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Abstract—Many brain anomalies are associated with abnormal
asymmetries. To detect and/or segment such anomalies in brain
images, most automatic methods rely on supervised learning.
This requires a large number of high-quality annotated training
images, which is lacking for most medical image analysis prob-
lems. In contrast, unsupervised methods aim to learn a model
from unlabeled healthy images, so that an unseen image that
breaks priors of this model, i.e., an outlier, is considered an
anomaly. This paper addresses the development of solutions to
leverage unsupervised machine learning for the detection/analysis
of abnormal brain asymmetries related to anomalies in magnetic
resonance (MR) images. Experimental results on 3D MR-T1
images from healthy subjects and patients with a variety of
lesions show the effectiveness and robustness of the proposed
unsupervised approaches for brain anomaly detection.

I. INTRODUCTION

Deviations from the normal pattern of brain asymmetries
are useful insights about neurological pathologies [1]. Mor-
phological changes in (sub)cortical in one or both hemispheres
characterize these structural abnormalities, as shown in Fig. 1.
Hence, to identify and detect many abnormalities in the brain,
defining normal brain asymmetries is crucial.

To detect or segment brain anomalies, most automatic
methods in the literature rely on supervised machine learning.
Such methods commonly have three main limitations: (i) They
require a large number of annotated training images, which is
absent for most medical image analysis problems [2]–[4]; (ii)
They are only designed for the lesions found in the training
set, so generalization is challenging; (iii) Some methods still
require weight fine-tuning (retraining) when used for a new
set of images due to image variability across scanners and
acquisition protocols, limiting their application in clinical
routine.

All the above limitations of supervised methods motivate
research on unsupervised anomaly detection approaches [5]–
[11]. From a training set with images of healthy subjects
only, these methods encode general knowledge or assumptions
(priors) from healthy tissues, so that outliers who break such
general priors are considered anomalous [7]. Unsupervised
detection methods do not use labeled samples, so they are
less effective in detecting lesions from a specific condition
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Fig. 1: MR images and their corresponding asymmetry maps
for (a) a healthy subject and (b) a stroke patient. Green bor-
ders indicate pairs of regions with normal asymmetries. Red
borders indicate abnormal asymmetries resulted from a stroke.
Normal asymmetries are accentuated on the brain cortex. Both
cases omit other regions with normal asymmetries.

than supervised approaches trained from labeled samples for
that condition. For the same reason, however, unsupervised
methods are generic in detecting any lesions, e.g., coming
from multiple conditions, as long as these notably differ from
healthy training samples.

Combining the pros and cons of unsupervised methods
listed above, as well as the importance of identifying abnormal
brain asymmetries associated to brain anomalies, this paper
summarizes the solutions proposed in the Ph.D. thesis [12] to
answer the following key research questions:

RQ1: Can we model normal brain asymmetries?
RQ2: Can we use the normal brain asymmetry model to
detect brain anomalies?
To illustrate how we approach answering these questions,

we consider the typical pipeline for brain image processing and
analysis (Fig. 2). Given a 3D MR-T1 image, we first perform
several preprocessing tasks (e.g., noise filtering and intensity
normalization) to overcome inherent acquisition issues, such as
noise and inhomogeneity fields. Next, we define the volumes
of interest (VOIs) to be analyzed: either the entire brain or
some specific region. Features related to brain asymmetries
are extracted from these VOIs and subsequently classified
as normal or abnormal from the knowledge about normal
asymmetries present in a training set of control images. We
evaluate our approaches on 3D MR-T1 images, mainly due
to the larger availability of public datasets of healthy and
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Fig. 2: General pipeline considered in the thesis to explore novel unsupervised brain anomaly detection approaches.

abnormal brain volumetric images for this imaging modality.
The remainder of the paper describes the steps of the

pipeline in Fig. 2 in a bottom-up way as follows. Section II
reviews the typical MRI preprocessing operations considered
in this work. Section III summarizes our solution for brain im-
age segmentation to define our target macro-regions of interest.
Section IV proposes an automatic method for the detection of
abnormal hippocampi from abnormal asymmetries. Section V
presents a more generic solution to detect abnormal asymme-
tries in the entire brain hemispheres. Section VI extends this
last step to detect lesions (symmetric or asymmetric) in the
hemispheres, cerebellum, and brainstem. Finally, Section VII
presents a compilation of our contributions and experimental
findings, along with future research perspectives.

