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Abstract—Early alert fire and smoke detection systems are
crucial for management decision making as daily and security
operations. One of the new approaches to the problem is the use
of images to perform the detection. Fire and smoke recognition
from visual scenes is a demanding task due to the high variance
of color and texture. In recent years, several fire-recognition
approaches based on deep learning methods have been proposed
to overcome this problem. Nevertheless, many developments have
been focused on surpassing previous state-of-the-art model’s
accuracy, regardless of the computational resources needed to
execute the model. In this work, is studied the trade-off between
accuracy and complexity of the inverted residual block and
the octave convolution techniques, which reduces the model’s
size and computation requirements. The literature suggests that
those techniques work well by themselves, and in this research
was demonstrated that combined, it achieves a better trade-off.
We proposed the KutralNext architecture, an efficient model
with reduced number of layers and computacional resources
for single- and multi-label fire and smoke recognition tasks.
Additionally, a more efficient KutralNext+ model improved with
novel techniques, achieved an 84.36% average test accuracy in
FireNet, FiSmo, and FiSmoA fire datasets. For the KutralSmoke
and FiSmo fire and smoke datasets attained an 81.53% average
test accuracy. Furthermore, state-of-the-art fire and smoke recog-
nition model considered, FireDetection, KutralNext uses 59%
fewer parameters, and KutralNext+ requires 97% fewer flops
and is 4x faster.

I. INTRODUCTION

The1 presence of fire in some environments is capable of
causing massive losses; hence, the early recognition for this
kind of accident is primordial. Early recognition of fire can
be translated in a quick response to manage the accident, and
therefore, high accuracy of fire recognition is also essential.
In this regard, a system capable of triggering an alarm with
high accuracy is crucial for the response team in charge of
monitoring this kind of accident.

Fire accidents can be present in many environments, e.g.,
open-air, private, or community use spaces, among others, and
can be originated because of human intervention, piece of
machinery malfunction, unstable state of some structures, or in
many other cases as a consequence of other natural disasters.
Uncontrolled fire, or blaze, can affect in economic, social, and
environmental way principally. This damage could be restored
or not. In case it could be restored, considerable effort and
consequently, resources are required. A common type of fire
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accident is the forest fire, which can significantly damage the
environment [1] and increase its severity if it spreads.

In Latin America, the forest fires are mainly present in
the Amazonia [2] and Chile [3], and have economic and
environmental consequences such as mentioned by Urzua et
al. [4]. Chile, just in 2014, had more than 8000 fires, which
affected 130000ha. After the forest fire, the soil remains
damaged [5], and it is difficult for the vegetation to grow
again. When this type of accident occurs in the environment,
all plants and animal life disappear from the affected zone due
to the environment’s perturbation. The fires’ problem is that
they are unpredictable, in the way of when or where they will
occur, especially for forest fires. Hence, an early alert system
would help to manage these accidents or natural disasters.

This work proposes an efficient deep learning model to rec-
ognize fire and smoke as a multi-label classification task spe-
cialized for embedded devices such as CCTV devices, mobile
and robotic systems. The model’s architecture development
focused on low computing power devices with high accuracy
in acquiring fire and smoke features. In order to obtain a
suitable model, different architectures were proposed inspired
by generic- and specific-purpose deep learning models and
trained with previously used datasets. Hereof, a final efficient
architecture was developed after checking different efficient
techniques such as convolve methods and convolutional blocks
with a specific setup.

II. FIRE AND SMOKE IMAGE CLASSIFICATION

First approaches to fire recognition in computer vision were
addressed using techniques based on RGB color space [6],
spectral color [7], texture recognition [8], and spatio-temporal
treatment [9]. The most recent methods using DL approaches
have tackled the problem of fire and smoke recognition
through a convolutional neural network (CNN), as a single-
label classification task, where the CNN process an input data
image by each convolutional layer, reducing its dimensionality
into meaningful features. The features acquired by a CNN have
been proven to be related to the network’s depth. Early layers
can obtain simple features like colors and shapes, and final
layers process complex features [10]. After rich features were
obtained from the input, this data representation is processed
by a classifier, which usually is a linear regressor. A few
fully connected layers with a considerable amount of hidden



units can also be used as a linear regressor to infer which
label corresponds to the image. The most recent methods are
detailed as follows.

