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Abstract—Deep neural networks are extensively used for solv-
ing a variety of computer vision problems. However, in order for
these networks to obtain good results, a large amount of data is
necessary for training. In image classification, this training data
consists of images and labels that indicate the class portrayed
by each image. Obtaining this large labeled dataset is very time
and resource consuming. Therefore, domain adaptation methods
allow different, but semantic-related, datasets that are already
labeled to be used during training, thus eliminating the labeling
cost. In this work, the effects of embedding dimensionality reduc-
tion in a state-of-the-art domain adaptation method are analyzed.
Furthermore, we experiment with a different approach that use
the available data from all domains to compute the confidence
of pseudo-labeled samples. We show through experiments in
commonly used datasets that, in fact, the proposed modifications
led to better results in the target domain in some scenarios.

I. INTRODUCTION

In recent times, the use of smart systems to automate
different tasks in various areas has been on the rise. Computer
vision and machine learning techniques are extensively used
in these systems to deal with tasks concerning visual data
[1]. One such task is image classification, in which images
are classified based on the class portrayed by them, for
example classifying which product is in a picture taken by
a user on their smartphone camera. In order to obtain an
accurate classification model, we need a large amount of
labeled data that are used during training. Labeling data is
often a very time and resource consuming step, as it usually
must be done manually by a human. As large repositories of
publicly-accessible data are available online due to the big-
data phenomenon of the recent years [2], domain adaptation
methods will allow labeled data that are available from a
different, but semantically related, dataset to be used during
training, thus eliminating the high cost of labeling data and
making the development of smart computer systems more time
and cost efficient.

Deep convolutional neural networks, like the ResNets [3]
and DenseNets [4], [5], are extensively employed in many
computer vision tasks, such as image classification, semantic
segmentation and object detection, due to the remarkable
results achieved by them [2]. In image classification, a large
labeled dataset {(xi, yi)}Ni=1, where xi is an image and

yi ∈ {1, 2, ...,K} is a label that indicates the class portrayed
by the i-th image, is used to train these networks. A large
amount of data is required in order to achieve a great level
of generalization, which in turn will improve the overall
classification accuracy on test data, that represent the actual
data on which the trained model will make predictions [6].
However, obtaining this large amount of labeled data can be
arduous, as the process of annotating large datasets is very time
and resource consuming [2]. In some scenarios, it might even
be impossible due to the lack of data and expert professionals
to label the instances.

An alternative to labeling data is to use an already available,
different but semantic-related, labeled dataset (Source domain)
to train the network to make predictions on the target data
(Target domain). A problem with this approach is that the
traditional methods for training the neural networks rely on the
i.i.d assumption, which states that the data used during training
and the data on which the model will make predictions during
test must be independent and identically distributed. Therefore,
the shift in the data distribution between the source and target
domains due to differences in image characteristics, such as
illumination, quality and presence of background, will cause a
considerable impact on the model’s classification performance
on the target data.

To overcome the difference between the source and target
domains, an adaptation step is needed to diminish the effects of
this domain shift and enable the model to have good results in
the target data. This problem is known as Domain Adaptation
(DA) and, as suggested in [7] and [2], it can be categorized
based on the level of divergence between the domains and the
availability of labeled data in the target domain. Concerning
the divergence between the domains, the DA problem can be
divided into: Homogeneous, in which the input space has the
same dimensionality in both source and target domains, and
the number of classes and each class concept do not change
between the domains; and Heterogeneous, in which the input
and label spaces can be different across the domains. The DA
problem can be further categorized based on the availability
of labeled data in the target domain: Unsupervised, where
only unlabeled samples are available in the target domain;
Semi-supervised, where, in addition to the unlabeled samples,



a small amount of labeled target samples are available; and
Supervised, in which only a few target labeled samples are
available and there are no target unlabeled data.

In this paper, we consider the image classification task
and the Homogeneous and Unsupervised setting, in which the
domains share the same label space, i.e. they have the same
number of classes and each class definition is the same across
the domains, and only unlabeled data are available in the target
domain.

Many methods have been proposed in the literature to
deal with the Homogeneous Unsupervised Domain Adaptation
problem with visual domains [2], [8]. The strategies with the
best performance have been using a domain discriminator in
an adversarial framework during training to maximize domain
confusion, thus minimizing the distribution shift [9], and
pseudo-labeling heuristics that will automatically assign labels
to target unlabeled data [10], [11]. In this work, we sought to
enhance the performance achieved by the Robust Spherical
Domain Adaptation (RSDA) method [10], a state-of-the-art
method that uses both adversarial and pseudo-labeling strate-
gies, by analyzing the effects of applying a dimensionality
reduction algorithm to the feature space created by the network
and changing how data from each domain is used during
training.

