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Abstract—Machine Learning bias is an issue with two main
disadvantages. It compromises the quantitative performance of a
system, and depending on the application, it may have a strong
impact on society from an ethical viewpoint. In this work we
inspect the literature on Computer Vision focusing on human-
centered applications such as computer-aided diagnosis and face
recognition to outline several forms of bias, bringing study cases
for a more thorough inspection of how this issue takes form in
the field of machine learning applied to images. We conclude
with proposals from the literature on how to solve, or at least
minimize, the impacts of bias.

I. INTRODUCTION

Bias is one of the main issues faced by machine learning
(ML) researchers. Practically speaking, models will always
incorporate some form of bias, since it is unrealistic to
build a complete representation of the real world. Thus, it
is important to note that when we talk about bias, it refers
to a lack of representation about one or more subsets of the
real world, leading to skewed results, low-level quantitative
performance, or analytical errors. If we, as machine learning
researchers, want to solve real-world problems it is important
to aim towards real-world representations. After all, we are all
familiar with the “garbage in, garbage out” principle, in which
poor data or algorithmic choices will most likely lead to poor
results.

Being it an old Nikon camera that believes a Taiwanese-
American woman is blinking1, or the current British passport
system saying an African-American woman has her mouth
open2 (refer to Fig. 1), machine-learning bias is currently
leading to worldwide discussions on the importance of repre-
sentation in artificial intelligence systems. That is an alarming
red flag on our behavior as researchers and developers, since
our actions can have a direct impact on society, hence we need
to pay a lot more attention to the models we release.

Bias can occur in a variety of stages of the machine
learning pipeline, from human reporting and selection bias
to algorithmic and interpretation bias, as we will cover more
thoroughly throughout this work. Therefore, the solution is not
simple and requires analyzing the bias origin. Therefore, the

1https://thesocietypages.org/socimages/2009/05/29/nikon-camera-says-
asians-are-always-blinking/

2https://twitter.com/elainebabey/status/1232333491607625728

Fig. 1. Examples of social impacts caused by biased models. Photos extracted
from The Society Pages1 and Twitter2.

objective of this work is to discuss bias in machine learning
models, how it affects the inferences, and how we can solve
or at least minimize its impacts. Mainly because bias not
only affects the performance of a model based on quantitative
measures such as accuracy, but it can also extend to issues of
ethics, fairness, and inclusion.

The rest of the paper is organized as follows: Section
II describes the concept of bias, types of worrisome bias
in computer vision (CV), and draws insights from the CV
literature, highlighting potential sources of bias; Section III
presents recent works focusing in mitigating ML bias; Section
IV summarizes where this research field is moving towards;
and finally, Section IV presents the conclusion.

II. MACHINE LEARNING BIAS: WHY DO I HAVE TO CARE?
This section describes the concept of bias, the most common

and most worrisome types of bias in computer vision, and
draws insights from the CV literature, highlighting potential
sources of bias.

A. What is Bias?

Bias, in our context, must not to be confused with the bias
term in machine learning models or prediction bias. Regarding
the bias term, its mathematical definition is an intercept or
offset from an origin. Bias is referred to as b or w0 in machine
learning models.

For example, bias is the b in the following formula:

f(x) = b+ w1x1 + w2x2 + ...+ wnxn (1)



As for prediction bias, it is a quantity that measures how
far apart the prediction mean is from the real world mean.
Large biases in this case can be caused by noisy data, faulty
pipeline, or even biased training samples, to name a few. Thus,
machine learning bias, from an ethical point of view, could
cause prediction bias. We will see more in the next section.

Fairness in machine learning refers to the attempt to correct
algorithm bias. That is, for fairness, the answers a machine
learning algorithm gives must not fall foul of bias or discrimi-
nation. Therefore, what we call Machine Learning Bias in this
paper is the term used in ethics/fairness for:

1. Stereotyping, prejudice or favoritism towards some
things, people, or groups over others. These biases can affect
collection and interpretation of data, the design of a system,
and how users interact with a system. 2. Systematic error
introduced by a sampling or reporting procedure.: (Merriam-
Webster Dictionary definition).

In other words, it is a type of error where certain sets
of the real world are more weighted and/or represented than
others. That type of error can lead to Algorithmic Bias, that
is, any kind of Algorithmic Solution that is unjust, unfair or
prejudicial [1]. As machine learning becomes more and more
pedestrian and common in society daily activities, we need to
remember that an algorithm is written by humans using data
collected for human purposes.

