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Abstract—Modern visual pattern recognition models are based
on deep convolutional networks. Such models are computation-
ally expensive, hindering applicability on resource-constrained
devices. To handle this problem, we propose three strategies.
The first removes unimportant structures (neurons or layers) of
convolutional networks, reducing their computational cost. The
second inserts structures to design architectures automatically,
enabling us to build high-performance networks. The third com-
bines multiple layers of convolutional networks, enhancing data
representation at negligible additional cost. These strategies are
based on Partial Least Squares (PLS) which, despite promising
results, is infeasible on large datasets due to memory constraints.
To address this issue, we also propose a discriminative and low-
complexity incremental PLS that learns a compact representation
of the data using a single sample at a time, thus enabling
applicability on large datasets. We assess the effectiveness of our
approaches on several convolutional architectures and computer
vision tasks, which include image classification, face verification
and activity recognition. Our approaches reduce the resource
overhead of both convolutional networks and Partial Least
Squares, promoting energy- and hardware-friendly models for
the academy and industry scenarios. Compared to state-of-the-
art methods for the same purpose, we obtain one of the best
trade-offs between predictive ability and computational cost.

I. INTRODUCTION

Pattern recognition plays an important role in cognitive tasks
such as natural language processing and image understanding.
Modern pattern recognition methods have led to a series of
breakthroughs, often surpassing human performance [1]. The
reason for these remarkable achievements is the improvement
in data representation (i.e., features), which allows discovering
new abstractions and patterns from data.

In the context of visual pattern recognition, deep convolu-
tional networks have been the focus of intense research due
to their state-of-the-art effectiveness in learning discriminative
representation. In particular, most efforts have been devoted to
the development of architectures for convolutional networks,
since large architectures are a major determinant factor for
improving their predictive ability (see Figure 1) [2]. In terms of
performance, on the other hand, excessively large architectures
are computationally expensive, hindering applicability on low-
power and internet of things (IoT) devices. Moreover, such
architectures are data-hungry, meaning that large datasets are
needed to provide a better generalization performance [3],
hence, the encouragement for large datasets has been growing.

A parallel line of research to obtain discriminative represen-
tations is to discover low-dimensional features through dimen-
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Fig. 1. Comparison of convolutional networks in terms of predictive ability,
computational cost, and complexity. Predictive ability is measured by accu-
racy. Computational cost is measured by Floating Point Operations (FLOPs).
Complexity is measured taking into account the number of neurons (width)
and layers (depth), and it is represented by the circle size (larger means more
complex). The arrows indicate which direction (in both x and y axes) is better.
It is evident that there is a strong relationship between predictive ability and
network complexity (circle size), in which more complex networks are more
accurate. In turn, network complexity incurs computational cost.

sionality reduction techniques. Such techniques are capable
of yielding discriminative and compact representations from
the original (high-dimensional) data [4]. Recent works use
dimensionality reduction collaboratively with convolutional
networks and produce encouraging results [5], [6]. This com-
bination, however, is unsuitable for large datasets since tradi-
tional dimensionality reduction techniques require all the data
to be in memory in advance, which is often impractical due to
hardware limitations. Additionally, this requirement prevents
us from employing dimensionality reduction on streaming
applications, where the data are being generated continuously.

Regardless of the mechanism employed to recognize or im-
prove pattern recognition, there is a trade-off between accuracy
and complexity, in which more accurate models often incur
higher complexity and computational cost, as illustrated in
Figure 1. Thereby, discovering accurate and efficient strategies
for pattern recognition, which include enhancing the existing
ones, have been the focus of intense research.

Motivation. Modern visual pattern recognition models are
predominantly based on convolutional networks since they are
capable of learning effective representations from data [7].
According to previous works [2], [8], [9], large (deeper and
wider) convolutional networks lead to better results. Figure 1
supports this claim, where larger networks (large circles)
have superior predictive ability. In terms of performance,
however, such networks suffer from heavy computation and
memory overhead, incurring slow inference and hindering