Sharma et al. [11] developed a custom fire classification
model based on VGG16 [10] and ResNet50 [12], two generic-
purpose DL models, where the authors just modified the
classification stage, adding one fully connected layer at the top
of the network implementing transfer learning and fine-tuning
methods. Muhammad et al. [13] had proposed a SqueezeNet
based-model, where the authors present a custom framework
to process the input signal, to classify and locate the fire
in a single-label approach. Namozov et al. [14] presented
a VGG16 inspired approach with 12 convolutional layers
and the adaptative piecewise linear activation [15] function
instead of traditional rectified linear units [16]. Their proposal
was trained with their dataset with 2440 images labeled as
fire and smoke equally balanced. Additionally, the authors
implemented data augmentation using Generative Adversarial
Networks to create three subsets from the original one.

In terms of specific-purpose models for this task, the fol-
lowing works were found. Gotthans et al. [17] proposed the
Fire Detection model to fire and smoke recognition trained
with two datasets to compare it against AlexNet [18] and
SqueezeNet [19]. The model received an input image of
224x244 pixels with RGB channels, normalized with mean
values of (0.485, 0.456, 0.406) and standard deviation of
(0.229,0.224, 0.225) for each channel. The authors proposed
to achieve a lightweight model capable of recognizing just
fire, and fire and smoke in still images. Additionally, they
tested the model’s execution in the Jatson Nano platform,
obtaining the same results. The Fire Detection model reduced
in 27% the execution time compared to AlexNet, with only
1% less accuracy. A lightweight model was proposed by Jadon
et al. [20], capable of processing images of 64x64 pixels on
RGB channels. The architecture comprises three consecutive
convolution blocks that contain a convolution layer, an average
pooling layer, a dropout layer, and three fully connected layers
as the classifier. The proposed approach was focused on being
used in an IoT embedded fire alarm system.

III. THE KUTRALNEXT PROPOSAL

The final contribution achieved in this work evolved from
a previously defined architecture model to a specific-purpose
model, which improves the size and complexity using novel
deep learning techniques. The first exploration approach was a
ResNet-based architecture with the octave convolution named
OctFiResNet. The second architecture developed was custom-
made to recognize fire-only in still images named KutralNet,
which presents efficient variations using residual connections,
octave convolution, depthwise convolution, and the inverted
residual block. That second approach evolved to the final Ku-
tralNext model, which improves the fire recognition outcome,
including the capability to recognize smoke as well. More
details are addressed in the following subsections.

A. ResNet based fire recognition model

The first proposed model is based on the ResNet archi-
tecture, named OctFiResNet [21], intended to work with the
minimum hardware requirements as possible, replacing most
of the vanilla convolutions with the octave convolution [22].
The octave convolution processes the signal in two different
channels, one for high-frequencies to acquire more detailed
features and the other for low-frequencies to more general
features. This technique allows the model to work with less
memory and fewer flops compared to a vanilla convolution
layer. Additional implementation details are in the project’s
repository2.

B. Lightweight efficient deep learning model

The following proposal for fire recognition sets a baseline
model to develop portable versions focused on reducing the
model’s complexity in processing the input image. The Kutral-
Net3 [23] model was developed as a suitable option for limited
hardware devices and built other efficient versions using the
octave convolution and the inverted residual block to test
each efficient technique by themselves and combined. Hereof,
three portable models were obtained from this baseline using
efficient deep learning techniques. The octave and depthwise
convolution [22], [24] demonstrated excellent performance
with a sharp reduction of operations and parameters required,
resulting in more efficient models.