On a machine learning straightforward pipeline, we often
see the following steps: data is collected, annotated and goes
through preprocessing; model is trained; results are aggregated
and analysed according to the task. Then, where can the bias
be along that pipeline?

Even before collecting the data for the first step of that
pipeline, the data itself can host a lot of human biases, such
as stereotyping, prejudice or racism. Then, as we collect and
annotate this data, we can introduce more biases, such as
sampling errors, in-group and out-group bias, and so on.
The algorithmic choices we make regarding the model, for
instance loss functions or regularization terms, can exacerbate
any preexisting inclinations on the data. And finally, how
we analyse and present the results can also lead to bias in
interpretation.

From social inclinations present on the available data, to
our own personal biases through the process of building and
releasing a model, every step of a machine learning pipeline
is subject to introducing some form of bias.

B. Types of Bias

In this section we will describe the most common, and most
worrisome, forms of bias in computer vision. It is important
to note that there are other forms of bias as well as subtypes
of the ones listed below.

Selection bias. It occurs when data collection is not prop-
erly randomized, leading to a lack of diversity in the training
population with respect to the real world scenario. There
are several types of selection bias, such as cherry picking
(i.e. intentionally choosing which data to collect), incorrect
partitioning of data, or most commonly sample bias. Recent

works in the area of face recognition highlights sample bias,
with databases overwhelmingly skewed towards white people’s
pictures, leading to lower performance on people of different
ethnicities [2], [3]. It is important to note that any system
meant to work with or for people, should account to a more
complete representation of the chosen population. However the
large availability of public images portraying white people,
usually male, along with search engines biased towards the
same population [4] leads to a vicious cycle of replicating
sample bias.

Automation bias. It refers to an overdependence on au-
tomated systems, to a degree that correct decisions are over-
looked in favor of automated ones. It not only refers to society
as it increasingly relies on technology, but also to the devel-
opers and researchers blindly automating the development of
such technology. A recent study [5] analysed one of the most
important datasets in the field of computer vision, ImageNet.
In the age of Deep Learning, researchers invest a lot of time
on the collection of large datasets. But that can only go so
far, thus major steps in the process of data collection rely
on automation. The authors showed how it led ImageNet
to replicate harmful biases, such as misogynistic labels for
women’s photos, as well as included clearly non-consensual
images (e.g. upskirt).

Measurement bias. As the name implies, it refers to faulty,
low quality or unreliable measures when collecting data.
For example, it can come from equipment choices, such as
collecting images with different cameras. And it is very salient
in the field of computer vision in the form of inconsistent or
unreliable labeling of samples, which can have many causes
such as insufficient label options (e.g. binary gender [6]),
labeling of abstract concepts (e.g. sentiments [7]), cultural
biases [8], or even poor training of those responsible for the
labeling. Whenever label inconsistencies arise from subjective
views from labelers, it is related to the concept of recall bias,
a subtype of measurement bias.

Expectation bias. It is important to highlight that uncon-
scious expectations or preexisting worldviews can, and prob-
ably will, impact our choices and conclusions throughout the
process of research. The work of [9] is a very interesting read-
ing on how records of expectation bias dates back to Newton’s
theories, along with multiple examples of how careless one can
get once the results meets their expectations. Expectation bias
may interfere with experiments through confirmation bias,
when researchers favor data or results in accordance with their
beliefs.

Evaluation bias. A definition of evaluation bias is given in
[10], relating it both to misrepresentative benchmarks as well
as poor metrics widely accepted in a given literature. Often,
the choice of metrics does not account for diversity aspects,
for instance aggregated means can hide underperformance in
certain groups of the population. Once benchmarks and metrics
are established, the following researchers on the same topic
will tend to adopt them since they need to compare their work
with the present literature. Evaluation bias was mentioned by
authors of [11] in a bias section later added to the original



paper, after their work was subjected to public criticism on its
racial bias.

Overgeneralization. The assumption that a certain analysis,
knowledge, or in our case, machine learning model, will apply
to broader scenarios. It relates to the concept of overfitting, in
the sense that models fit on a certain subset might not gener-
alize well to different scenarios. We could refer once again to
the example of biased face recognition systems, since authors
usually assert that the model is supposed to recognize people
as a general population, when they should specify the ethnicity
majority the model was trained on. Note that the sample bias,
where we first mentioned face recognition, happens at data col-
lection stages, while overgeneralization refers to conclusions
drawn from the study. Another example worth mentioning is
a work from the field of social psychology, which concludes
that it is possible to estimate sexual orientation in the general
population based on the high accuracy achieved in a specific,
and highly skewed, dataset [12].