applicability on low-power and resource-constrained devices.
Moreover, since modern networks demand massive computing
infrastructure, the financial cost to deploy them can be pro-
hibitive for academic researchers. For example, the estimated
cost for training and deploying state-of-the-art networks can
surpass hundreds of dollars per hour [10]. Prior research on
the climate impact of AI has raised another important issue
regarding these networks, which is the quantity of carbon
emitted by them based on their energy consumption [10]–
[12]. Surprisingly, convolutional networks have a large carbon
footprint that can surpass one car in its lifetime [10], [11].
The simplest way to circumvent these problems is to evaluate
different trade-offs between accuracy and network complexity,
for example, by comparing the performance of ResNet50 (50
layers) with its deeper counterpart ResNet152 (152 layers),
see Figure 1. Unfortunately, this process requires significant
human engineering due to its trial-and-error essence. Instead,
it is possible to transform or automatically design efficient
convolutional networks by employing pruning or neural ar-
chitecture search (NAS), respectively. The former removes
unimportant structures (neurons or layers) from the network,
reducing its complexity while preserving as much predictive
ability as possible. The latter learns to design accurate and
efficient architectures automatically. Both strategies, however,
are not without their limitations. Existing criteria for identify-
ing and removing structures from convolutional networks are
ineffective since the accuracy of the original (unpruned) net-
work is often degraded, as shown in Figure 2 (Left). Besides,
many pruning approaches demand a high computational cost,
mainly when applied to very deep networks [13]. Regarding
the neural architecture search, current strategies analyze a
large set of possible candidate architectures and, hence, require
vast computational resources and take many days to process
even with modern Graphics Processing Units (GPUs) [14].
Motivated by these issues, we propose simple, effective, and
efficient mechanisms for eliminating structures of deep net-
works as well as discovering high-performance architectures
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Fig. 2. Left. Comparison of existing pruning methods. Compared to state-of-
the-art pruning strategies, our pruning method provides a better solution (i.e.,
it is a non-dominated solution) considering one of the performance metrics:
accuracy drop (y-axis) or FLOP reduction (x-axis). In this figure, negative
values in the y-axis denote improvement regarding the original, unpruned,
network. Right. Comparison of existing neural architecture search (NAS)
methods. Our NAS method discovers architectures by exploring one order
of magnitude fewer models compared to other approaches. In addition, our
method is the most resource-efficient as it designs architectures in a few hours
on a single GPU. In both figures, the arrows indicate which direction is better.

automatically (i.e., without involving human engineering).
More precisely, our pruning strategies achieve the best trade-
offs between accuracy and computational cost compared to
state-of-the-art methods, as illustrated in Figure 2 (Left). In
the context of NAS, our method discovers competitive and
low-cost convolutional networks by exploring one order of
magnitude fewer models compared to other approaches, thus
designing architectures in a few hours on a single GPU, as
shown in Figure 2 (Right).

Besides computational cost concerns, many efforts have
been devoted to improve data representation of deep networks.
In this context, previous works have demonstrated encouraging
results combining features from different levels (layers) of
the network. Such works have followed either multi-scale
or HyperNet strategies. While the former redesigns network
topology to encode features from shallow and deep layers [15],
the latter preserves network topology, encouraging application
on off-the-shelf networks [16]. Despite the positive results,
both strategies increase the computational burden significantly
since they insert time-consuming operations at multiple levels
of the network. To address this problem, we propose an
efficient yet accurate approach to extract different levels of
representation across multiple layers of deep networks, thus
enhancing data representation at negligible additional cost.

A parallel line of research to improve data representation is
to learn compact, but discriminative, representations through
dimensionality reduction [4]. In this context, Partial Least
Squares (PLS) has presented remarkable results, mainly when
compared to other methods such as Principal Component
Analysis and Linear Discriminant Analysis [17]–[19]. The
promising results of PLS are associated with its characteristics
that include being discriminative and robust to sample size
problem (when the number of samples is smaller than the
number of features). Another attractive aspect of PLS is
that it can operate as a feature selection method. However,
PLS is unsuitable for large datasets (e.g., ImageNet) since
all the data need to be available in advance and this could
be impractical due to memory constraints. To handle this
problem, many works have proposed incremental versions of
traditional dimensionality reduction methods [20]–[22], where
the idea is to learn compact representations using a single
sample at a time. Unfortunately, most incremental PLS fail to
keep all its properties and present a high time complexity. To
preserve the fundamental characteristics of PLS, we propose a
discriminative and low-complexity incremental PLS. Among
the advantages of this approach are the preservation of dis-
criminative information, its computational efficiency, and the
ability to operate as a feature selection technique.