II. MRI PREPROCESSING

Automatic analysis of MR images is challenging due to
typical acquisition artifacts — e.g., noise, inhomogeneities,
and variability of intensity and contrast — which negatively
impact both medical diagnosis and automatic analysis. We
use typical MRI preprocessing steps to reduce these artifacts
and, consequently, improve the image quality for subsequent
analysis, as shown in Fig. 3.

For each 3D image (Fig. 3a), we start performing noise
reduction by median filtering, followed by MSP alignment,
and bias field correction by N4 [13]. As voxels from irrelevant
tissues/organs for the addressed problem (e.g., neck and bones)
can negatively impact the image registration and intensity
normalization, we use AdaPro (Section III) to automatically
segment the macro regions of interest: right and left hemi-
spheres, cerebellum, and brainstem (Fig. 3b).

To attenuate differences in brightness and contrast among
images, we apply a histogram matching (of image intensities)
between the segmented images and the template, considering
only the voxels inside the regions of interest (Fig. 3d). We
then perform deformable registration to place all images in
the coordinate space of the MNI template [14]. Finally, we
perform another histogram matching between the registered
images and the template (Fig. 3e).

III. AUTOMATIC BRAIN IMAGE SEGMENTATION

Automated segmentation of brain structures (e.g., organs
and lesions) in 3D MR brain images for quantitative analysis
has been a challenge and Probabilistic Atlases (PAs) are

(a) (b) (c) (d) (e)

Fig. 3: 3D MR image preprocessing. (a) Axial slice of a raw
stroke (pointed by arrow) 3D image. (b) Test image after
noise filtering, MSP alignment, bias field correction, and brain
segmentation. (c) Symmetric reference image. (d) Histogram
matching between (b) and (c). (e) Final preprocessed image.

among the most successful approaches [15], [16]. However,
the existing models do not adapt to possible object anomalies
due to the presence of a condition or a surgical procedure.

To address the above limitation, we present an effective
and efficient adaptive probabilistic atlas, named AdaPro [17].
Our method incorporates a texture classifier during object
delineation to adapt shape constraints on-the-fly according to
the presence of detected anomalies in the target image. Fig. 4
shows resulting images of AdaPro’s steps for the segmentation
of both hemispheres and cerebellum for an anomalous image.

Regarding our research questions, brain segmentation sup-
ports our proposed unsupervised anomaly detection at different
steps: (i) for intensity normalization (Section II); (ii) to warp
both hemispheres for anomaly detection on the native image
space (Section V); and (iii) to perform anomaly detection in
each object of interest individually (Section VI).

A. Atlas Construction

Let a training set X = {A1, . . . , An} with n atlases of
healthy subjects, where each atlas Ai = (Ii,Mi) consists of a
source 3D image Ii and its corresponding label image Mi with
the mask of each 3D object of interest. Let Ar = (Ir,Mr) be
the standard reference coordinate space (template) – AdaPro’s
pipeline only uses Ir.

For each object of interest m, we build a probabilistic atlas
Pm by counting the frequency of the label assignment from all
training registered atlases Ai ∈ X and keeping the most-often
assigned label to each voxel. This frequency gives the prior
probability of the voxel to belong to object m. All voxels
with probability 1 form the certainty region whereas those
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Fig. 4: AdaPro segmentation. (a) Axial slice of an input post-
surgery 3D MR-T1 image (the arrow indicates an anomaly).
(b) Preprocessed input image. (c) Positive voxels (orange)
after texture classification. (d)–(f) Estimated seeds from the
adaptive models for the background and target objects. Ma-
genta voxels indicate the forbidden regions imposed by (c).
(g) Gradient of (b). (h) Delineated objects in 2D (axial slice).

within (0, 1) form the uncertainty region, where the object’s
boundaries are likely to fall.

We then design a binary classifier C based on a lin-
ear Support Vector Machine [18] by interactively selecting
training voxels on the 3D template Ir. Brain tissue voxels
are considered positive samples; voxels with typically dif-
ferent intensities, e.g., cerebrospinal fluid (CSF) and image
background, are the negative samples. Each training voxel is
represented by its intensity and the intensities of all neighbors
inside a sphere of radius 5.0 voxels, resulting in a 515-
dimensional feature vector.