For the case of the separable depthwise convolution in
the inverted residual block [24], it increases the number
of parameters and reduces the flops efficiently.Given the
grouping way to process the convolution channels denoted
as groups = Cin and out channels = Cin ∗ K, in which
the output filters are K times the input filters, reducing the
mathematical complexity of the operation. For the octave
convolution case, a reduction in both parameters and flops is
achieved due to the separate way of processing the filters on
high and low frequency, computing the parameters information
W into two components W = [WH ,WL] and exchanging
the information between them. Additionally, these convolution
techniques, used in different deep learning model architectures,
and various tasks such as classification, object detection, and
semantic segmentation, achieve a model’s size reduction, less
computational requirements, and improved performance in
some cases. This second proposal combines these techniques,
presenting a new convolution type, achieving a valuable trade-
off between accuracy, model size, and computational cost.
Additional details of the implementations are in the project’s
repository4.

1) Baseline model’s architecture: The KutralNet model’s
baseline was inspired by OctFiResNet and FireNet models,
mixing between a deep model and a lightweight one, capable
of processing 84x84 pixels images in RGB channels. The

2OctFiResNet’s public repository https://github.com/angel-ayala/fire
recognition

3The name took inspiration from Mapuche language or Mapudungun where
kütral means fire.

4KutralNet’s public repository https://github.com/angel-ayala/kutralnet



KBN =

Conv 3x3xMxN
pad 1

BatchNorm

LeakyReLU

MaxPool 2x2 /2

Conv 3x3x64x64
pad 1

BatchNorm

Conv 1x1x128x64
pad 0

KBP =

KBO =

FC 64x2

GlobalAvgPool

LeakyReLU

(a)

84x84x3
Image

KB32

KB64

KB128

KBP

KBO

+

MaxPool 2x2 /2

BatchNorm

(b)

Fig. 1. (a) The KutralNet main blocks. The KutralBlockN (KBN) where
N refers to the output channels number, KutralBlockP (KBP), and the
KutralBlockO (KBO). (b) The baseline KutralNet model with three KBN
blocks, a KBP block, a shortcut connection, and a KBO block with two exits.

KutralNet architecture comprises three kinds of convolutional
blocks, named KutralBlockN (KBN), where N corresponds
to the number of output channels, KutralBlockP (KBP), and
KutralBlockO (KBO). KBN block was built with a convolution
layer with N channels as output, a batch-normalization layer, a
LeakyReLU activation, and a max-pooling layer to size-down
the output. Next, the KBP block comprises two convolution
layers and a batch-normalization layer. Finally, the KBO block
possesses a LeakyReLU activation, a global average pooling
layer, and a fully-connected layer with two exits, one for
fire and the other for non-fire labels. This architecture was
defined for processing low-dimension images in a lightweight
configuration. Each block details are shown in Figure 1a. As
shown in Figure 1b, the architecture consists of three KBN
blocks, one KBP block, and finally, a KBO output block.
A max-pooling and batch-normalization layers, as a shortcut,
process the signal from the KB64 block to the final KBO
output block. This setup was followed because it has been
proved that just a few layers can acquire enough features for
a fire classification task to improve the inference time [20].
Additionally, using a shortcut and batch-normalization layers
avoids overfitting the model [12]. Also, the LeakyReLU was
chosen since a non-zero slope for the negative part improves
the results [25] and presents a low-cost implementation.

2) Portable version implementations: The KutralNet
portable models development was focused on reducing the
model size and computational cost. The octave and depth-wise
convolution [22], [24] demonstrated an excellent performance
with a sharp reduction of operations and parameters required,
resulting in more efficient models.

• KutralNet Mobile: Was inspired by MobileNetV2 [24]
and presents the implementation of the inverted residual
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Fig. 2. The KutralNet Mobile Octave main blocks, the
KutralMobileOctaveBlockN-E (KMOBN-E), where N refers to the
number of output channels and E for the t value of expansion rate.
OctConvPN and OctConvDN are the octave convolution version for the
separable depthwise convolution layers. This block replaces the KB64,
KB128 and KBP blocks of KutralNet with the same number of channels.

block. In this approach, from the KB64 block, the Kutral-
Net convolution blocks were replaced with the inverted
residual block, in which each block contains point-wise
and depth-wise convolution with shortcut connections in
some cases.