Objectives. From a practical perspective, our goal is to
promote mechanisms capable of reducing the financial cost,
carbon emission and computational cost of convolutional
networks (see Figure 3). More specifically, we pretend to
provide strategies for (i) accelerating convolutional networks,
(ii) discovering high-performance convolutional architectures
automatically and (iii) efficiently improving data represen-
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Fig. 3. Financial cost (Brazilian real) and carbon emission for training
different convolutional networks. Values above the bars indicate CO2 in
kgCO2eq (lower is better), which indicates the global warming potential of
various greenhouse gases as a single number. Our strategies (blue bars) provide
significantly more efficient convolutional networks.

tation of convolutional networks. Additionally, we target to
provide a memory-friendly version of PLS. From a theoretical
perspective, our goal is to demonstrate the potential of PLS as
a tool for determining the importance of structures composing
a convolutional network. Besides, we intend to show that it
is possible to preserve underlying properties of PLS in its
incremental version through simple algebraic decomposition.

Contributions. The contributions of this thesis are simple,
effective and efficient strategies for improving computational
cost and predictive ability of convolutional networks. Specif-
ically, we reduce more than half of computation, memory
usage and inference time, which enables modern convolu-
tional networks suitable to low-power systems. Furthermore,
we decrease the financial cost of deploying convolutional
networks, which is significant progress in making them more
accessible to academic researchers, as shown in Figure 3.
Regarding the climate impact of AI, our work enables that
modern networks emit around 91% less CO2. This result is an
important step towards green AI. Last but not the least, we ex-
pand the applicability of a powerful dimensionality reduction
technique, PLS, to large datasets and streaming applications.
Particularly, all our contributions are beneficial for academics,
researchers, and students with limited computational budgets.
To promote reproducibility, we release the source code at:
https://arturjordao.github.io/PLSDeepSpaceOdyssey/.

II. PRELIMINARIES

Partial Least Squares. Partial Least Squares is a dimen-
sionality reduction method that yields a set of discriminative
latent variables taking into account the relationship between
independent (X) and dependent (Y ) variables [23], [24].

The idea behind Partial Least Squares (PLS) is to find
a projection matrix W (w1, w2, ..., wc) that projects the high
dimensional space onto a low c-dimensional space (latent
space), where c ≪ m. In essence, W can be interpreted as
a weight matrix that assigns importance for each feature of
X . To find W , PLS aims at maximizing the covariance (Cov
for short) between the independent and dependent variables.
Formally, PLS constructs W such that

wi := maximize(Cov(Xw, Y )), s.t∥w∥ = 1, (1)

where wi denotes the ith component of the c-dimensional
space. The exact solution to Equation 1 is given by

wi :=
XTY

∥XTY ∥
, (2)

with X and Y normalized (transformed into Z-scores).
From Equation 2, it is possible to compute all c components

(c is a parameter) using Nonlinear Iterative Partial Least
Squares (NIPALS) [24]. It is worth mentioning that to estimate
the other components (wi, i > 1), NIPALS removes the
contribution of the previous component on X and Y , named
deflation step (see Equation 6 for details). Such a step ensures
orthogonality between all the components w1, w2, ...wc. We
refer interested readers to Algorithms 1 and 2 in the thesis for
more details.
Variable Importance in Projection. Besides being more
flexible and, often, attaining superior performance than tradi-
tional dimensionality reduction techniques [18], [19], another
interesting aspect of PLS is that it can operate as a feature
selection method. For this purpose, after computing the pro-
jection matrix W , we need to employ Variable Importance in
Projection (VIP) that estimates the importance of each feature
(from the high-dimensional space) w.r.t its contribution to yield
the low dimensional space. Due to space constraints, we refer
the reader to Section 2.2.1 in the thesis for additional details.

III. PRUNING APPROACHES

Problem Definition. Let F be a convolutional network with
L layers, where the number of neurons in each layer fi ∈
{1, 2, ..., L} is defined by |fi|. Define F ′ a network without
some structures of F such that |f ′

i |L
′

i=1 ≤ |fi|Li=1 (pruning
filters) or L′ < L (pruning layers). Thus, F ′ is an efficient
and lower-complexity version of F . Our target is to identify
and remove structures from F that preserve as much accuracy
as possible, which means yielding F ′ such that its accuracy
is close (ideally superior) to F .
Proposed Method. The first step in our pruning method is to
represent the structures that compose the network as feature
vectors. For this purpose, we present the training data to the
network and interpret the feature maps of each structure as a
feature vector (or a set of features). The intuition for using
the feature map as a feature is that we are able to measure
its relationship with the class label on the latent space (PLS
criterion). In this way, a filter or layer associated with a feature
with low relationship might be removed.