Racial bias. It can occur on several stages of the research
process, from data collection to conclusions drawn by human
analysts. Racial bias can take many forms, for instance the
sample bias in computer aided systems to detect skin cancer
lesions, in which the majority of lesions are from white
skinned individuals [13], or the automation bias when a risk
assessment system was deployed in a criminal recidivism
evaluation [14], with human analysts disregarding the evident
bias towards criminalizing black individuals. The work of [10]
expands on the concept of racial bias, outlining the Historical
bias, in which many forms of stereotypes are contemplated.

C. Study Cases

In this section we draw insights from the literature of
computer vision, highlighting potential sources of bias.

Detecting and recognizing different face attributes has be-
come an increasingly feasible machine learning task due to
the rise of deep learning techniques and large people-focused
datasets [3]. One of the most popular faces dataset is CelebA.
CelebFaces Attributes Dataset (CelebA) [2] is a large-scale
face attributes dataset with more than 200K celebrity images,
each with 40 attribute annotations. The images in this dataset
cover large pose variations and background clutter. Authors
claim CelebA has large diversity, large quantity, and rich
annotations.

However, the work of Buolamwini and Gebru [15] puts
a spotlight on a major issue: commercial face recognition
models have a considerable decrease in performance for people
with darker skins, specially the ones labelled as female.
Indeed, several commercial and state-of-the-art models are
trained in datasets such as CelebA, which lack the diversity
to represent real world people.

One example is PULSE [11]. PULSE (Photo Upsampling
via Latent Space Exploration), is an algorithm which gener-
ates high-resolution, realistic images at resolutions previously
unseen in the literature. It was trained in CelebA HQ (a high-
quality version of CelebA that consists of 30,000 images at
1024×1024 resolution). As depicted in Figure 3, it can create

Fig. 2. CelebFaces Attributes Dataset (CelebA) examples of images and
annotations [2].

Fig. 3. PULSE results example: (x32) The input (top) gets upsampled to the
SR image (middle) which downscales (bottom) to the original image [11].

Fig. 4. PULSE results on Barack Obama’s face. Picture extracted from
Twitter3.



realistic images from poor quality images. However, in reply
to the author’s Twitter post, many people highlighted the poor
performance of the model on dark skin individuals, as depicted
in Figure 4, extracted from one Twitter reply3. In a model card
later added to the paper by the authors, they attribute the poor
performance to the training/validation data, claiming that it is
the accepted benchmark in the field, leading to an evaluation
bias.

We can relate both cases, face recognition and photo up-
sampling, with selection bias, evaluation bias and racial bias.
Unfortunately, those are not uncommon to find in the literature,
as well as commercial systems. Google’s image recognition
tools have returned racially biased results since 20154. In that
year, Google Photos labelled two dark-skinned individuals as
“gorillas”. Although the company released a public apology,
according to a report by Wired5, Google did not fix the
issue. Instead, it simply stopped returning the “gorilla” label,
even for pictures of that specific mammal. They later banned
the words “chimp,” “chimpanzee,” and “monkey”. In 2020,
Google Cloud Vision still has major issues with racial bias, as
another report by AlgorithmWatch6 found. As Fig. 5 shows,
the tool labeled an image of a dark-skinned individual holding
a thermometer as “gun”, while the same image with a simple
editing strategy to lighten the skin was labeled as “monocular”.
After the article was published, the service stopped returning
the label “gun”, although we can not say for sure what type of
measures were taken, since there is little transparency when
it comes to commercial systems. In 2021, AlgorithmWatch is
still reporting issues with mislabeling dark-skinned individuals
as animals, even in cartoons7. This time Apple, as well as
Google, were caught making the same mistake.

Another application that analyses facial attributes and relates
to racial bias is: Predicting criminal recidivism. In 2016, Julia
Angwin, a reporter from ProPublica, wrote on how machine
learning software used across the United States to predict
criminal recidivism are biased towards black people8. The
system is called Correctional Offender Management Profiling
for Alternative Sanctions (COMPAS), and it incorporates a
range of supposedly relevant criminogenic factors emerging
from meta-analytic studies of recidivism. In this case, the
data itself is inherently biased, as racism is a major issue
in the United States’ criminal system. It strongly relates
to the definition of historical bias given in [10], since the
data may accurately represents the world, but still reflect
historical prejudices towards a specific group. Additionally,
measurement bias plays an important role, since the chosen
criminogenic factors are proxies for socioeconomic status,
such as ZIP code, household income, etc.