• KutralNet Octave: It is based on the KutralNet’s ar-
chitecture, and all the vanilla convolution were replaced
with octave convolution with an α parameter of 0.5.
Thus, the octave convolution uses the 50% for the octave
feature representation, which corresponds to the low-
frequency channel dealing with global features, and the
rest for the high-frequency channel dealing with specific
features. Additionally, the octave convolution works using
the depth-wise convolution form where it is possible.

• KutralNet Mobile Octave: It is the combination of
the MobileNetV2 block and the octave convolution. It
is the same KutralNet Mobile but replacing the vanilla
convolution with the octave convolution combined with
depth-wise convolution form. The resultant block can be
seen in Figure 2.

C. Multi-label fire and smoke recognition model

All of the previous methods were considered using a single-
label fire-flame classification task, indicating if there is a fire
presence in the images or not. In this third and final proposal,
a multi-label fire and smoke recognition task extends the
KutralNet proposal called KutralNext. In terms of architecture,
no changes were made in this proposal, and the main changes
rely on the classifier exits of the KBO block. For KutralNet,
one exit was used for the positive case and the other for
the negative case of fire presence, being mutually exclusive.
For KutralNext, the first exit indicates fire presence in the
image, and the second exit indicates if there is smoke present
in the image, being complementary. The models were named
KutralNext and KutralNext+, both chosen from KutralNet best
models, demonstrating good performance in fire recognition
trained from scratch. The models were adjusted for fire and
smoke recognition using transfer-learning and Class Balanced



loss function, explained later. Experiments have demonstrated
that the multi-label approach, in addition to recognizing smoke
in the image, it also improves the model’s capability to acquire
fire’s features.

1) ImageNet Pretraining: One of the challenges in deep
learning model developments is the huge amount of data re-
quired for training. In this regard, using pretrained models over
a challenging dataset with a considerable quantity of instances
and labels improves the results using transfer learning and
fine-tuning, reducing the data required to learn filter kernels
to acquire valuable information from a high dimensional input.

For this purpose, we use the ImageNet ILSVRC 2012
dataset [26], which comprises 1.3 million instances with 1,000
classes, designed for a classification and detection competition,
being widely used as a models’ performance benchmark. Many
classical DL models such as ResNet and EfficientNet have
been trained with ImageNet and are publicly available in
different repositories to be used by the community. We use
the ImageNet dataset to training the baseline, and the efficient
architectures for later use in the fire and smoke classification
task.

2) Class Balanced Loss: As a dataset grows, focused on
obtaining more instances of those classes of interest, it is
much more likely to have a long-tailed distribution with many
under-represented classes. A novel framework is implemented
in our proposal to deal with this class imbalance issue, which
uses the effective number of samples or expected volume of
samples to define each class’s impact on the loss value. This
method is named class balanced loss [27], and defines the
effective number of samples as (1 − βn)/(1 − β), where n
is the number of samples and β an hyper-parameter ∈ [0, 1]
which control how fast the effective number of samples grows
as n increases. This loss function’s main idea is to introduce
a class weighting factor inversely proportional to the effective
number of samples to balance the output loss value as a model-
and loss-agnostic method, formulated as

CB(p, y) =
1− β
1− βny

L(p, y), (1)

where ny is the number of samples for the class y, L(p, y) is
the loss function for the predicted class probability p.

In our proposal, the L(p, y) loss function is replaced by
the focal loss (FL) [28], which is an α-weighted method to
address the class imbalance issue, defining each class impact
in the loss value with α ∈ [0, 1] for the target class y, and
1− α for the other classes, defined as follows

FL(py) = −(1− py)γ log(py), (2)

where py is the probability of the y class, (1 − py)
γ is a

modulating factor with a γ ≥ 0 hyper-parameter to determine
how smoothly it affects the loss function, focusing in difficult
samples. Each py class probability at the exit of the models is
represented by the sigmoid cross-entropy loss denoted by

py =
1

(1 + exp−zy)
.

TABLE I
QUANTITY OF IMAGES PER CLASS PRESENT IN EACH DATASET.