After executing the previous steps, we have created a high-
dimensional feature space, representing all structures of the
network at once. Then, we measure the structure importance
score to remove the ones with low importance. To this end,
we project the high dimensional space onto a latent space
using PLS and employ the VIP technique to estimate the
contribution of each feature in generating the latent space.
Recall that, following the modeling performed in the first step
of our method, each feature corresponds to a filter or layer.

Given the importance of all structures, we can remove p%
of these structures associated with low scores. Finally, we



TABLE I
DROP IN ACCURACY USING DIFFERENT CRITERIA FOR DETERMINING STRUCTURE IMPORTANCE. NEGATIVE VALUES DENOTE IMPROVEMENT

REGARDING THE ORIGINAL (UNPRUNED) NETWORK. THE BEST RESULTS ARE IN BOLD. THE ARROWS INDICATE WHICH DIRECTION IS BETTER.

Filter Layer
Structure Importance

Criterion
CIFAR-10

Acc. Drop↓
ImageNet 224× 224

Acc. Drop↓
CIFAR-10

Acc. Drop ↓
ImageNet 224× 224

Acc. Drop ↓
infFS [26] −0.69 −0.50 −0.68 −2.03

ilFS [27] 0.65 −0.36 −0.46 −2.11

infFSU [28] 0.48 −0.33 −0.50 −2.03

KL [13] −0.59 −0.41 −0.32 −2.06

HRank [29] −0.84 −0.47 −0.73 −2.03

ABS [30] −0.62 −0.42 −0.54 −2.11

PLS+VIP −0.89 −0.58 −0.84 −1.92

perform some stages of fine-tuning in F ′ to compensate for
the structures that have been removed.

Results. We compare the proposed criterion (PLS+VIP) for
assigning structure importance with other criteria and state-
of-the-art feature selection techniques. Table I shows the
results obtained by different pruning criteria on the CIFAR-10
and ImageNet datasets. Compared to state-of-the-art pruning
criteria [13], [29], [30] and feature selection techniques [26]–
[28], PLS+VIP obtained the lowest drop in accuracy.

Even though PLS+VIP underperforms some criteria for as-
signing layer importance, it is worth mentioning that PLS+VIP
is computationally more attractive. For example, the feature se-
lection techniques (infFS, ilFS, infsFSU) require an adjacency
matrix representing all pairs of features, consuming substantial
computational resources. The approach by Lin et al. [29]
(HRank) is time-consuming since the feature map rank is
estimated using SVD. Finally, KL-divergence (KL) [13] is one
of the most computationally expensive criteria since it requires
a forward prediction for each structure of the network.

IV. NEURAL ARCHITECTURE SEARCH

Problem Definition. Let F be a convolutional network com-
posed of S stages. Each stage si ∈ S consists of bi modules,
which in turn define the depth of stage si. Following the
structure of modern architectures, the layers within a stage
operate on the same input/output resolution (i.e., their feature
maps have the same dimension). In previous works, including
NAS, b is the same for all stages or defined empirically. For
example, ResNet39 has six residual blocks in each of its stages
(i.e., bi∈{1,...,S} = 6). Our target is to design architectures by
learning the number of modules bi for each stage si.

Proposed Method. The first step in our NAS is to define
a module type. We consider two types of modules: residual
blocks from ResNet [7] or cells from NASNet [14]. The next
step in our method is to measure the importance score for each
stage si ∈ S. For this purpose, given a stage si of a network,
we present the training samples to the network and extract the
feature maps from the last layer of this stage.

Let Xi be the features of si estimated following the pro-
cedure above. The next step is to compute the importance of
these features. By estimating the importance of Xi we are

estimating the importance of the stage si. Such importance is
estimated by presenting Xi to PLS followed by VIP.