3https://twitter.com/Chicken3gg/status/1274314622447820801?s=20
4https://www.bbc.com/news/technology-33347866
5https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-

remains-blind/
6https://algorithmwatch.org/en/google-vision-racism/
7https://algorithmwatch.org/en/apple-google-computer-vision-racist/
8https://www.propublica.org/article/machine-bias-risk-assessments-in-

criminal-sentencing

Fig. 5. Google Vision Cloud results for an hand-held thermometer on a black
hand (first image) and on a white hand (second image). After the publication of
the AlgorithmWatch article, the service does not return a “gun” label anymore
(third image). Retrieved from AlgorithmWatch6.



In order to analyse the effectiveness of COMPAS, ProPub-
lica obtained the risk scores assigned to more than 7,000 peo-
ple arrested in Florida and checked how many were charged
with new crimes over the following two years. They found that
only 20% of people scored as potentially dangerous actually
relapsed into criminal activities. Moreover, they found that
black defendants were still 77% more likely to be pegged as
higher risk of committing a future violent crime, 45% more
likely for crimes of any kind, while white defendants were
mislabeled as low risk more often than black defendants. We
can relate the usage of such systems to automation bias, since
users blindly relied on outcomes from the system. It might
even relate to confirmation bias, if users were favoring auto-
mated decisions due to their agreement with such decisions.

Racial biases can also be found in medical image databases,
as authors in [13] evaluated in the context of skin lesions
detection. Although skin cancer is more common for white
individuals, evidence show that diagnosis for people of color
may only occur in advanced stages of the disease, leading to
a lower survival rate within the population [16]. As authors in
[13] showed, benchmark datasets are overwhelmingly biased
towards “light” categories of the Fitzpatrick skin phototype
classification, which may lead researchers to evaluation bias.

A highly unethical study was conducted by Wang and
Kosinski [12], where they claim to have created a “sexual
orientation detector” using 35, 326 images from public profiles
on a US dating website. Authors alleged that their findings
were “Consistent with the Prenatal Hormone Theory (PHT)
of sexual orientation”, later concluding that “gay men and
women tend to have gender-atypical facial morphology”. That
is both a spurious correlation and an overgeneralization, since
the study does not cover causality in the relationship between
sexual orientation and facial attributes, and the authors can not
claim that their model is able to rate sexual orientation outside
the population from the study.

The so called “sexual orientation detector” also shows
clear signs of selection bias. As depicted in Figure 6, the
“average” straight woman appears to wear eyeshadow, while
the “average” lesbian does not. Glasses are visible on the gay
man, and to a lesser extent on the lesbian, while they seem
absent in the heterosexual composites. It seems the algorithm’s
ability to detect orientation has little to do with facial structure,
but actually refers to grooming, presentation and lifestyle.

Among many tools for automatic data collection, image
search engines are often used in the field of Computer Vision.
As research suggests, there are many issues with the ranking
system responsible for outputting results in a certain order
from a query [17], leading to the propagation of multiple
stereotypes. Findings in [5] show severe problems with Im-
ageNet, an automated collection from search engines that is
widely used as a pretraining database. Gender stereotypes are
clearly presented on the database, with misogynistic labels
associated to female presented individuals due to automation
bias. Researchers have been studying search engine algorithms
as the source of such gender stereotypes in databases, finding
not only stereotype exaggerations by professional career [18],

Fig. 6. Average faces from the dataset collected by the authors of [12].

as well a skewed gender distribution for specific trait adjectives
in a paper cleverly entitled “Competent Men and Warm
Women” [19].

III. DEBIASING: HOW TO SOLVE ML BIAS?

Regarding a straightforward machine learning solution, we
saw that bias can be introduced in every step. Indeed, the pre-
vention of bias is an ongoing process. Though it is sometimes
difficult to know when your data or model is biased, there are
several steps you can take to help prevent bias or catch it in
the early stages of a project.

One of the main points to prevent data bias is to ensure that
your research team, data scientists and labelers are diverse.
Likewise, wherever possible, combine inputs from multiple
sources to ensure data diversity. These actions could mitigate
any human biases in data annotation and collection. Addition-
ally, ask the help of someone with domain expertise to review
your collected and/or annotated data. Someone outside your
team may see biases that your team has overlooked. Real-
world problems are often multidisciplinary [20].