Dataset Set F & S Fire Smoke None Total

KutralSmoke training 1,427 599 908 2,191 5,125
KutralSmoke testing 119 576 94 382 1,171
FiSmo training 795 1,267 384 3,617 6,063
FiSmoA training 795 1,267 384 4,102 6,548

Total 2,341 2,442 1,386 6,675 12,844

In this regard, our implementation includes the base sigmoid
cross-entropy loss, with the datasets classes weighted by the
focal loss, and defining each class impact by the class balanced
loss, formulated in next

CBfocal(z, y) = −
1− β
1− βny

(1− py)γ log(py), (3)

where z is the model’s predicted class probability.

IV. EXPERIMENTAL RESULTS

Three publicly available datasets were used to benchmark
the performance of the KutralNext and KutralNext+ against the
FireDetection and FireNet models. The datasets were designed
for a fire or smoke single-label classification task, with fire,
smoke, or none classes, named FiSmo5 [29], FireNet6 [20],
and FireSmoke7. All the datasets were previously used in
fire and fire and smoke classification tasks as presented in
[17], [20], [30]. For this project, 12,844 datasets’ images
were checked by one person, labeling all the images for a
multi-label classification approach. Missing label addition was
performed during review when both fire and smoke classes
were present in the image mainly. The FireNet and FireSmoke
datasets were merged into a new one called KutralSmoke
with 6, 296 images, and a test subset with 1, 171 images.
This dataset was consolidated to get a training and testing
subset with more instances labeled as smoke and reduce the
class unbalancing. The instances allocation for training and
testing of the datasets follows the implementation used in their
original works, being FiSmo the dataset with training subset
only. More details are presented in Table I, where the F & S
column is used to represent fire and smoke class.

Overall all the models were compared using the validation
and testing accuracy, the Receiver Operating Characteristic
(ROC) curve, the area under the ROC curve, the floating-
point operations (flops), the number of parameters, and the
time required to process the entire test dataset used for each
experiment. Those metrics were selected to compare each
model generalization and acquisition of the fire and smoke
features under the same and different data distributions. Each
used model is represented in Table II by the computational
cost in terms of flops and parameters.

5https://github.com/mtcazzolato/dsw2017
6https://github.com/arpit-jadon/FireNet-LightWeight-Network-for-Fire-Detection
7https://github.com/DeepQuestAI/Fire-Smoke-Dataset



TABLE II
THE COMPUTATIONAL COST OF EACH MODEL USED IN THIS WORK

REPRESENTED WITH FLOPS AND PARAMETERS ORDERED BY PARAMETERS
NUMBER.

ModelInputSize Flops Parameters

KutralNext84x84 76.85M 138.91K
KutralNext+84x84 24.59M 185.25K
FireDetection224x224 [17] 783.50M 335.53K
FireNet64x64 [20] 8.94M 646.82K
OctFiResNet96x96 928.95M 956.23K

A. Multi-label classification: Fire and smoke recognition

In this experiment, we check out the performance in the fire
and smoke multi-label recognition task of our models’ pro-
posals with two datasets used for training and one dataset for
testing. The training datasets were FiSmo and KutralSmoke,
and the testing dataset was KutralSmoke Test. With those
datasets, the models’ were trained and compared with different
data distribution of the corresponding labels and checking its
generalization. This fire and smoke classification task analyzed
each label separately under a multi-label approach due to
the chance of appearing the fire or smoke class in the same
image. The Table III shown the statistics results of each model
trained over all the datasets with averaged values for the test
accuracy and test time and Table IV presented each model’s
test performance. Our proposals are the best in recognize fire
and smoke, being the most time inexpensive models. The
classification was considered binary, considering fire, smoke,
or both classes as a true label and none class as a false label.

The Table III shown the models’ training performance,
where it can be observed that in average testing accuracy,
KutralNext+ performs the best with the same and different data
distribution obtaining an 81.53%, being better than KutralNext
with 79.03% an all previous models. Now, in terms of time
required to process the 1,171 testing images, OctFiResNet was
the most time-consuming, taking over 2.0 seconds, followed
by FireDetection with 1.87 seconds. For the KutralNext archi-
tectures, KutralNext+ is the model that requires more time with
0.61 seconds, leaving KutralNext as the model which requires
less time with 0.41 seconds. FireNet is the model that requires
less time to process the images; nevertheless, it also presents
the lowest mean test accuracy. In this regard, KutralNext+
surpasses the state-of-the-art fire recognition models, requiring
less time in processing the test data images.