Once we are able to estimate the score αi for each stage si,
the next step is to build a candidate architecture by adjusting
the depth of each stage based on its importance. To this end,
we first create a network F with S stages, each one containing
the same number of modules, e.g., by employing S = 3 and
|bi|Si=1 = 6. Then, we create a temporary architecture T by
increasing the depth of si to bi+δ, where δ is the growth step,
i.e., the number of modules that can be inserted in a stage in a
single iteration. Afterwards, we compute the importance scores
αF,i and αT,i, for each stage si of the initial and temporary
architectures, respectively. Finally, we update bi to bi + δ if
αT,i > αF,i and create a candidate architecture F̂ using the
updated bi. The idea behind this incremental process is to
measure if increasing depth will improve the representation
learned by the candidate architecture.

The process above composes one iteration of our method,
where at the end of each iteration one architecture is discov-
ered. The input for the next iteration is the architecture de-
signed with the values of bi updated. Thus, given k iterations,
our method creates only 2k+1 architectures, which is an order
of magnitude fewer than state-of-the-art NAS approaches.

Results. We compare our method with state-of-the-art NAS
approaches, Table II. According to this table, our method is the
more cost-effective NAS approach in terms of the number of
evaluated models and amount of GPUs required. In particular,
our method designs competitive architectures by evaluating
a significantly smaller number of models, enabling our ap-
proach to run in a few hours on a single GPU. Compared to
approaches that also evaluate a small number of models [31]–
[33], our method achieves the best trade-off between accuracy
and number of GPUs. In summary, our method built more
parameter-efficient architectures even without considering the
computational cost in the searching process.

Following a recent trend [10]–[12], we also measure the
carbon emission for training architectures. Our candidate ar-
chitectures emit notably less carbon, even taking into account
shallow versions of ResNet. Compared to ResNet110, our final
architecture trained from scratch emits 41% less CO2. This
occurs because our architectures are computationally more



TABLE II
COMPARISON WITH STATE-OF-THE-ART NAS APPROACHES. RESULTS

TAKEN FROM PREVIOUS WORKS. THE BEST VALUES ARE SHOWN IN BOLD.
’–’ INDICATES THE METRIC IS NOT REPORTED BY THE ORIGINAL PAPER.

THE ARROWS INDICATE WHICH DIRECTION IS BETTER.

Model
Evaluated↓

Models
GPUs↓ Param.↓

(Million)
Accuracy↑
CIFAR-10

Zoph et al. [14] 20,000 800 2.5 94.51
Baker et al. [34] 1,500 10 11.1 93.08
Real et al. [35] 1,000 250 5.4 94.60

Brock et al. [36] 300 1 4.6 94.47
Dong and Yang [37] 240 1 2.5 96.25

Yang et al. [38] 128 1 3.6 97.38
Jin et al. [33] ≈60 1 – 88.56

Elsken et al. [31] 40 5 19.7 94.80
Kandasamy et al. [32] 10 4 – 91.31

Chen et al. [39] – 1 10.5 97.75
Li et al. [40] – 1 3.90 96.21

Ours (Res. modules) 11 1 1.7 94.27
Ours (Cell modules) 11 1 2.3 94.74

Ours (Ensemble) – – 7.27 95.68

efficient, leading to a considerably faster training stage.

V. HYPERNET APPROACH

Problem Definition. Let Xi be an output (feature map) of a
specific layer fi ∈ {1, 2..., L} from a network F of L layers.
Define O a set of feature maps Xi such that |O| > 1. We
assume that O provides better data representation than using
a single Xi. Our target is to efficiently yield O, which means
combining multiple Xi in an efficient yet accurate way.

Proposed Method. The first step is our Latent HyperNet
(LHN) is to define a set of layers, l ⊂ L, to be combined. This
is a typical step in HyperNet approaches and it is necessary
because some early layers contain simple patterns (i.e., edges),
which do not contribute to the classification but increase
computational cost [41], [42]. Therefore, setting the layers to
be combined is more appropriate than using all of them.

Once we have set the layers l, we use the feature maps Xi of
each layer fi ∈ l to learn a PLS model. Such feature maps are
high dimensional, which reinforces the employment of PLS as
it is proper for these scenarios. Following this modeling, each
fi ∈ l will have a PLS model associated with it.

After executing the above steps, we project the feature maps
Xi on its respective PLS model yielding compact representa-
tions of Xi, which in turn are concatenated in O. In summary,
before inserting Xi into O we reduce its dimensionality using
PLS. According to this definition, our LHN neither modifies
the design nor the learned weights of the network, enabling it
to be easily adaptable to any network.