To prevent measurement and recall bias, define clear guide-
lines for data labeling expectations. Moreover, create a gold
standard for your data labeling. A gold standard is a set of
data that reflects the ideal labeled data for your task. In that
way, data labelers tend to be more consistent.

The work of [21] suggests using a multi-pass annotation
system. That is, multiple humans (or models) place a label
independently of one another, and only unanimous labels are
assigned to the sample. Examples of this include sentiment
analysis, content moderation and intention recognition. A
dataset for computer-aided diagnosis of lung lesions, called
CheXpert [22], is an example where validation samples are
the very few in which a consensus was achieved by three



Fig. 7. Fairness and Machine Learning: Google Scholar number of results
for the last decade.

radiologists. Training samples are assigned uncertainty labels
instead.

Prevent and/or mitigate bias is an ongoing process, so
analyze your data regularly. Keep track of errors and problem
areas so you can respond to and resolve them quickly.

Therefore, when creating a dataset we need to understand
our data and make this knowledge available to works that will
use it. Since there is no true unbiased dataset, the least we can
do is to learn what kind of bias we have to handle.

One approach for this is described in [23]. Authors propose
datasheets for datasets, which may increase transparency and
accountability within the machine learning community and
mitigate unwanted biases in machine learning systems. The
proposed workflow has seven main topics with questions to
be answered by dataset creators in order to facilitate repro-
ducibility of ML results, and help researchers select more
appropriate datasets for their chosen tasks. The topics are:
Motivation/Purpose of the dataset; Composition; Collection
Process; Preprocessing/cleaning/labeling; Uses; Distribution;
Maintenance.

It is interesting to note that datasheets can help not only
mitigating data bias, but also to understand ethical and legal
implications of the dataset, mainly dealing with those that will
be publicly available. The mere action of writing a datasheet
can instigate the authors to reflect on their work from a fairness
perspective.

An interesting survey on what is fair and unfair and how it is
applied to ML Fairness is depicted in [1]. Authors studied the
50-year history of fairness definitions in the areas of education
and machine-learning. In [24] authors describe the many types
of biases that occur in data and present the different ways
that the concept of fairness has been studied and applied in
literature. It is interesting to note that ML Fairness is a recent
field and the number of publications has doubled since 2016
(Figure 7).

Since many computer vision models that use deep learning
rely on transfer learning on pre-trained models, mitigating data
bias on the source is not always practicable. There are some
techniques to reduce the impact of such biases and to analyze
how biased your data or your model is.

In our first steps into machine learning we learn that
we should separate the data into train, validation, and test
splits to prevent the model from overfitting and to accurately
evaluate it. This model is then evaluated using one or more
aggregate performance metrics, such as accuracy, precision,
recall. However, those metrics can obscure poor performance
for groups of people that are not well represented in an
evaluation dataset. To evaluate fairness in these models, we can
also apply disaggregated/intersectional evaluation [25], [26].

Disaggregated evaluation refers to a comparison across
subgroups, evaluating the selected metrics on each of those
groups in the population. Intersectional evaluation is a type
of disaggregated evaluation which combines more than one
subgroup and compares them across subgroups. If the recall
is equal across the subgroups, we have equality in the dataset.
Similarly, having the same prediction across subgroups is
equivalent to Predictive Parity fairness criteria [27].

Let’s use face detection as an example. Considering binary
gender labels: female and male. We can look at each pair (fe-
male, face detection), (male, face detection); then evaluate how
the error rates are different or similar. We can also look at this
problem by analysing it intersectionally, creating tuples such
as (black women, face detection), (white men, face detection).
In fact, this is the basis of the study Gender Shades from [15].
Thus, we can see how well the system is doing across different
types of individuals in the dataset. This analysis between
groups can also be applied using alternative metrics, such as
the disparate impact [28], which uses the accuracy proportion
between unprivileged and privileged groups to fairly evaluate
the model, instead of the classic measures such as accuracy,
precision, recall, among others.

Other strategies to evaluate such proportion between groups
are Demographic Parity (also called Independence, Statistical
Parity) and Equality of Odds (also called Separation, Positive
Rate Parity). Demographic Parity states that the proportion of
each segment of a protected/sensitive class (e.g. gender, race)
should receive the positive outcome at equal rates. A classifier
satisfies the Equality of Odds criteria if the subjects in the
protected and unprotected groups have equal true positive rate
and equal false positive rate [29].