B. Image Segmentation

Let It represent a target 3D brain image after the prepro-
cessing in Section II (Fig. 4b). We aim to estimate a seed
set S = S0 ∪ Sm, where Sm, m > 0, contains seed voxels
selected inside object m, and S0 contains seed voxels selected
in the background. The borders of the dilated and eroded
certainty region of Pm form S0 and Sm, respectively. The
dilation and erosion slightly increase the uncertain region of
Pm. To identify regions on It where shape constraints should
be adapted, AdaPro classifies It with the binary classifier C
(Fig. 4c). Then, the complement of the classification forms
a forbidden region F (magenta voxels in Figs. 4d–f) that
eliminates its voxels from the competition between internal
and external seeds during object delineation.

For the delineation of each object m, AdaPro uses the
Relaxed Image Foresting Transform (RIFT) algorithm [19].
RIFT first computes a watershed transform from labeled seeds
defined by S = S0 ∪ Sm. The seed competition takes into
account the gradient image of It (Fig. 4g) and outputs the final

object segmentation (Figs. 4h) that does not include anomalies
(arrow in Fig. 4b).

C. Experiments and Results
We conducted a set of experiments on six in-house datasets

of 3D MR-T1 brain images of healthy subjects and patients
with epilepsy. We compared AdaPro to segment the cerebel-
lum (C), right hemisphere (RH), and left hemisphere (LH)
against three state-of-the-art atlas-based methods: SOSM-S
[15], volBrain [20], and a MALF technique [21].

Table I shows the Average Symmetric Surface Distance
(ASSD) for the two datasets of epileptic patients before
(PRE-3T) and after lobe resection (POST-3T). The numbers
correspond to the mean and standard deviation values of all
instances of each object.

AdaPro is more accurate than the baselines in both datasets
for all objects of interest, especially for post-surgery images.
These results are consistent in the other datasets but, due to
lack of space, their results were omitted in this paper. We refer
to [12], [17] for the complete and detailed experiments.

TABLE I: Comparison of ASSD (mm) for the Cerebellum (C),
Right Hemisphere (RH), and Left Hemisphere (LH) of the pre-
and post-operative images of 3T. Lower ASSD means better
accuracy (bold scores are the best with statistical significance).

SOSM-S MALF volBrain AdaPro
C 0.91 ± 0.22 1.02 ± 0.31 1.02 ± 0.08 0.75 ± 0.07

RH 1.04 ± 0.14 1.07 ± 0.18 1.42 ± 0.11 1.03 ± 0.18

LH 1.02 ± 0.13 1.06 ± 0.17 1.36 ± 0.10 1.01 ± 0.14

C 0.90 ± 0.19 1.00 ± 0.28 1.01 ± 0.09 0.75 ± 0.09

RH 1.28 ± 0.20 1.30 ± 0.16 1.51 ± 0.14 1.08 ± 0.18

LH 1.25 ± 0.18 1.25 ± 0.20 1.47 ± 0.13 1.10 ± 0.18
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IV. DETECTION OF ABNORMAL HIPPOCAMPAL
ASYMMETRIES

We next present our first unsupervised solution for our
research questions. We propose (i) an unsupervised framework
to model normal brain asymmetries from healthy subjects
and (ii) use this model to detect abnormal asymmetries. Our
solution does not need the segmentation of the target structures
or data annotation. We prove our solution for the detection
of abnormal hippocampal asymmetries from epilepsy patients
(Fig. 5).

We start creating VOIs around structures of interest. These
VOIs can be defined as 3D bounding boxes from segmentation,
whenever they are available. For VOI creation in new images,
we propose a fast and accurate 3D patch-based model. We
refer to [12], [22] for details.

Next, a generative deep neural network — a convolutional
autoencoder (CAE) [23] — is used to learn the image trans-
formation from the left VOI to the flipped right VOI and vice-
versa. Fig. 6 shows the considered architecture used for normal
hippocampal asymmetry representation. We concatenate the
outputs of the intermediate layers from the CAE to form each
sample (feature vector) of a normal structural asymmetry.
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Fig. 5: Cropped coronal slices that show: (a) normal hip-
pocampal asymmetries, (b) left hippocampal atrophy, and (c)
postoperative hippocampus.
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Fig. 6: Architecture of the convolution autoencoder (CAE)
used for normal VOI asymmetry representation.

