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Abstract—With the advance of technology and social media us-
age, the recording of first-person videos has become a widespread
habit. These videos are usually very long and tiring to watch,
bringing the need to speed-up them. Despite recent progress of
fast-forward methods, they generally do not consider inserting
background music in the videos, which could make them more
enjoyable. This paper presents a new methodology that creates
accelerated videos and includes the background music keeping
the same emotion induced by visual and acoustic modalities. Our
methodology is based on the automatic recognition of emotions
induced by music and video contents and an optimization
algorithm that maximizes the visual quality of the output video
and seeks to match the similarity of the music and the video’s
emotions. Quantitative results show that our method achieves
the best performance in matching emotion similarity while also
maintaining the visual quality of the output video when compared
with other literature methods.

I. INTRODUCTION

Recent years revealed an increasing volume of audio-visual
data on the Internet due to the ease in people’s access and
usage of new digital technologies. The cost of multimedia
mobile devices such as wearable cameras and smartphones
constantly decreases while their storage capacity increases.
As a result, many people start recording videos of their daily
activities from an egocentric perspective, resulting in long and
untrimmed streams. Usually, egocentric videos are tiring to
watch since they contain redundant segments, and post-edition
is commonly disregarded. Consequently, there has been a great
interest in the computer vision community in reducing the
total length of the videos to speed-up browsing and creating
a pleasant watching experience.

Over the past several years, many works have been proposed
to create a shorter accelerated version of egocentric videos
using different strategies and under different restrictions to
reduce the burden of watching the videos entirely [1]–[10].
The accelerated video is commonly called hyperlapse, where
the goal is to optimize the output number of frames and the
visual smoothness [5]. An extension of the classic hyperlapse
is the semantic hyperlapse, which consists of hyperlapse
videos with an additional restriction that strives to retain
semantic information by exhibiting the most relevant parts at
a lower speed-up rate [2], [3], [5]–[7], [9], [10]. Although
both visual and sound streams play a major role in the video
watching experience, generating videos that include audio
is usually overlooked by the current hyperlapse techniques.
Adding background music into an accelerated video is non-
trivial. The music content must be associated with the video

Fig. 1. Music-driven video acceleration. After computing the emotion
similarity between the video and in the valence-arousal plane, our method
accelerates the input video by removing frames according to an optimization
algorithm that seeks the best matches between the video and the song.

content considering different emotions induced by both to
produce a final video that maintains the video and music
contents’ emotion similarity.

In this paper, we introduce a novel problem called Musical
Hyperlapse, where the goal is to accelerate a video to the
length of a song while matching the visual and audio signals
to trigger, continuously, the same emotions during the output
video exhibition. To tackle this problem, we propose a new
multi-modal method to create hyperlapse videos based on
synchronizing the feelings in the video scenes and background
song. Specifically, given the predicted emotion curves for
the video and audio streams, our approach seeks the best
set of frames to be discarded in the video stream restricted
to preserve the smoothness in the visual continuity and the
matching between the emotion induced by segments of the
video and audio (Figure 1).

Music plays an essential role in society, especially in
our digital age. Since many music files are scattered across
storage media, a need has arisen to classify them by different
emotions. There are many works in the field of music emotion
recognition [11]–[15], which consist of estimating the induced
emotion by a specific piece of music. A classic representation
of emotion is given by Thayer’s model [11], where songs are
classified with different labels around two axes: the valence
and the arousal. By using this model, it is possible to represent



emotions such as angry, delighted, calm, bored, etc., numeri-
cally. Since images also affect our affective states, our method
applies the same model to classify the emotions induced by
images and uses this audio-visual classification to synchronize
an input video with background music when accelerating the
video. Experiments in a variety of first-person videos and
music showed that our method achieves the best performance
in matching emotion similarity while conveying the original
message in the untrimmed video and maintaining the visual
quality of the hyperlapse when compared with other methods
present in the literature.

Our contributions can be summarized as follows: i) a novel
optimization algorithm to create hyperlapse videos whose
function is to reduce the video by matching its emotion curve
to the music emotion curve; and ii) a new dataset comprising
several first-person videos and songs with different genres,
sizes, and rhythms.