The proposed modifications have been motivated by the
hypothesis that, in a lower-dimensionality space, the shift
between the domains would become less apparent as the
semantic-related information would be privileged with lower
dimensions instead of image-conditions-related information.
Therefore, as in a homogeneous setting the shift between the
domains is mainly caused by differences in image conditions,
reducing the dimensionality would lead to better results.
Futhermore, by using the data from both source and target
domains in a more robust way, the whole adaptation procedure
would become more effective.

Experiments in commonly used datasets in DA show that,
in fact, our proposed modifications led to better results, with
an increase of up to 7 percentage points in the target data
classification accuracy when compared to the original method
in some scenarios.

II. RELATED WORK

In the recent years, many approaches have been pro-
posed for solving the Domain Adaptation problem with
visual domains and deep neural networks. As suggested
by Wang and Deng [2], these approaches can be catego-
rized between discrepancy-based, reconstruction-based and
adversarial-based.

Discrepancy-based methods [12]–[14] incorporate a regu-
larization term to the network, that is usually a distribution
discrepancy metric, such as the Maximum Mean Discrepancy
(MMD), to reduce the distribution gap between source and
target samples and diminish the effects of domain shift.

Reconstruction-based methods assume that reconstructing
target images, which is an unsupervised task, can lead to
better adaptation. Some of these methods will use a multitask

learning setup, adding a target image reconstruction task to
the network, such as the Deep Reconstruction-Classification
Networks (DRCN) [15] and the Deep Separation Networks
(DSNs) [16], that are based on an Encoder-Decoder architec-
ture.

Adversarial-based methods [9], [10], [17]–[19] use a do-
main discriminator in a two-player game to produce domain-
invariant features. One of the main adversarial-based methods
is the Domain Adversarial Neural Network (DANN) [9].
In DANN, a discriminator, similar to the one used in the
Generative Adversarial Networks (GANs) [20], is added to
the network pipeline. This discriminator receives as input the
features produced by a feature extractor and outputs whether
this feature comes from a source sample or a target one. A
gradient reversal layer is added just before this discriminator,
and on the forward pass it simply pass on the input received,
while on the backward pass it multiplies the given gradient by
a negative constant, thus directly implementing the min-max
objective of the adversarial game between the discriminator
and the feature extractor. Given this adversarial setup, the
feature extractor will be encouraged to produce more domain-
invariant features in order to maximize the discriminator loss,
thus reducing the difference in the features’ distributions
across the source and target domains.

Some methods will combine the aforementioned approaches
with some techniques such as the use of pseudo-labels [10],
[11]. The idea behind this pseudo-label technique is to develop
a heuristic that will automatically label the target samples.
Then, these pseudo-labeled samples can be used during the
adaptation procedure. The main difficulty lies on defining
a strategy for assigning the pseudo-labels, as incorrectly la-
beled samples can severely impact the model’s performance.
Recently, Robust Spherical Domain Adaptation (RSDA) was
proposed in [10]. This method is based on the aforemen-
tioned DANN [9] and uses a new robust pseudo-label loss
formulation that better models the confidence of a given
pseudo-label assignment being correct. In RSDA, the pseudo-
labels are assigned using the output of a classifier trained
on the usual DANN pipeline. Then, the probability of a
pseudo-label being correctly assigned to a sample is estimated
by Gaussian-uniform mixtures based on the cosine distance
between the sample’s feature representation and the centroid
of each class. The mixtures’ parameters are estimated using
an Expectation-Maximization (EM) algorithm with the target
data. Furthermore, RSDA performs the adaptation in spherical
(L2-normalized) space, as the authors state it makes adaptation
easier as difference in norms are eliminated. During training,
after an initial stage, the network weights optimization and
the pseudo-labels assignment and confidence estimation are
executed alternately.