Finally, we train a one-class classifier (OCC) that corre-
sponds to our normal brain asymmetry model, thus addressing
our research question RQ1. For this, we initial consider the
popular One-Class SVM [24]. Then, we propose a novel OCC,
called OC-OPF, based on the Optimum Path Forest algorithm
[25] — we evaluate both classifiers in the next section. We
use the OCC to detect outliers as abnormal brain asymmetries,
which addresses RQ2.

A. Experiments and Results

We considered 575 3D MR-T1 brain images from healthy
subjects (CONTROLS), and epilepsy patients which are di-
vided into four datasets: (PRE) preoperative patients with
unilateral hippocampal atrophy (47 images); (POST) post-
operative patients (88 images); (RHA) patients with right
hippocampal atrophy (34 images); and (LHA) patients with
left hippocampal atrophy (37 images).

We combined the convolutional-autoencoder (CAE) repre-
sentation (Fig. 6) with each one-class classifier, OC-SVM [24]
and OC-OPF, which were trained in the original feature space
and the two-dimensional spaces after non-linear projection by
t-SNE [26], a popular projection algorithm widely used in
several machine-learning problems. According to Rauber et
al. [27], the separation among groups (classes) in the 2D
projection space, as created by the t-SNE, is a strong indication
of their separation in the original feature space.

Table II presents the average detection scores in the original
and projection feature space for hippocampal asymmetries.
These scores show the percentage of the classification hits
of controls images as normal hippocampal asymmetries and
patient images as abnormal hippocampal asymmetries.

The combination CAE/OC-SVM provides slightly better
accuracies than CAE/OC-OPF in most datasets in the original
space, with no errors for PRE and POST. The use of the
projection space has a surprisingly positive impact on the

TABLE II: Anomaly detection scores (%) in the original and
projection feature space for the proposed framework.

Original Feature Space Projection Space by t-SNE

OC-SVM OC-OPF OC-SVM OC-OPF

CONTROLS 86.61 ± 2.30 89.04 ± 2.55 96.22 ± 2.72 99.72 ± 0.18

PRE 100.0 ± 0.00 98.40 ± 2.04 100.0 ± 0.00 100.0 ± 0.00

POST 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

RHA 99.26 ± 1.47 97.06 ± 4.16 100.0 ± 0.00 100.0 ± 0.00

LHA 99.32 ± 1.35 97.30 ± 5.41 100.0 ± 0.00 100.0 ± 0.00

results: the best detection scores for control images have con-
siderably increased (from 89.04% to 99.72%), and there are
no classification errors for patient images in both classifiers.

Finally, to better understand these results, Fig. 7 presents
a t-SNE projection space. Each point shows hippocampal
asymmetries of a given pair of hippocampi (VOI) as extracted
by CAE. By clicking on any point on the plot, the user can
see the corresponding slice across the centers of the VOIs. It
is also possible to navigate in the image around that location
for inspection and annotation of the anomaly type.
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Fig. 7: The 2D t-SNE projection from the considered datasets
for the CAE-based representations. The expert can select any
observation from the projection to inspect its image slices (see
cropped slices of selected observations).

We have extended this unsupervised abnormal hippocampal
asymmetry detection for the entire hemispheres. From a set of
pairs of VOIs automatically extracted in the hemispheres by
uniform grid-sampling, we performed our proposed solution
for each pair. As detailed in [12], experiments show poor
results with several false-positive asymmetries detected for
all considered images, mainly for using 3D patches. This
limitation motivated us to use supervoxel segmentation to
estimate VOIs for brain asymmetry detection, as detailed in
the next section.

V. DETECTION OF ABNORMAL BRAIN ASYMMETRIES

This section proposes an automatic unsupervised frame-
work, called Supervoxel-based Abnormal Asymmetry Detec-
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tion (SAAD) [9], [10], [28], for detecting abnormal asymme-
tries associated with anomalies in 3D MR brain images. Fig. 8
presents the pipeline of SAAD. We next discuss the eight steps
of this pipeline.