Choose your evaluation metrics considering acceptable
trade-offs between False Positives and False Negatives. Each
task will have a different fairness criteria to be applied [25]. An
interesting comparison between fairness metrics is described in
[30]. Authors claim that this metric selection can be guided by
the observability of each statistic in practice. Indeed, authors in
[31] highlight some important aspects about the relationships
between fairness metrics, in particular with respect to the dis-
tinctions individual vs. group and observational vs. causality-
based.

One example of a debiasing solution is applied for skin
lesion datasets in [32]. Authors propose destructive and con-
structive actions in the target datasets, and raised the question
“If we hide the lesion information from the network, can it still
learn patterns that help differentiate benign from malignant
lesions?”. Surprisingly, even removing 70% of all pixels in



Fig. 8. Samples from each of disrupted datasets in [32].

the image and all medical relevant features that could aid the
classification, the network was able to make decisions that are
much better than chance (Figure 8). Therefore, the outcome
results strongly relies on patterns introduced during image
acquisition and general dataset bias. In the subsequent work,
authors found out that, despite interesting results that point to
promising future research, current debiasing methods are not
ready to solve the bias issue for skin-lesion models [33].

After all this work to debias the data and the model, we
can also focus on releasing the ML model in a responsible
way. While datasheets for datasets [23] refers to the data
itself, [34] describes Model Cards, short documents accompa-
nying trained machine learning models that provide benchmark
evaluation in a variety of conditions, such as across different
cultural, demographic, or phenotypic groups (e.g., race, geo-
graphic location, sex, Fitzpatrick skin type) and intersectional
groups (e.g., age and race, or sex and Fitzpatrick skin type)
that are relevant to the intended application domains.

Big tech enterprises that are known for the use of Big Data
are also creating tools to ensure fairness in ML. The AI Fair-
ness IBM 3609 is an open source toolkit available in Python
and R to help examine, report, and mitigate discrimination
and bias in machine learning models throughout the artificial
intelligence application lifecycle [35]. In order to analyze your
data in different situations, Google launched the What-If Tool
(WIT)10. It is possible to test different scenarios and visualize
model behavior across multiple models and subsets of input
data, and for different ML fairness metrics.

Lastly, we should also be concerned with biases that might
emerge in the deployment step. In this case, automation bias
and confirmation bias are some of the major threats. Meredith
Broussard mentions in her book, Artificial Unintelligence [36],
the concept of “technochauvinism” referring to the excessive
trust we place on technology to solve all problems in the world,
while Cathy O’Neil’s book [37] popularized important exam-
ples of injustices caused by excessive automation. It should
be noted that if a researcher intends to develop solutions for
human-centered applications, the role of experts in humanities

9https://aif360.mybluemix.net/
10https://pair-code.github.io/what-if-tool/

is essential to craft solutions that account for the complexity
of society and its individuals.

IV. DISCUSSION AND FUTURE WORKS

There is no silver bullet for debias the data and the model
or the interpretation of a result. Moreover, when talking about
real world data we always bring real world bias. Even so, we
need to pay attention that machine learning can unintention-
ally lead to unfair outcomes. The unfairness can come from
different sources, thus we have to be aware of bias in our data,
in our model, and in interpreting the results.

We have to have fairness, accountability, transparency and
responsibility throughout the Machine Learning pipeline. The
care with the dataset does not end when you launch it or
publish it.

Works as [23], [34] are showing that it is possible to create
a ML pipeline according to fairness and responsibility criteria.
We can also expanding this idea to all ethical and legal impli-
cations that are involved with human-centered applications. In
[38]11, authors found worrisome issues on several well-known
used datasets. They found that ethical problems underlying
a dataset can permeate into an ecosystem of derivatives,
amplifying their effect and making it challenging to make
effective corrections. Moreover, they found that modifications
of the dataset through derivatives can introduce new harms.

In that sense, fairness ensures that the output of the machine
does not have an unjust impact on end-users from any demo-
graphic. Accountability and Responsibility state that there’s
someone responsible for the results of AI-fuelled decisions.
It’s about being able to explain and control the outcome of
such decisions. And, where harm occurs, that someone could
be legally responsible. And finally, Transparency is about the
ability to see and explain two key things: exactly what the
machine learning algorithm has learned and how it uses what
it’s learned to reach its final output. This is also known as
explainable artificial intelligence.