Results. Table III shows the improvements in accuracy
achieved by the HyperNets approaches using multiple layers
from VGG16 and ResNet20. According to this table, on
CIFAR-10, the approach by Kong et al. [41] was not able
to improve the accuracy compared to the original network. In
contrast, our LHN obtained a marginal improvement. On the

TABLE III
IMPROVEMENTS IN ACCURACY ACHIEVED BY THE HYPERNETS.

NEGATIVE VALUES DENOTE A DECREASE IN ACCURACY REGARDING THE
ORIGINAL NETWORK. THE BETTER METHOD IS SHOWN IN BOLD. THE

ARROWS INDICATE WHICH DIRECTION IS BETTER.

CIFAR-10↑ ImageNet ↑

VGG16
HyperNet [41] −0.22 0.01

LHN (Ours) 0.05 0.66

ResNet20
HyperNet [41] -0.02 3.60
LHN (Ours) −0.13 2.65

ImageNet dataset, the approach by Kong et al. [41] improved
the accuracy of VGG16 and ResNet20 in 0.01 p.p. and 3.60
p.p., respectively. On the other hand, LHN improved the
accuracy of VGG16 and ResNet20 in 0.66 p.p. and 2.65 p.p..

VI. INCREMENTAL PARTIAL LEAST SQUARES

Problem Definition. Let W (w1, w2, ..., wc) be a projection
matrix that projects the high dimensional space onto a low
c-dimensional space. Considering that W was obtained by
PLS, which means that each component wi maximizes the
covariance between Xwi and Y , where X and Y represent
all the data samples and their respective labels. Our target is
to find W using a single sample x ∈ X , and its respective label
y, at a time while maintaining the property of maximizing the
covariance across all c-components.
Proposed Method. Our incremental Partial Least Squares
approach focuses on ensuring that, as in traditional PLS,
the relationship between independent and dependent variables
(Equation 2) be kept on all the components. To this end, our
method works as follows. First, we center the data to the mean
of the training samples X . In incremental approaches the mean
is unknown since we cannot assume that all the data are known
a priori [20], [43]. To face this problem, we centralize the cur-
rent sample using an approximate centralization process [43],
which consists of estimating an incremental mean using the
nth sample. According to Weng et al. [43], we can compute
the incremental mean µn w.r.t. the nth data sample as

µn :=
n− 1

n
µ(n−1) +

1

n
xn. (3)

Once we have centralized the sample, the next step in our
method is to compute the component wi following Equation 2.
As we mentioned, X and its respective Y are unknown or are
not in memory in advance, which prevents us from employing
Equation 2 directly. However, as suggested by Zeng and
Li [20], we employ the following decomposition:

XTY =

n−1∑
k=1

xT
k yk + xT

nyn. (4)

By replacing XTY in Equation 2 by Equation 4, it is
possible to calculate the ith component of PLS considering
a single sample at a time. In other words, Equation 4 enables
to compute wi incrementally.

To compute the higher-order components (wi, i > 1),
we employ a deflation process, which consists of subtracting



the contribution of the current component on the sample
before estimating the next component [44], [45]. Following
the NIPALS algorithm, the deflation process works as follows

t := Xwi, p := XT t, q := Y T t, (5)

X := X − tpT , Y := Y − tqT , (6)

where t denotes the projected samples onto the current compo-
nent wi, and p and q represent the scores of this projection. It
should be noted that while t works in an incremental scheme,
p and q cannot be computed since X and Y are neither
known nor are in memory in advance. Fortunately, in light
of Equation 4, we can decompose p and q as

p =

n−1∑
k=1

xT
k tk + xT

n tn, q =

n−1∑
k=1

yTk tk + yTn tn. (7)

By embedding Equation 7 on the deflation process, we can
remove the contribution of the current component and repeat
the process to compute a single component wi. Observe
that Equation 6 can be computed sample-by-sample working,
therefore, in an incremental scheme. At this stage, we obtain
all the requirements to find c components incrementally.

Results. We compare the proposed CIPLS with other incre-
mental dimensionality reduction methods. Table IV summa-
rizes the results. On the LFW dataset, CIPLS outperformed
SGDPLS and IPLS in 1.18 and 1.48 p.p., respectively. Simi-
larly, on the YTF dataset, CIPLS outperformed SGDPLS and
IPLS in 0.88 and 1.88 p.p., in this order. In particular, on these
datasets, the results of CIPLS were statistically superior to
IPLS and SGDPLS. On ImageNet, the difference in accuracy
compared to IPLS was of 0.07 and 1.35 p.p., for the 32× 32
and 224× 224 versions, respectively.