II. RELATED WORK

A. Hyperlapse

Over the past decade, hyperlapse methods have been pro-
posed to reduce the length of long egocentric videos. The
evolution of these works is focused on improving the quality
of the output video by keeping it as smooth and pleasant as
possible, with the desired short length, and without losing
essential information.

Kopf et al. [16] present a classical work in creating hy-
perlapse from first-person videos. The video is accelerated by
using techniques based on image rendering, such as projecting,
stitching, and blending after the optimal trajectory of the cam-
era poses is computed. As a drawback, their method has a high
computational cost and requires camera motion and parallax to
compute the 3D model of the scene. Joshi et al. [1] presented a
real-time hyperlapse creation algorithm that uses feature track-
ing to recover the camera motion and compute the optimal
path with an algorithm inspired by dynamic programming and
Dynamic Time Warping (DTW). Our work shares similarities
with the work of Joshi et al. since our optimal path selection
also draws inspiration from dynamic programming. However,
unlike Joshi et al., which consider only the visual modality
during the optimization process, we handle two: the input
visual stream and the output audio stream.

B. Semantic Hyperlapse

Recent approaches in hyperlapse include visual semantics
as part of the optimization process. These methods, referred
to as semantic hyperlapse, aim to accelerate the input video
optimizing the camera stability, target speed-up rate, and
semantics jointly.

Ramos et al. [2] introduced a new adaptive frame sampling
process that considers the semantic information during the
optimization. Their approach assigns a semantic score for each
video frame and split the video into temporal segments accord-
ing to their relevance. The authors applied different playback
rates such that more relevant segments are exhibited at a lower
rate. Their optimization balances the semantics and traditional

hyperlapse objectives using energy cost minimization in a
graph representing the frames’ transition. Ramos et al.’s work
was later extended by Silva et al. [17], where a homography-
based stabilization was included in the process. Lai et al. [3]
presented a system capable of converting a 360◦ video into a
normal field-of-view hyperlapse. After determining the per-
frame viewing directions to the regions of interest, their
approach produces a saliency-aware frame selection that con-
siders denser sampling at attractive regions and attending the
target speed-up rate. Silva et al. [6], [9] modeled the adaptive
frame sampling as a weighted minimum sparse reconstruction
problem. Similar to the work of Ramos et al., the Silva et al.
split the video temporally using frame-wise levels of relevance.
Then, each segment is represented as a dictionary from which
the output video frames are sparsely selected, aiming to reduce
abrupt camera motions.

Unlike previous works, which are mainly focused on visual
information, Furlan et al. [7] proposed to use the input
sound information. Their approach uses psychoacoustic met-
rics extracted from the video soundtrack to set the frames’
importance. The original video’s soundtrack is segmented, and
for each segment, the Psychoacoustic Annoyance (PA) [18]
is computed. The PA values guide the semantic hyperlapse
creation since they are used as semantic scores. Although using
the source audio in the optimization process, Furlan et al.
ignored the audio in the output video, making their problem
fundamentally different from ours. Our main goal is to create
a hyperlapse with background music where both visual and
acoustic signals induce similar emotions during the exhibition.

C. Emotion Recognition

Significant progress has been made by researchers in the
field of music emotion recognition. Some of these works aim
to classify an entire song to a specific emotion, such as happy,
sad, angry, etc. [11]–[13]. Others focus on the prediction
of arousal and valence emotional values from segment-wise
continuous features extracted from the song [14], [15], [19].

According to Lu et al. [19], the features of music such as
rhythm, melody, harmony, pitch, and timbre play an essential
role in human physiological and psychological functions,
altering their mood. With these features, the music mood
can be divided into different types of moods. Some of these
features, specifically the intensity, timbre, pitch, and rhythm,
are acoustic features.

There are some emotion models used in music classification,
such as Russell’s model [20] and Thayer’s model [21]. Rus-
sell’s valence-arousal emotion plane is a widely used model
in works about music emotion recognition. His emotion plane
has as the x-axis the valence, which represents how pleasant is
the feeling, and as the y-axis the arousal, which represents how
exciting is the feeling. A similar and more intuitive emotion
model is the EmojiGrid [22], which also considers valence and
arousal as axes and with extreme locations represented with
emojis. Figure 2 depicts the EmojiGrid diagram.

