the super-pixel
effect with large number of regions (3rd column). On the
1st column, we present a successful instance of the proposed
method in which the presence of strong borders and large
uniform regions on the input image, captured by the GIG
gradient, created a better segmentation. Using SED, the fuzzy
edges limit the delineation of the main object, while the noise
in Sobel prevents its detection. An observed limitation of the
proposed method is presented on the 2nd column: when the
input image presents objects with patterns of high-contrast,
such as zebras and tigers, the detail of the GIG gradient works
against the distinction of the object. This is also partially
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Fig. 6. Pair-wise F-measure results (red dots) on the best scale for each method, counting each image on the test set. The values in the boxes is the number
of images that are better for a particular method. Proposed is better than all compared method, with statistical significance (p-value less than 10e-17)

TABLE I
F-MEASURES FOR REGIONS AND PRI PRESENTED IN TERMS OF THE

OPTIMAL DATASET SCALE (ODS), OPTIMAL IMAGE SCALE (OIS) AND
AVERAGE PRECISION (AP) THROUGH ALL SCALES. PERFECT SCORE=1.

F-measure for regions PRI

Gradient ODS OIS AP ODS

GIG 0.620 0.688 0.507 0.786

SED 0.559 0.617 0.477 0.746

Sobel 0.579 0.655 0.481 0.742

Laplacian 0.511 0.583 0.476 0.741

observed on Sobel, but not with the SED gradient, in which the
pattern details are softly represented inside the object. On the
super-segmented images in the 3rd column, once again the soft
edges on SED works does not produce a good segmentation,
while large regions with Sobel are indistinct, producing a lot
of very small regions on the main object with little to none
on large parts of the duck, the water and the shadow.

In general, the observed results of the proposed framework
are very descriptive image gradients in which: (i) object
boundaries are highlighted (including the one from very small
components); (ii) image textures are firmly represented with
different simplified patterns; and (iii) large regions are uniform
with distinction of shadow regions. Limitations are perceived
for images with objects with patterns of high-contrast.

C. Quantitative analysis

In terms of training time, in the standard discrete label and
the graph attribute selection on GIG, we trained all the 150
trees on the RF in less than three minutes, while for SED,
in the same CPU, each tree (of eight trees for the presented
results) takes approximately four hours. The inference for all
the compared methods are similar: a fraction of a second for
each image.

For the quantitative metrics, we use two types of image
partition interpretation measures, as categorized and defined
in [35]: (i) Precision-recall for regions, using a pixel-wise
comparison for an overall performance in terms of F-measure;

and (ii) Probabilistic Rand Index (PRI), a pixel-wise measure
that takes into account the multiple ground-truths presented
for each image on the BSDS500 dataset.

Results for both metrics are presented in Table I. The F-
measure results for regions are presented in terms of the
optimal dataset scale (ODS), optimal image scale (OIS) and
average precision (AP) through all scales, and the PRI in
terms of ODS. The superior results of GIG on all metrics
indicate that the strong borders combined with the uniform
region information have a positive impact on the hierarchies
of watershed segmentation. Finally, in Fig. 6, we present a
pair-wise comparison of individual images on the best scale
of each compared method. As one can see, the proposed GIG
produces considerably more better segmented images and are
all statistically significant (p-value less than 10e-17).

V. CONCLUSIONS

In this work, we explored the outcomes of a novel frame-
work operating on an edge-weighted graph coupled with
Random Forest estimates to create very descriptive image
gradients. We also outlined the challenges of machine learning
on graphs and proposed a strategy to create a systematic input
for the random forest framework from the key attributes in
an edge-weighted image graph. A qualitative analysis of the
produced gradients showed that the proposed method produces
gradients where boundaries are highlighted, including very
small components, image textures, large uniform regions and
distinction of shadow regions. The proposed method and other
popular gradient methods were used as input for the watershed
hierarchies segmentation method that relies on a good image
gradient as input. A quantitative analysis of the produced
segmentations confirmed the visual results and demonstrated
that the proposed gradient is a better candidate to create image
gradients for segmentation. Finally, the proposed approach on
the structured input proved to be not only descriptive, but
also considerably faster to train than the structured output.
For further works, we will study the behaviour of GIG with
different hierarchical methods, moreover, we will apply our
gradient to region adjacency graphs.
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