To demonstrate the efficiency of CIPLS, we compare its
time complexity to compute the projection matrix and pre-
diction time with the incremental methods evaluated. Table V
shows the results. Overall, our method presents a low time
complexity for estimating the projection matrix. In addition,
the time for estimating the projection matrix of our method
was equivalent to CCIPCA, which is the fastest incremental di-
mensionality reduction. Therefore, CIPLS is the fastest among
the compared incremental PLS methods.

TABLE IV
COMPARISON OF EXISTING INCREMENTAL METHODS IN TERMS OF

ACCURACY. THE SYMBOL ’–’ DENOTES THAT IT WAS NOT POSSIBLE TO
EXECUTE THE METHOD DUE TO MEMORY CONSTRAINTS OR

CONVERGENCE PROBLEMS. PLS DENOTES THE USE OF THE TRADITIONAL
PLS. THE CLOSER TO THE ACCURACY OF PLS, THE BETTER.

LFW YTF
ImageNet
32× 32

ImageNet
224× 224

CCIPCA 89.87 81.48 40.30 52.58

SGDPLS 90.60 83.22 – –
IPLS 90.30 82.22 43.24 65.74

CIPLS (Ours) 91.78 84.10 43.31 67.09

PLS 92.47 85.96 – –

TABLE V
COMPARISON OF THE METHODS IN TERMS OF TIME COMPLEXITY FOR

ESTIMATING THE PROJECTION MATRIX AND AVERAGE (AVG.) PREDICTION
TIME (THE LOWER THE BETTER). m, n DENOTE DIMENSIONALITY OF THE
ORIGINAL DATA AND NUMBER OF SAMPLES, WHILE c, L AND T DENOTE

NUMBER OF PLS COMPONENTS, NUMBER OF PCA COMPONENTS AND
CONVERGENCE STEPS, RESPECTIVELY.

Time Complexity Avg. Time (seconds)
CCIPCA [43] O(nLm) 0.003
SGDPLS [46] O(Tcm) 0.01

IPLS [20] O(nLm+ c2m) 0.006
CIPLS (Ours) O(ncm) 0.002

VII. PUBLICATIONS AND AWARDS

Journals
1) Jordao, A., Yamada, F., and Schwartz, W. R. Deep

Network Compression based on Partial Least Squares.
Neurocomputing, 2020.

2) Jordao, A., Lie, M., and Schwartz, W. R. Discrimina-
tive Layer Pruning for Convolutional Neural Networks.
Journal of Selected Topics in Signal Processing, 2020.

Conferences
1) Jordao, A., Kloss, R. B., and Schwartz, W. R. Latent
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Conference on Pattern Recognition (ICPR), 2020.

4) Jordao, A., Lie, M., de Melo, V. H. C., and Schwartz, W.
R. Covariance-free partial least squares: An Incremental
Dimensionality Reduction Method. Winter Conference
on Applications of Computer Vision (WACV), 2021.

Awards
1) Finalist of the XXXIV Concurso de Teses e Dissertações

(CTD) 2021 – XLI Congresso da Sociedade Brasileira
de Computação (CSBC), ranking among the top 6 (out
of 46) best theses.

2) Award nomination to CAPES Thesis Award and UFMG
Thesis Grand Prize.

Acknowledgments. The authors would like to thank Ricardo
Kloss, Maiko Lie, Fernando Yamada, and Victor de Melo for
their valuable contributions to this thesis. The authors would
like to thank the Brazilian National Research Council – CNPq
(Grants 438629/2018-3, 309953/2019-7 and 140082/2017-4),
the Minas Gerais Research Foundation FAPEMIG (Grants
APQ-00567-14 and PPM-00540-17) and the Coordination for
the Improvement of Higher Education Personnel – CAPES
(DeepEyes Project).



REFERENCES

[1] A. P. Badia, B. P. S. K. P. S. A. V. Z. Guoand, and C. Blundell, “Agent57:
Outperforming the atari human benchmark,” in International Conference
on International Conference on Machine Learning (ICML), 2020.

[2] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International Conference on Machine
Learning (ICML), 2019.

[3] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Big transfer (bit): General visual representation learning,”
in European Conference on Computer Vision (ECCV), 2020.