It is not enough to put human-centered technology as a
vague overall score associated to it, we need to understand
across different populations, how our model behaves, what
the data is telling us and what ethical and legal implications
we have to toil.

V. CONCLUSION

In summary, why do I have to care? Practically speaking,
models will always incorporate some form of bias, since it
is unrealistic to build a complete representation of the real
world. Therefore, it is important to be aware of the potential
biases in machine learning for any data project and how it can
lead to unfair outcomes. In the real world, people are not just
numbers to be evaluated, our decisions directly impact society
and its individuals.

With this paper we hope to communicate with the computer
vision community, raising awareness of the risks that machine
learning bias poses to society. From data collection, anno-
tation, and treatment, to every algorithmic choice we make,

11Also available in https://www.youtube.com/watch?v=1BAJMUNf1tM



it is our role to minimize the damages and maximize the
benefits of technology. It is a major research challenge we
hope the community will be interested in tackling. The future
of machine learning for human-centered applications relies on
fairness, accountability, transparency, and responsibility.

ACKNOWLEDGMENTS

This work was supported by the Serrapilheira Institute
(grant number Serra – R-2011-37776). This work was sup-
ported in part by the Minas Gerais Research Funding Founda-
tion (FAPEMIG) under Grant APQ-00449-17, by the National
Council for Scientific and Technological Development (CNPq)
under Grant 311395/2018-0 and Grant 424700/2018-2, and
by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior – Brasil (CAPES) – Finance Code 001.

REFERENCES

[1] B. Hutchinson and M. Mitchell, “50 years of test (un)fairness: Lessons
for machine learning,” in FAT* ’19: Conference on Fairness, Account-
ability, and Transparency, 2019.

[2] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[3] H. J. Ryu, M. Mitchell, and H. Adam, “Inclusivefacenet: Improving
face attribute detection with race and gender diversity,” in Workshop
on Fairness, Accountability, and Transparency in Machine Learning
(FAT/ML), 2018.

[4] A. Singh and T. Joachims, “Fairness of exposure in rankings,” in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 2219–2228.

[5] V. U. Prabhu and A. Birhane, “Large image datasets: A pyrrhic win for
computer vision?” arXiv preprint arXiv:2006.16923, 2020.

[6] M. K. Scheuerman, J. M. Paul, and J. R. Brubaker, “How computers
see gender: An evaluation of gender classification in commercial fa-
cial analysis services,” Proceedings of the ACM on Human-Computer
Interaction, vol. 3, no. CSCW, pp. 1–33, 2019.

[7] J. Zeng, S. Shan, and X. Chen, “Facial expression recognition with
inconsistently annotated datasets,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 222–237.

[8] C. Schumann, S. Ricco, U. Prabhu, V. Ferrari, and C. Pantofaru, “A step
toward more inclusive people annotations for fairness,” arXiv preprint
arXiv:2105.02317, 2021.

[9] M. Jeng, “A selected history of expectation bias in physics,” American
Journal of Physics, vol. 74, no. 7, pp. 578–583, 2006.

[10] H. Suresh and J. V. Guttag, “A framework for understanding sources
of harm throughout the machine learning life cycle,” arXiv preprint
arXiv:1901.10002, 2019.

[11] S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin, “PULSE: self-
supervised photo upsampling via latent space exploration of generative
models,” in Computer Vision and Pattern Recognition (CVPR), 2020.

[12] Y. Wang and M. Kosinski, “Deep neural networks are more accurate than
humans at detecting sexual orientation from facial images,” Journal of
Personality and Social Psychology, vol. 114(2), p. 246–257, 2018.

[13] N. M. Kinyanjui, T. Odonga, C. Cintas, N. C. Codella, R. Panda,
P. Sattigeri, and K. R. Varshney, “Fairness of classifiers across skin
tones in dermatology,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2020, pp.
320–329.

[14] W. Dieterich, C. Mendoza, and T. Brennan, “Compas risk scales:
Demonstrating accuracy equity and predictive parity,” Northpointe Inc,
2016.

[15] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy
disparities in commercial gender classification,” in Proceedings of
the 1st Conference on Fairness, Accountability and Transparency,
ser. Proceedings of Machine Learning Research, S. A. Friedler and
C. Wilson, Eds., vol. 81. New York, NY, USA: PMLR, 23–24 Feb
2018, pp. 77–91. [Online]. Available: http://proceedings.mlr.press/v81/
buolamwini18a.html

[16] M. Gohara, “Skin cancer: an african perspective,” British Journal of
Dermatology, vol. 173, pp. 17–21, 2015.