Yang et al. [11] formulated musical emotion recognition as
a regression problem to predict the arousal and the valence



Fig. 2. EmojiGrid emotion representation. The x-axis represents how
pleasant is the emotion (valence), and the y-axis represents how exciting is
the emotion (arousal). The center of the plane represents a neutral state.

values of the music samples. Each music sample results on
a point in the valence-arousal plane, and then the users can
obtain the music sample by specifying a desired point in
the plane. Panda et al. [12] introduced another approach to
generate audio features to improve the classification perfor-
mance. They reviewed the existing audio features obtained
by state-of-the-art and their relationships with the musical
concepts. The authors rely on clues like melodic lines, notes,
intervals, and scores to access higher-level musical concepts
such as harmony, melody, articulation, or texture. They also
assigned importance to the determination of musical notes,
frequency, and intensity contours mechanisms to capture the
music information. Chowdhury et al. [13] aimed to create
a model to provide a musically meaningful and intuitive
explanation for its predictions. They proposed a VGG-style
deep neural network to obtain emotional features from a
music piece through human interpretable mid-level perceptual
features, using the audio spectrogram as input.

Several researchers also seek to predict valence and arousal
emotional values from segment-wise continuous features ex-
tracted from the song. Thammasan et al. [14] proposed a
continuous music emotion recognition approach based on
brainwave signals. Their experiment included self-reporting
and continuous emotion annotation in the valence-arousal
space. However, their approach only classifies valence and
arousal into two classes: high/low valence and high/low
arousal. Dong et al. [15], proposed a method to classify
the songs continuously in time using segments of 0.5 sec-
onds. They proposed a weighted hybrid binary representation
(WHBR) method to convert the regression prediction process
into a weighted combination of multiple binary classification
problems, reducing the computational complexity.

There has also been a significant progress in image emo-
tion recognition context. In the Affective Sciences, emotional
scenes and facial expressions are some of the most essential
stimuli [23]. Datasets relating images to emotions such as
GAPED [24] have been created for research purposes both
for attention and emotion. In image emotion recognition, the
problem consists of retrieving the emotional content from an

image. In general, the categorization of such images is made
upon human annotation or automatically by using learned
representations that rely on high and low-level features.

Joshi et al. [25] and Zhao et al. [26] explored the use
of psychology and art-theory knowledge to determine which
emotions may be evoked by a picture. However, as shown
by Jia et al. [27], the use of high-level features like social
network data when analyzing images is much more effective
than raw low-level features such as primary colors in the
image. Descriptive data also play a role in several solutions to
recognizing the emotion induced by the image. For instance,
the work of Borth et al. [28] uses pairs of adjectives and nouns
to classify each picture. Mittal et al. [29], for their turn, take
a wider range of objects in the scene later to sort the most
important ones regarding the induced emotion.

Despite the progress of both emotion induced by music and
images, it is worth noting that none of the works investigate
the interplay between acoustic and visual signals regarding the
induced feeling. Conversely, in this paper, we propose to apply
both visual and acoustic data to accelerate a video by aligning
segments with the emotion induced by the frames and music.

III. METHODOLOGY

We model the problem of accelerating a video according
to the emotion induced by visual and acoustic information as
a time-series matching problem. Formally, given a long first-
person video V = [v1, v2, . . . , vF ] with F frames and a target
song M = [m1,m2, . . . ,mS ] with S segments, we aim at cre-
ating a shorter video V̂ = [v̂1, v̂2, . . . , v̂S ] by maximizing the
matching between valence-arousal emotion curves X ∈ RF×2

and Y ∈ RS×2 of the video and audio, respectively. Figure 3
shows an overview of our method, divided into two main steps:
i) Emotion Curves Creation and ii) Optimal Path Selection.

A. Emotion Curves Creation

In the first step, our method creates two emotion curves,
one for the video stream and another for the audio stream.
The values in these curves reflect the induced emotion at
a certain timestep. Image and audio classifiers are used to
estimate each value, as illustrated in Figure 3-left. Next, we
detail the classifiers and the estimation of these curves.