[4] Y. Li, M. Yang, and Z. Zhang, “A survey of multi-view representation
learning,” Transactions on Knowledge and Data Engineering, vol. 31,
no. 10, pp. 1863–1883, 2019.

[5] M. A. Diniz and W. R. Schwartz, “Face attributes as cues for deep face
recognition understanding,” in International Conference on Automatic
Face and Gesture Recognition(FG), 2020.

[6] X. Suau, L. Zappella, and N. Apostoloff, “Filter distillation for network
compression,” in Winter Conference on Applications of Computer Vision
(WACV), 2020.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Computer Vision and Pattern Recognition (CVPR), 2016.

[8] J. S. Rosenfeld, A. Rosenfeld, Y. Belinkov, and N. Shavit, “A construc-
tive prediction of the generalization error across scales,” in International
Conference on Learning Representations (ICLR), 2020.

[9] K. Han, Y. Wang, Q. Zhang, W. Zhang, C. XU, and T. Zhang, “Model
rubiks cube: Twisting resolution, depth and width for tinynets,” in Neural
Information Processing Systems (NeurIPS), 2020.

[10] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” in Conference of the Association for
Computational Linguistics, 2019.

[11] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quantifying
the carbon emissions of machine learning,” in Neural Information
Processing Systems (NeurIPS), 2019.

[12] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,”
Communications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[13] J.-H. Luo and J. Wu, “Neural network pruning with residual-connections
and limited-data,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[14] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.

[15] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, “Resolution
adaptive networks for efficient inference,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[16] V. Sindagi and V. M. Patel, “Multi-level bottom-top and top-bottom
feature fusion for crowd counting,” in International Conference on
Computer Vision (ICCV), 2019.

[17] A. Sharma and D. W. Jacobs, “Bypassing synthesis: PLS for face
recognition with pose, low-resolution and sketch,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2011.

[18] R. Hasegawa and K. Hotta, “Plsnet: A simple network using partial least
squares regression for image classification,” in International Conference
on Pattern Recognition (ICPR), 2016.

[19] R. B. Kloss, A. Jordão, and W. R. Schwartz, “Boosted projection: An
ensemble of transformation models,” in Iberoamerican Congress on
Pattern Recognition (CIARP), 2017.

[20] X. Zeng and G. Li, “Incremental partial least squares analysis of big
streaming data,” Pattern Recognition, vol. 47, pp. 3726–3735, 2014.

[21] A. E. Stott, S. Kanna, D. P. Mandic, and W. T. Pike, “An online
NIPALS algorithm for partial least squares,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), 2017.

[22] S. Alakkari and J. Dingliana, “An acceleration scheme for mini-batch,
streaming PCA,” in British Machine Vision Conference (BMVC), 2019.

[23] P. Geladi and B. Kowalski, “Partial least-squares regression: a tutorial,”
Analytica Chimica Acta, vol. 185, pp. 1–17, 1986.

[24] H. Abdi, “Partial least squares regression and projection on latent
structure regression (pls regression),” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 2, no. 1, pp. 97–106, 2010.

[25] T. Mehmood, K. H. Liland, L. Snipen, and S. Saebo, “A review of vari-
able selection methods in partial least squares regression,” Chemometrics
and Intelligent Laboratory Systems, 2012.

[26] G. Roffo, S. Melzi, and M. Cristani, “Infinite feature selection,” in
International Conference on Computer Vision (ICCV), 2015.

[27] G. Roffo, S. Melzi, U. Castellani, and A. Vinciarelli, “Infinite latent
feature selection: A probabilistic latent graph-based ranking approach,”
in International Conference on Computer Vision (ICCV), 2017.

[28] G. Roffo, S. Melzi, U. Castellani, A. Vinciarelli, and M. Cristani,
“Infinite feature selection: a graph-based feature filtering approach,”
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
2020.

[29] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao,
“Hrank: Filter pruning using high-rank feature map,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[30] C. M. J. Tan and M. Motani, “Dropnet: Reducing neural network
complexity via iterative pruning,” in International Conference on In-
ternational Conference on Machine Learning (ICML), 2020.

[31] T. Elsken, J. H. Metzen, and F. Hutter, “Simple and efficient architecture
search for convolutional neural networks,” in International Conference
on Learning Representations (ICLR), 2018.

[32] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, and E. P. Xing,
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