A. Asymmetry Computation

Let X be the set of registered training 3D images (output
of Step 1) and I the test 3D image after preprocessing (output
of Step 4). We obtain the set of asymmetry maps AX for all
X by computing the voxel-wise absolute differences between
left and right hemispheres (Step 2). Next, we create a normal
asymmetry map AX (Step 3) by averaging the absolute differ-
ence values over all AX (Step 3). We use this map to reduce
the detection of false-positive asymmetries in I in commonly
asymmetric brain regions (e.g., cortex). Finally, we compute
voxel-wise absolute differences between the hemispheres for
I and then subtract AX from them. Resulting positive values
form a final asymmetry map AI for the test image I (Step 5).

B. Symmetric Supervoxel Segmentation

We propose a new method, named SymmISF, that extracts
symmetrical supervoxels from left and right brain hemispheres
simultaneously (output of Step 6). SymmISF is based on the
recent Iterative Spanning Forest (ISF) framework [29] for
superpixel segmentation and has three steps: (i) seed sampling
followed by multiple iterations of (ii) connected supervoxel de-
lineation, and (iii) seed recomputation to improve delineation.
We refer to [12], [28] for more details of different strategies
for each of these steps.

C. Feature Extraction and Classification

For each 3D test image I , each pair of symmetrical su-
pervoxels is used to create a specialized one-class classifier
(OCC) using as feature vector the normalized histogram of
the asymmetry values inside the pair (Step 7). Classifiers
are trained from control images only, thus locally modeling
normal asymmetries for the entire hemispheres. Finally, SAAD

uses the trained OCCs to find supervoxels with abnormal
asymmetries in the corresponding testing image (Step 8).

SAAD can be also used to detect abnormal asymmetries in
the native image space. For space reasons, we do not discuss
this extension, but refer the interested reader to [10], [12].

D. Experiments and Results

We next summarize some experimental results from our
method and the baselines extracted from [12], [28]. We
refer to these works for a more deep evaluation for SAAD,
including more baselines and metrics.

Datasets: For training, we considered the CamCan dataset
[30], which has 653 3D MR-T1 images of 3T from healthy
subjects. We visually inspected all MR-T1 images and re-
moved images with bad acquisition or artifacts, yielding 524
images. For testing, we evaluated our approach on 3D MR-T1
images of the ATLAS dataset [31], which contains manually
annotated lesions in images of stroke patients.
Baselines: We compared SAAD against the convolutional-
autoencoder-based approach (CAE) from Chen et al. [6],
which is, as far as we know, the current state-of-the-art
unsupervised method for the ATLAS dataset. The method
detects anomalies by thresholding the difference image be-
tween the input image and its reconstruction to obtain a binary
segmentation, similarly to [5], [6]. We followed Baur et al. [5]
and selected thresholds at the 85th (CAE-85), and 90th (CAE-
90), and 95th percentile from the histogram of reconstruction
errors on the considered training set.
Metrics: Although SAAD detects abnormal asymmetries
regardless of the type of anomalies, we can compute
quantitative scores only for those lesions that are labeled
in ATLAS, which are a subset of what SAAD can detect.
For these lesions, we first computed the detection rate based
on at least 15% overlap between lesions labeled in ATLAS
with detected volumes of interest (VOIs) with abnormal
asymmetries, as detected by SAAD (supervoxels) and CAE
(segmented regions). Although our focus is on detecting
abnormal asymmetries, we also measured the Dice score
between lesions and the detected VOIs to check SAAD’s
potential as a segmentation method. Finally, we computed the
relative number of false-positive (FP) voxels with respect to
all classified voxels, i.e., the total number of voxels inside the
right hemisphere for SAAD, and both hemispheres for CAE.

Table III shows the mean results of SAAD against the
baselines. CAE-85 and CAE-90 present considerably higher
detection scores, 0.995 and 0.943, respectively, than SAAD
(0.86). However, these impressive results are misleading as
CAE reports drastically more false-positive voxels than SAAD
(Table III, row 3). These high FP rates explain the poor Dice
scores for CAE in Table III, which in turn are compatible with
the ones reported in [6].

CAE yields very noisy detected regions that hinder the
subsequent visual inspection while SAAD consistently de-
tects well-defined abnormal asymmetries (see the images in



TABLE III: Comparison between SAAD and the baselines
for the ATLAS dataset. Each result contains a box (inset)
surrounding the lesion whose border color indicates if the
lesion was detected (green) or missed (red).