1) Video Emotion Curve: To create the video emotion
curve, frames of the video stream V are used to feed
an image emotion classifier as X ′ = φ(V ). The classi-
fier φ outputs the valence and arousal values for each
frame composing a discrete two-dimensional emotion curve
X ′ = [x′1, x

′
2, . . . , x

′
F ]

T ∈ {0, 1}F×2 (video emotion curve in
Figure 3-left). We decomposed the curve into separated values
of valence X ′v = [x′v1, x

′
v2, . . . , x

′
vF ]

T ∈ {0, 1}F and arousal
X ′a = [x′a1, x

′
a2, . . . , x

′
aF ]

T ∈ {0, 1}F . Thus, the video frame
vi has the coordinates x′vi and x′ai that represent it in a
quadrant in the valence-arousal plane. The frame is classified
as inducing a positive valence if x′vi = 1 and negative valence
otherwise, and classified as inducing a high arousal if x′ai = 1
and low otherwise.



Fig. 3. Methodology Overview. After extracting features from each video frame and each song segment and classify them to obtain their induced emotion
in the first step, we use the classification to create continuous emotion curves in the valence-arousal plane. In the second step, we calculate inter-frame and
cross-modal cost matrices to create a dynamic cost matrix used to compute an optimal path that aligns the emotion induced by a song with the emotion
induced by the frames while preserving the visual and temporal continuity.

We use a pretrained 2D-CNN (ResNet-50 [30]) as a back-
bone network topped with a fully-connected network to ap-
proximate the function φ. To train the network, we use the
MVSO dataset [31]. This dataset comprises about 7 million
images and their respective concepts defined in the form of
adjective-noun pairs such as colorful-clouds, tiny-dog, old-
books, crying-baby, and others. Each of these adjective-noun
pairs is associated with a distribution over the 24 emotion
categories (e.g., joy, anger, sadness) from Plutchik’s Wheel of
Emotions [32]. We converted these categories to the valence-
arousal plane to create the final valence-arousal labels for the
images in the MVSO dataset. For each image, we took the
predominant emotion out of the 24 and use its location in the
plane as label. Finally, we randomly split the final set into
training, validation, and test sets in the proportion 70:15:15
and perform the training using the cross-entropy loss. During
the training, the feature extraction layers were kept frozen.

In the inference, the discrete video emotion curve is con-
verted to a continuous emotion curve as X = f(X ′) ∈ RF×2,
where f : {0, 1} → R is a smoothing function that applies a
quadratic interpolation to the sequential values.

2) Music Emotion Curve: Similarly, to create the
music emotion curve for an audio stream M , we use the
music emotion classifier Y ′ = ψ(M) that provides the
discrete curve Y ′ = [y′1, y

′
2, . . . , y

′
S ]

T ∈ {c1, c2, . . . , cN}S×2,
where N is the number of discrete categories, in which
a song segment can be classified in the valence-arousal
plane (music emotion curve in Figure 3-left). We
decompose Y ′ as valence and arousal one-dimensional
curves Y ′v = [y′v1, y

′
v2, . . . , y

′
vS ]

T ∈ {c1, c2, . . . , cN}S and
Y ′a = [y′a1, y

′
a2, . . . , y

′
aS ]

T ∈ {c1, c2, . . . , cN}S . Thus, given a
song segment mk, k ∈ {1, . . . , S}, (y′vk, y

′
ak) is represented

as one of the N ×N points of a grid in the valence-arousal
plane, where higher y′vk values indicate a more positive
valence and higher y′ak values indicate a higher arousal.

Our music emotion classifier ψ is composed of a feature
extractor topped with two fully-connected networks, one for

each dimension (valence and arousal). To extract the features,
we create a window of size α = 6 seconds and slide it over
the audio stream with a stride of δ = 0.5 seconds to extract
the mel-spectrogram. Then, following Panda et al. [33], we
extract from each spectrogram a d-dimensional feature vector
m̂k ∈ Rd dedicated to the song. Finally, we feed each m̂k to
the classifiers to obtain the discrete curves Y ′v and Y ′a.