[17] R. Gao and C. Shah, “Toward creating a fairer ranking in search engine
results,” Information Processing & Management, vol. 57, no. 1, p.
102138, 2020.

[18] M. Kay, C. Matuszek, and S. A. Munson, “Unequal representation
and gender stereotypes in image search results for occupations,” in
Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, 2015, pp. 3819–3828.

[19] J. Otterbacher, J. Bates, and P. Clough, “Competent men and warm
women: Gender stereotypes and backlash in image search results,” in
Proceedings of the 2017 chi conference on human factors in computing
systems, 2017, pp. 6620–6631.

[20] B. Cowgill, F. Dell’Acqua, S. Deng, D. Hsu, N. Verma, and A. Chain-
treau, “Biased programmers? or biased data? a field experiment in
operationalizing ai ethics,” in ACM Conference on Economics and
Computation, 2020.

[21] D. M. Iraola and A. J. Yepes, “Single versus multiple annotation for
named entity recognition of mutations,” 2021.

[22] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Mark-
lund, B. Haghgoo, R. Ball, K. Shpanskaya et al., “Chexpert: A large
chest radiograph dataset with uncertainty labels and expert comparison,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 590–597.

[23] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. M. Wallach,
H. D. III, and K. Crawford, “Datasheets for datasets,” CoRR, vol.
abs/1803.09010, 2018. [Online]. Available: http://arxiv.org/abs/1803.
09010

[24] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
“A survey on bias and fairness in machine learning,” CoRR, vol.
abs/1908.09635, 2019. [Online]. Available: http://arxiv.org/abs/1908.
09635

[25] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learn-
ing. fairmlbook.org, 2019.

[26] S. Barocas, A. Guo, E. Kamar, J. Krones, M. R. Morris,
J. W. Vaughan, D. Wadsworth, and H. M. Wallach, “Designing
disaggregated evaluations of AI systems: Choices, considerations,
and tradeoffs,” CoRR, vol. abs/2103.06076, 2021. [Online]. Available:
https://arxiv.org/abs/2103.06076

[27] S. Verma and J. Rubin, “Fairness definitions explained,” ACM/IEEE
International Workshop on Software Fairness, 2018.

[28] S. Caton and C. Haas, “Fairness in machine learning: A survey,” 2020.
[29] M. Du, F. Yang, N. Zou, and X. Hu, “Fairness in deep learning: A

computational perspective,” 2020.
[30] P. Garg, J. Villasenor, and V. Foggo, “Fairness metrics: A comparative

analysis,” 2020.
[31] A. Castelnovo, R. Crupi, G. Greco, and D. Regoli, “The zoo of fairness

metrics in machine learning,” 2021.
[32] A. Bissoto, M. Fornaciali, E. Valle, and S. Avila, “(de)constructing bias

on skin lesion datasets,” CoRR, vol. abs/1904.08818, 2019. [Online].
Available: http://arxiv.org/abs/1904.08818

[33] A. Bissoto, E. Valle, and S. Avila, “Debiasing skin lesion datasets
and models? not so fast,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, June
2020.

[34] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchin-
son, E. Spitzer, I. D. Rajia, and T. Gebru, “Model cards for model
reporting,” in FAT* ’19: Conference on Fairness, Accountability, and
Transparency, 2019, pp. 220–229.

[35] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde,
K. Kannan, P. Lohia, J. Martino, S. Mehta, A. Mojsilovic,
S. Nagar, K. N. Ramamurthy, J. T. Richards, D. Saha, P. Sattigeri,
M. Singh, K. R. Varshney, and Y. Zhang, “AI fairness 360: An
extensible toolkit for detecting, understanding, and mitigating unwanted
algorithmic bias,” CoRR, vol. abs/1810.01943, 2018. [Online]. Available:
http://arxiv.org/abs/1810.01943

[36] M. Broussard, Artificial unintelligence: How computers misunderstand
the world. mit Press, 2018.

[37] C. O’neil, Weapons of math destruction: How big data increases
inequality and threatens democracy. Crown, 2016.

[38] K. Peng, A. Mathur, and A. Narayanan, “The harms that arise and persist
after release: An analysis of three dataset life cycles through a thousand
papers,” in Responsible Computer Vision Workshop of CVPR, 2021.