CAE-85 CAE-90 SAAD

1 Detection rate 0.995 ± 0.002 0.943 ± 0.018 0.862 ± 0.013

2 Dice 0.018 ± 0.003 0.017 ± 0.003 0.19 ± 0.018

3 FP voxel rate 0.4 ± 0.002 0.267 ± 0.001 0.014 ± 0.002
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Table III). SAAD can also find small abnormal asymmetries
(Table III), obtaining higher detection scores and considerably
lower false-positive rates compared to the baselines. However,
its analysis is limited to asymmetric anomalies in the brain
hemispheres (for only relying on brain asymmetries), ignoring
lesions in the cerebellum and brainstem. Also, it cannot
detect similar and “symmetric” anomalies located roughly
in the same region in both hemispheres, because of lack of
accentuated asymmetries. These limitations are addressed in
the next section.

VI. DETECTION OF GENERAL BRAIN ANOMALIES

Our last contribution is to generalize SAAD by simply re-
placing asymmetry maps with any other distinct saliency map,
which indicates what is important to analyze an image ac-
cording to a specific problem – in our context, these are brain
anomalies. This map extends the detection of (a)symmetric
anomalies to the cerebellum and brainstem, thus overcoming
SAAD’s limitations (see Section V-D).

We instantiate this generic pipeline by considering registra-
tion errors for the saliency map. We assume that registration
errors for anomalies are considerably different from errors for
healthy tissues (Section 9). We call this method Brain Anomaly
Detection based on Registration Errors and Supervoxel Clas-
sification (BADRESC) [8].

We adopted the same evaluation protocol presented in
Section V-D. SAAD presents better detection rates (0.862)
for hemispheric lesions compared to BADRESC (0.824).
BADRESC reports a slightly worse Dice score (0.169) than
SAAD (0.19) and similar false-positive voxel rates. However,
BADRESC is able to detect anomalies in the cerebellum and
brainstem with a promising detection rate (0.683). Fig. 9
presents some visual results. We refer to the works [8], [12]
for more experiments and visual results.

VII. CONCLUSION

This paper addresses the development of solutions to lever-
age unsupervised machine learning for the detection/analysis
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Fig. 9: Comparison between SAAD and BADRESC for stroke
images. We show a slice of the result and corresponding
saliency map for both methods. Each image contains an inset
surrounding the lesion whose border color indicates if the
lesion was detected (green) or missed (red).

of abnormal brain asymmetries related to anomalies in mag-
netic resonance (MR) images. We first proposed a robust
automatic probabilistic-atlas-based approach for anomalous
brain image segmentation. Second, we explored an automatic
method for the detection of abnormal hippocampi from ab-
normal asymmetries based on convolutional autoencoders and
one-class classifiers (OCCs). Third, we presented a more
generic framework to detect abnormal asymmetries in the
entire brain hemispheres using symmetrical supervoxels and
OCCs. Finally, we generalize the previous solution for the
detection of (a)symmetric lesions based on registration errors.
Experimental results on 3D MR-T1 images from healthy
subjects and patients with a variety of lesions show the
effectiveness and robustness of the proposed unsupervised
approaches for brain anomaly detection.

For future work, we suggest further investigating the impact
of the t-SNE projection in the design of classifiers and extend
the autoencoder-based framework to other well-defined brain
structures. For the supervoxel-based framework, one could fo-
cus on designing saliency maps for a given specific problem —
e.g., a map that only highlights tumors — so that detection and
segmentation scores will be maximized for such a problem.
One can also explore other feature-extraction techniques, since
we only considered a simple normalized histogram for that.

ACKNOWLEDGMENT

The authors thank CNPq (303808/2018-7), and FAPESP
(2014/12236-1) for the financial support.

PUBLICATIONS

The thesis is the result of the following publications (in
chronological order): [32], [33] (honorable mention), [9],
[10], [17], [22], [28], [8] (best student paper), [34].

Other publications during the development of the thesis
include: [35]–[39].



REFERENCES

[1] A. A. Woolard and S. Heckers, “Anatomical and functional correlates
of human hippocampal volume asymmetry,” Psychiatry Research: Neu-
roimaging, vol. 201, no. 1, pp. 48–53, 2012.