We use the DEAM dataset [34] to train the music emotion
classifier. The DEAM dataset comprises about 1,802 songs
of various styles, such as rock, classic, country, and others,
with durations between 45 and 400 seconds. For each song,
some raters (10 in most cases) annotated its valence and
arousal values in a range of [−1,+1] at each step of 0.5
seconds, starting from the 15th second of the song. There are
approximately 126,000 annotated song segments in the entire
dataset. To define the song segment label, we averaged the
raters’ annotated valence and arousal values after filtering all
values distant by 0.5 standard deviations from the mean. Then,
to create the pairs of segments and labels used in our training
procedure, we discretize the valence and arousal annotations
provided in the DEAM dataset into N classes. Similar to
our image emotion recognition classifier, we train the music
emotion recognition classifiers using training, validation, and
test splits in the same proportion.

Note that, by using a stride of δ = 0.5 seconds, during
inference, we only obtain 2 samples per second, while the
video stream operates at a higher rate, usually 30 frames
per second. To match the video’s sampling rate, we apply a
linear interpolation in the valence and arousal values before
applying a smoothing function that creates the final continuous
curve Y = g(Y ′) ∈ RS×2. By smoothing the curves, we avoid
creating abrupt transitions in time of the induced emotions.

B. Optimal Path Selection

After creating the emotion profile of the video and audio
streams, we aim to find the optimal path that matches the
emotion induced by the video frames and the song.



As stated, when shrinking the video size, besides of aligning
the emotions in both modalities, we also need to produce a
visually continuous video, i.e., a video that presents a smooth
motion during the exhibition. To attend to both objectives,
we draw inspiration from the optimization process proposed
in the work of Joshi et al. [1], which creates a hyperlapse
video with smooth transitions between frames using dynamic
programming and DTW based algorithm. However, unlike
Joshi et al., which optimize the output video path regarding
only inter-frame transitions and on visual modality, in our
work, we must consider not only the inter-frame transitions but
also the audio-visual relation regarding the induced emotion.
Therefore, our algorithm creates inter-frame and cross-modal
cost matrices to perform the optimization.

To keep the video with a continuous visual motion, we
create an Inter-frame Similarity Cost Matrix, Ci ∈ RF×F ,
with each element computed as

Ci(i, j) = 1− SSIM(vi, vj), (1)

where i, j ∈ {1, 2, . . . , F} are the frames indices in the input
video and SSIM(·, ·) is the structural similarity index mea-
sure [35]. Higher SSIM values indicate that the input frames
are more similar to each other. The algorithm also uses a cost
matrix to avoid skips that are too distant from the target speed-
up rate. Specifically, let Sp? = F/S be the target speed-up
rate. Each element in the Speed-up Cost Matrix, Cs ∈ RF×F ,
is given by

Cs(i, j) = min(((j − i)− bSp?c)2, cmin), (2)

where cmin is a threshold empirically set to 200 as in
Joshi et al. [1].

Finally, we create a cross-modal matrix to determine the
cost of skipping relevant frames regarding the video and
audio stream emotion similarity. The Emotion Similarity Cost
Matrix, Ce ∈ RF×S , is computed as

Ce(i, k) =

√
(xvi − yvk)2 + (xai − yak)2

d0
, (3)

where k ∈ {1, 2, . . . , S} is the song segment index, xvi and
xai are coordinates that represent the video frame in the
valence-arousal plane, and yvk and yak are coordinates rep-
resenting the song segment. d0 is the distance between the
points (+1,+1) and (−1,−1) in the valence-arousal plane,
which is used as a normalization factor.

The cost matrices Ci, Cs, and Ce are normalized to
[0, 1] and further used to create a 3D Dynamic Cost Matrix
D ∈ RF×F×S . Each entry D(i, j, k) represents the minimal
cost of the path that ends at the frame vj and song segment
k. We also create a traceback matrix T ∈ RF×F×S that stores
in T (i, j, k) the index of the frame that precedes vj in the
path, given the song segment k. Next, we populate D and T
by setting the first song segment slice as D(i, j, 0) = Cs(i, j)
and the following slices recursively as

D(i, j, k) = λiCi(i, j) + λsCs(i, j) + λeCe(j, k)

+
w

min
h=1

(D(i− h, i, k − 1)),
(4)

TABLE I
Audio-visual Dataset. LIST OF VIDEOS AND SONGS USED FOR

COMPARISON WITH BASELINES.