A general overview of each model in terms of AUROC and
precision in the test dataset is shown in Table IV. In the first
place, for the fire label, KutralNext has shown the best average
AUROC value and OctFiResNet the best mean precision
value in this multi-label test approach. Considering the mean
AUROC between both datasets, the KutralNext model obtains
a 94.47%, taking the first place, followed by KutralNext+ with
93.40%. In overall, all the models present a good performance
to detect fire in this approach. However, for the smoke label,
a lower outcome has been shown in AUROC and precision

TABLE III
KUTRALNEXT TRAINING RESULTS DURING 5 EXECUTIONS IN THE FIRE

AND SMOKE RECOGNITION TASK.

DS Model Test acc. Test (ms)

K
ut

ra
lS

m
ok

e FireDetection [17] 77.59%± 3.22% 1883± 81
FireNet [20] 77.11%± 3.60% 339 ± 23
KutralNext 86.70%± 2.02% 430± 21
KutralNext+ 88.08% ± 0.69% 603± 34
OctFiResNet 79.03%± 4.58% 2040± 11

Fi
Sm

o

FireDetection [17] 63.04%± 8.60% 1856± 99
FireNet [20] 56.89%± 6.26% 335 ± 22
KutralNext 71.36%± 2.31% 424± 21
KutralNext+ 74.98% ± 3.22% 624± 33
OctFiResNet 56.69%± 2.38% 2046± 6

A
ve

ra
ge

FireDetection [17] 70.32%± 5.91% 1870± 90
FireNet [20] 67.00%± 4.93% 337 ± 23
KutralNext 79.03%± 2.16% 427± 21
KutralNext+ 81.53% ± 1.96% 614± 33
OctFiResNet 67.86%± 3.48% 2043± 9

terms. KutralNext+ achieved a remarkable AUROC value with
89.59% and precision of 56.27%, followed by KutralNext with
87.00% and 46.92%, respectively, being the best model in
comparison with previous extended models to acquire smoke
features and recognize it under a multi-label approach. All of
the models have been shown better outcomes trained over the
same data distribution than a different data distribution.

Figure 3 and Figure 4 shows the mean ROC values obtained
for the models trained over all the datasets to compare each
models’ performance in terms of feature acquisition for each
model. The KutralNext proposals presented the best results
for both classes from the used datasets, capable of acquir-
ing features at a low false-positive rate. Remarkable results
were obtained for the smoke label compared with previous
models, as shown in Figure 4a and Figure 4b. Additionally,
KutralNext and KutralNext+ obtained the best results under a
different data distribution as the case for the FiSmo dataset.
In this way, their implemented techniques efficiency has been
demonstrated because the models’ design was not meant to
recognize smoke. Even so, it achieved the best results in smoke
class features.

V. CONCLUSION

Fire disasters may lead to massive losses affecting in an
environmental, social, and economic way, caused by natural or
human causes. Hereof, an early detection system is affordable
to manage this kind of accident, reducing the blazes’ affected
area. Ensure a real-time processing algorithm with high accu-
racy is challenging for deep learning due to previous state-of-
the-art generic-purpose models that are mathematically com-
plex designed to recognize a higher amount of classes. In this
regard, a deep learning model for fire and smoke recognition
under an efficient and reduced size scope was developed in
this work.

For this work purpose, a study about the current fire and
smoke recognition algorithm and novel techniques that opti-



TABLE IV
KUTRALNEXT PERFORMANCE DURING 5 EXECUTIONS IN FIRE AND

SMOKE RECOGNITION TASK.