[2] Z. Akkus and et al., “Deep learning for brain MRI segmentation: state
of the art and future directions,” Journal of Digital Imaging, vol. 30,
no. 4, pp. 449–459, 2017.

[3] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio,
C. Pal, P.-M. Jodoin, and H. Larochelle, “Brain tumor segmentation with
deep neural networks,” Medical Image Analysis, vol. 35, pp. 18–31,
2017.

[4] B. Thyreau, K. Sato, H. Fukuda, and Y. Taki, “Segmentation of the
hippocampus by transferring algorithmic knowledge for large cohort
processing,” Medical Image Analysis, vol. 43, pp. 214–228, 2018.

[5] C. Baur, B. Wiestler, S. Albarqouni, and N. Navab, “Deep autoencoding
models for unsupervised anomaly segmentation in brain MR images,”
in International MICCAI Brainlesion Workshop, 2018, pp. 161–169.

[6] X. Chen, N. Pawlowski, M. Rajchl, B. Glocker, and E. Konukoglu,
“Deep generative models in the real-world: An open challenge from
medical imaging,” arXiv preprint arXiv:1806.05452, 2018.

[7] D. Guo, J. Fridriksson, P. Fillmore, C. Rorden, H. Yu, K. Zheng, and
S. Wang, “Automated lesion detection on MRI scans using combined
unsupervised and supervised methods,” BMC Medical Imaging, vol. 15,
no. 1, p. 50, 2015.

[8] S. B. Martins, A. X. Falcão, and A. C. Telea, “BADRESC: Brain
anomaly detection based on registration errors and supervoxel classi-
fication,” in International Joint Conference on Biomedical Engineering
Systems and Technologies: BIOIMAGING, 2020, pp. 74–81, best student
paper awards.

[9] S. B. Martins, G. Ruppert, F. Reis, C. L. Yasuda, and A. X. Falcão,
“A supervoxel-based approach for unsupervised abnormal asymmetry
detection in MR images of the brain,” in IEEE International Symposium
on Biomedical Imaging (ISBI), 2019, pp. 882–885.

[10] S. B. Martins, A. C. Telea, and A. X. Falcão, “Extending supervoxel-
based abnormal brain asymmetry detection to the native image space,”
in IEEE Engineering in Medicine and Biology Society (EMBC), 2019,
pp. 450–453.

[11] D. Sato, S. Hanaoka, Y. Nomura, T. Takenaga, S. Miki, T. Yoshikawa,
N. Hayashi, and O. Abe, “A primitive study on unsupervised anomaly
detection with an autoencoder in emergency head ct volumes,” in SPIE
Medical Imaging, 2018, p. 105751P.

[12] S. B. Martins, “Unsupervised brain anomaly detection in MR images,”
PhD thesis, University of Groningen, 2020.

[13] N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A.
Yushkevich, and J. C. Gee, “N4ITK: improved N3 bias correction,” IEEE
Transaction on Medical Imaging, vol. 29, no. 6, pp. 1310–1320, 2010.

[14] V. S. Fonov, A. C. Evans, R. C. McKinstry, C. R. Almli, and D. L.
Collins, “Unbiased nonlinear average age-appropriate brain templates
from birth to adulthood,” Neuroimage, vol. 47, p. S102, 2009.

[15] R. Phellan, A. X. Falcão, and J. K. Udupa, “Medical image segmen-
tation via atlases and fuzzy object models: Improving efficacy through
optimum object search and fewer models,” Medical Physics, vol. 43,
no. 1, pp. 401–410, 2016.

[16] J. E. Iglesias and M. R. Sabuncu, “Multi-atlas segmentation of biomed-
ical images: a survey,” Medical Image Analysis, vol. 24, no. 1, pp. 205–
219, 2015.

[17] S. B. Martins, J. Bragantini, C. L. Yasuda, and A. X. Falcão, “An
adaptive probabilistic atlas for anomalous brain segmentation in MR
images,” Medical Physics, vol. 46, no. 11, pp. 4940–4950, 2019.

[18] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[19] F. Malmberg, I. Nyström, A. Mehnert, C. Engstrom, and E. Bengtsson,
“Relaxed image foresting transforms for interactive volume image
segmentation,” in SPIE Medical Imaging, vol. 7623, 2010, p. 762340.
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