Video Name Duration
Berkeley1 (Self-acquisition) 17:41
Berkeley2 (Self-acquisition) 13:40
Bike3 [16] 13:10
CityWalk1 (YouTube) 10:00
MontOldCity1 (YouTube) 10:01
NatureWalk1 (YouTube) 9:50
StockHolm1 (YouTube) 24:59
Walking4 [2] 8:43

Song Name Duration
In The End (Linkin Park) 3:38
Little Talks (Of Monsters And Men) 4:23
My Immortal (Evanescence) 4:32
Onward to Freedom (Trailerhead) 2:58
Last To Know (Three Days Grace) 3:28

where λe, λs and λi are the weights associated with
each cost term and w is the maximum skip between
adjacent frames in the path. When populating D, we
concurrently populate the traceback matrix by computing
T (i, j, k) = argmin1≤h≤wD(i− h, i, k − 1).

With matrices T and D filled, we traceback the optimal
path, starting from position k = S, and selecting, at each step,
the index stored in T (i, j, k− 1) while k >= 0. The reversed
order of the frames selected during this step is the final set
that composes the hyperlapse video. Note that exact S frames
are selected. Therefore, the video length is reduced to the
song length. We add the input audio stream to the composed
hyperlapse video to generate the musical hyperlapse video.

IV. EXPERIMENTS

A. Dataset, Evaluation Metrics, and Baselines

We organized a dataset composed of 8 videos presenting
different scenes of nature, cities, parks, buildings, cars, people,
animals, etc.; and 5 songs with varied styles and emotions.
Table I shows the list of videos and songs used in the experi-
ments. We collected the videos from various sources, including
the YouTube platform, other works in the literature, and self-
acquisition. The specific source of the video and the song
authors are indicated right after the video and song names,
respectively. We resampled all videos to the exact resolution of
640× 480. The dataset is available on the project’s webpage1.

To assess the hyperlapse methods, we need to quantify the
emotion induced by the video and audio streams, whether the
target speed-up rate was achieved, and visual continuity and
the stability of the final video. We quantify the emotion in the
output video using the Emotion Similarity metric defined as

Esim =
1

S

S∑
k=1

(
1−

√
(x̂′vk − yvk)2 + (x̂′ak − yak)2

d0

)
,

(5)
where x̂′vk and x̂′ak are the discrete valence and arousal values
of the accelerated video V̂ .

1https://github.com/verlab/MusicalHyperlapse SIBGRAPI 2021

https://github.com/verlab/MusicalHyperlapse_SIBGRAPI_2021


Given a target speed-up rate Sp?, to verify whether the
target speed-up rate was achieved, we use the Speed-up Ra-
tio metric, calculated as Spr = max(Sp?, Ŝp)/min(Sp?, Ŝp),
where Ŝp = F̂ /S is the speed-up rate achieved by the hyper-
lapse method.

We also measure if the output visual content is similar to
the input and if it is stable. To calculate the similarity, we
use the Fréchet Inception Distance (FID) [36], which gives
the similarity between two sets of images. We apply this
metric to determine the similarity between the original and
accelerated videos with respect to visual content. The lower the
FID value, the more similar are the input and output videos. To
compute the instability of the output frame transitions, we use
the Shaking Ratio [10]. The Shaking Ratio uses homography
transformations to calculate the average motion of the central
pixel between pairs of frames’ transitions.

We compare our methods against two hyperlapse baselines:
the Microsoft Hyperlapse (MSH) [1], and the extended version
of the Sparse Adaptive Sampling (SASv2) [9].

B. Implementation Details

We used a fully-connected network with 4 layers of 1,000
neurons in the image and music emotion classifiers. The
classification layer in the image emotion classifier comprises 4
neurons that represent each of the valence-arousal quadrants.
In the music emotion classifiers, the classification layer con-
sists of 8 neurons. The cost terms’ weights were empirically
set to λe = 1.00, λi = 0.01, and λs = 0.01. For our method
and all its variants, we set the maximum allowed skip to
w = 2Sp? whose value is bounded to the interval 4 ≤ w ≤ 16.
We used the essentia Python library to extract the d = 48
music features used in the classifiers. Our method was fully
implemented in Python. For the MSH baseline, we used the
desktop version. For the SASv2, we set the hyperparameters
as recommended by the authors.