DS Model AUROC Precision
Fire Label

K
ut

ra
lS

m
ok

e FireDetection [17] 88.72%± 4.04% 95.02%± 1.87%
FireNet [20] 94.18%± 1.68% 94.07%± 1.28%
KutralNext 96.96%± 0.49% 97.12% ± 0.80%
KutralNext+ 97.46% ± 0.43% 96.69%± 1.21%
OctFiResNet 94.84%± 2.67% 94.74%± 2.11%

Fi
Sm

o

FireDetection [17] 85.73%± 7.74% 92.61%± 4.77%
FireNet [20] 83.66%± 5.49% 90.74%± 3.48%
KutralNext 91.98% ± 2.97% 93.64%± 4.11%
KutralNext+ 89.35%± 2.03% 91.74%± 3.48%
OctFiResNet 84.25%± 3.61% 96.70% ± 2.03%

A
ve

ra
ge

FireDetection [17] 87.23%± 5.89% 93.82%± 3.32%
FireNet [20] 88.92%± 3.59% 92.40%± 2.38%
KutralNext 94.47% ± 1.73% 95.38%± 2.45%
KutralNext+ 93.40%± 1.23% 94.22%± 2.35%
OctFiResNet 89.54%± 3.14% 95.72% ± 2.07%

Smoke Label

K
ut

ra
lS

m
ok

e FireDetection [17] 70.78%± 3.84% 29.30%± 2.59%
FireNet [20] 72.22%± 1.55% 28.00%± 1.73%
KutralNext 91.74%± 1.23% 52.91% ± 3.82%
KutralNext+ 92.59% ± 1.77% 52.19%± 6.55%
OctFiResNet 76.42%± 6.25% 31.49%± 5.90%

Fi
Sm

o

FireDetection [17] 67.38%± 3.92% 33.06%± 3.21%
FireNet [20] 67.79%± 5.35% 35.01%± 6.30%
KutralNext 82.27%± 1.19% 40.93%± 2.41%
KutralNext+ 86.59% ± 3.22% 60.35% ± 12.66%
OctFiResNet 66.95%± 4.95% 29.75%± 3.68%

A
ve

ra
ge

FireDetection [17] 69.08%± 3.88% 31.18%± 2.90%
FireNet [20] 70.00%± 3.45% 31.51%± 4.02%
KutralNext 87.00%± 1.21% 46.92%± 3.11%
KutralNext+ 89.59% ± 2.50% 56.27% ± 9.60%
OctFiResNet 71.69%± 5.60% 30.62%± 4.79%

mize the models’ performance, such as octave and separable
depthwise convolution and the inverted residual block. Oct-
FiResNet performed better results than previous approaches
using FiSmo and FireNet datasets. In this way, it demonstrated
that FiSmo and FireNet datasets are suitable options to be
used in a fire and smoke classification task given the chal-
lenging fire scenarios and the smoke labeled images. Those
datasets allowed the fire recognition model’s main architecture
development, which fits the defined scope of reduced size
and computational cost for this work. The KutralNet proposal
was able to perform better than previous models, proving the
effectiveness in recognizing fire. Furthermore, it was optimized
with novel deep learning convolution methods, with KutralNet
Mobile Octave as the best portable model in this task. A final
proposal with those models was completed, named KutralNext
and KutralNext+. Both models were trained under more com-
plex representation data features in the ImageNet dataset to be
optimized with the fire and smoke labeled datasets. A novel
approach for fire and smoke recognition was proposed with
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Fig. 3. Multi-label fire class ROC curve mean performance for each model
trained over different data distribution datasets. (a) and (b) present the models’
performance trained over the KutralSmoke and FiSmo dataset respectively.
In (a) the KutralNext+ model achieves the best performance under low
false positive rate. In (b) the KutralNext and KutralNext Mobile models,
respectively achieves the best performance at low false positive rate.

138.9K parameters, and 76.9M flops, with an efficient model
developed in this work. KutralNext+ considerably reduces the
number of flops to 24.6M, achieving the best performance
with 84.36%, and 81.53% mean test accuracy in the fire, and
fire and smoke recognition tasks, respectively. Additionally, it
comprises 97% fewer flops, being 16% more accurate during
testing in the fire and smoke recognition than FireDetection.
Hence, it is executed 4x faster with better generalization.
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