C. Ablation Study

We evaluate the use of two simple path optimization ap-
proaches in the ablation study:
• Greedy Approach: This method greedily selects the

next video frame with the maximum similarity for every
song segment until it reaches the last segment. Given the
emotion curves X and Y , for each yk, k ∈ {1, 2, . . . , S}
the method seeks the next frame, vl, to store in the path by
computing l = argminl+w

i=l xi, where l stores the frame
index of the last selected frame, initially set to l = 1.

• Dynamic Time Warping (DTW): An algorithm for
measuring and aligning similarity between two temporal
sequences [37]. To maximize the similarity of the input
curves, the original DTW version may repeat video
frames. Since this is not allowed in a hyperlapse, we
adapted the method to our problem by adding a constraint
that forces the algorithm to never repeat frames. We feed
the algorithm with the X and Y curves.

Table II shows that our method achieved the best results
across all metrics when using the optimal path selection

TABLE II
Ablation study. COMPARISON BETWEEN THE DIFFERENT OPTIMIZATION

METHODS FOR FRAME SAMPLING (BEST IN BOLD).

Video
Emotion Sim. ↑ Speedup Ratio ↓ FID-Score ↓

Greedy DTW Ours Greedy DTW Ours Greedy DTW Ours

Berkeley1 0.74 0.74 0.77 1.23 1.03 1.00 22.06 22.14 3.30
Berkeley2 0.72 0.73 0.77 1.17 1.02 1.00 26.75 27.86 5.40
Bike3 0.72 0.72 0.76 1.16 1.02 1.00 16.75 18.10 5.04
CityWalk1 0.70 0.70 0.71 1.09 1.02 1.00 12.64 13.01 1.75
MontOldCity1 0.74 0.75 0.77 1.08 1.04 1.00 15.47 15.58 3.10
NatureWalk1 0.71 0.71 0.73 1.08 1.03 1.00 15.57 15.55 2.73
StockHolm1 0.71 0.71 0.73 1.36 1.01 1.00 37.58 36.07 4.21
Walking4 0.73 0.73 0.76 1.08 1.02 1.00 14.40 15.32 2.74

Mean 0.72 0.72 0.75 1.16 1.02 1.00 20.15 20.45 3.53

algorithm. The greedy approach maximizes the emotion sim-
ilarities locally, leading to a significant error in the achieved
speed-up, which might remove important frames from the
original video, resulting in a high FID. The DTW, in its turn,
seeks to find the best alignment globally, which creates many
gaps between segments reducing the representability of the
accelerated video regarding the original one. Although DTW
tries to match the curves, the need to prevent it from repeating
frames makes it obtain emotion similarities close to those
obtained by the greedy approach. Our method manages to
maximize the emotion similarities without repeating frames,
reaching the optimal speed-up ratio by taking the exact amount
of frames required by the song, also maintaining a balance
between frame transitions by using the speedup and inter-
frame similarity cost matrices, guaranteeing a lower FID.

D. Results

Table III presents the results for the comparison with the
baselines. The columns show the Emotion Similarity, Speed-
up Ratio, FID-Score, and Shaking Ratio values for each video
in the dataset averaged over the five songs from Table I. Our
approach presents the best Emotion Similarity and Speed-up
Ratio values while it is on par with the other methods in the
Shaking Ratio. We accredit these results to our optimization
algorithm that seeks to create a path that is visually stable,
temporally continuous, and with high-quality emotion match-
ing. Because our approach samples exact S frames from the
input video, it also presents the best Speed-up Ratio values in
all cases. MSH, on the flip side, presents the worst values. The
reason is that it favors optimizing the stability of the frame
transitions over achieving the target speed-up rate.

Although MSH generally presents the best Shaking Ratio
values, since the MSH algorithm neglects the video content
and only optimizes the frame transition, their FID-Score values
are worse than the other approaches by a significant margin.
Also, the MSH algorithm includes image warping in its path
smoothing and rendering step. This step may crop the image
borders; therefore, increasing the FID-Score. In comparison to
the MSH, our method presents FID-Score values closer to the
SASv2 method, which is, by design, a content-based approach.

Regarding the trained classifiers, the test accuracy obtained
with the image classifier was 71% in the MVSO dataset, while
for the audio classifiers it was 92% in the DEAM dataset.



TABLE III
Comparison with baselines. COMPARISON OF OUR METHOD AND TWO LITERATURE BASELINES.

Video
Emotion Similarity ↑ Speedup Ratio ↓ FID-Score ↓ Shaking Ratio ↓
MSH SASv2 Ours MSH SASv2 Ours MSH SASv2 Ours MSH SASv2 Ours

Berkeley1 0.73 0.72 0.79 1.19 1.01 1.00 28.90 4.30 6.82 0.02 0.02 0.02
Berkeley2 0.72 0.71 0.77 1.25 1.01 1.00 34.03 3.74 7.44 0.02 0.02 0.02
Bike3 0.71 0.71 0.77 1.02 1.01 1.00 28.31 3.02 6.21 0.03 0.05 0.05
CityWalk1 0.72 0.70 0.72 1.57 1.00 1.00 32.52 1.09 2.55 0.02 0.02 0.03
MontOldCity1 0.74 0.73 0.77 1.31 1.02 1.00 41.09 2.09 4.46 0.01 0.01 0.01
NatureWalk1 0.72 0.71 0.74 1.47 1.03 1.00 48.43 7.28 3.63 0.01 0.01 0.01
StockHolm1 0.71 0.70 0.74 1.13 1.16 1.00 23.99 7.66 5.13 0.02 0.01 0.02
Walking4 0.73 0.73 0.77 1.12 1.00 1.00 37.62 1.40 3.34 0.02 0.03 0.03

Mean 0.72 0.71 0.76 1.26 1.03 1.00 34.36 3.82 4.95 0.02 0.02 0.02

Fig. 4. Qualitative comparison with baselines. Each column represents the results of a method. At the top is the EmojiGrid with the similarities of emotions
in the regions achieved by video and music emotion curves. The greater the red intensity, the greater the similarity. At the bottom we show the separate curves
of valence and arousal throughout the video (blue) and music (green), and the similarity curve (red).

Figure 4 shows the qualitative results for the Emotion
Similarity of the musical hyperlapse video generated from
‘Bike3’ with the song ‘In The End’. On top, we illustrate
the distribution of emotion over the output video in the
valence-arousal plane. Higher similarities in emotion curves
depicted below the plane produce higher intensities in the
plane location. The blue curve represents the video, and the
green one the song. The curves similarity is represented by the
red curve, at the bottom. Our method presents a distribution
with higher intensities in the valence-arousal plane, indicating
a higher matching in the induced emotion for the hyperlapse
video. MSH and SASv2, on the other hand, have a sparse con-
centration of correct matching. Additional qualitative results
are available on the supplementary material.

1) Limitations: Our method may fail when the video and
music emotion curves X and Y are too different, making
it challenging to yield a good match. An example case is
depicted in Figure 5, which shows the Emotion Similarity

Fig. 5. Failure case. A particular case in which our method obtained a lower
similaritydue to the low similarity between the song and video.

of the musical hyperlapse video generated from ‘CityWalk1’
with the song ‘Last To Know’. Note that from the 3,000th

frame, the song (green curve) increases the induced arousal
and reduces the valence while the video (blue curve) induces
the opposite.



V. CONCLUSION

This paper introduced the novel task of accelerating first-
person videos and aligning the emotion induced by visual and
acoustic signals. As a solution for this task, we proposed a
new multimodal method capable of accelerating egocentric
videos while taking visual information in the video scenes and
audio information in the background music. We also presented
a new multimodal dataset comprising different videos and
songs. The proposed method achieved superior performance in
terms of video representation, required speed-up and emotional
alignment for different videos and songs without losing the
visual quality of the hyperlapse, as compared to previous
methods. The results show that it is possible to create a
hyperlapse combining media of distinct nature according to
their respective affective semantic. For future work, it is pos-
sible to improve the emotion recognition models and perform
experiments with more videos.
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