In this work we analyze the effects of changing how data
from each domain is used in the previously discussed RSDA
method and how would the incorporation of a dimensionality
reduction strategy to the RSDA pipeline impact the perfor-
mance on target data. Some methods in the literature also
use dimensionality reduction to solve the adaptation problem



[21], [22]. In [21], the authors propose a two-stage feature-
based adaptation approach based on optimal transport that
employs dimensionality reduction with the goal to separate
data samples as much as possible and enhance the feature dis-
criminability of the source domain. In [22], the dimensionality
reduction is used to map the produced features to a lower
dimensional space in which the value of global and local
metrics, such as the Maximum Mean Discrepancy (MMD),
will be as small as possible, thus creating an ideal space
for adaptation. The main difference between our work and
the aforementioned ones is that we incorporate the pseudo-
labeling strategy of RSDA [10], that proved to lead to great
results, with the feature dimensionality reduction, based on the
assumption, also made by the previous works, that a lower
dimensional space would lead to better adaptation results.

III. PROPOSED APPROACH

In the homogeneous unsupervised domain adaptation set-
ting, given a labeled source dataset {(xsi , ysi )}

Ns
i=1 and an unla-

beled target dataset {xtj}
Nt
j=1, we want to train a convolutional

neural network, comprised of a feature extractor F and a
classifier C, that is able to correctly classify the target samples.

As noted in previous sections, the main goal is to diminish
the effects of the domain shift caused by the difference in the
data distributions between the source and the target domains.
In this work, we propose modifications to the Robust Spherical
Domain Adaptation (RSDA) [10] method with the goal to
improve its results. In RSDA, a network comprised of a feature
extractor F , a classifier C and a domain discriminator D,
which will classify the samples based on their domain, is
trained using a spherical adversarial training loss, as defined
in Equation 1.

L = Lbas(F,C,D) + Lrob(F,C, φ) + γLent(F ), (1)

where the basic loss Lbas is based on the adversarial loss of
DANN [9] and is defined as the sum of the cross entropy loss
of source samples classification and the adversarial loss of the
discriminator:

Lbas(F,C,D) = Lsrc(F,C) + λLadv(F,D), (2)

where λ is a negative constant. Notice that the adversarial
goal is implemented directly by inverting the discriminator’s
classification loss. The authors of RSDA include a semantic
matching loss (based on [23]) to this basic loss formulation.
We, however, chose to not add this term in order to better
analyze the effects of the proposed modifications to the
original method.

The robust pseudo-label loss Lrob [10] is defined as

Lrob(F,C, φ) =
1

N0

Nt∑
j=1

wφ(x
t
j)J (C(F (xtj)), ỹtj), (3)

where N0 =
∑Nt

j=1 wφ(x
t
j), J is the mean absolute error and

wφ(x
t
j) is

wφ(x
t
j) =

{
γj , if γj ≥ 0.5

0, otherwise
, (4)

where γj = Pφ(zj = 1|xtj , ỹtj) is the correct labeling
probability associated to the sample xtj and the pseudo-label
ỹtj that is estimated by the Gaussian-uniform mixture models
using the parameters φ.

The training, as defined in [10], consists of an initial stage,
where F , C and D are optimized using only the basic loss
Lbas. After that, the training procedure alternates between
estimating the mixtures’ parameters with the EM algorithm
and optimizing the network with the complete loss L, which
includes the robust pseudo-label loss and an entropy-based loss
Lent.

We change the way that the mixtures’ parameters are esti-
mated in the original work [10] by reducing the dimensionality
of the features before calculating the distances relative to the
centroids and by using data from both domains during this
step, as in the original RSDA only data from the target domain
are used during the EM algorithm.

The diagram presented in Figure 1 shows the order of
the steps taken in the correct pseudo-labeling probability
estimation procedure with the addition of the dimensionality
reduction step. Futhermore, we can see that data from both
source and target domains are used in the EM algorithm
to estimate the optimal parameters of the mixtures. In the
next subsections, we discuss these modifications and their
motivations in detail.

A. Data Used During Mixture Parameters Estimation

In the original paper [10], the authors use K Gaussian-
uniform mixture models, one for each class from a total
of K classes, to predict the probability of a pseudo-label
being correctly assigned to a sample. The pseudo-labels ỹtj
are assigned to the target unlabeled samples xtj based on the
output of the classifier C. Then, the probability of correct
labeling Pφ is given by the respective mixture model

Pφ(zj = 1|xtj , ỹtj) =
π
ỹt
j

N+(dtj |0, σỹt
j

)

π
ỹt
j

N+(dtj |0, σỹt
j

) + (1− π
ỹt
j

)U(0, δ
ỹt
j

)
,

(5)

where dtj = dist(f tj , Cỹt
j

) is the cosine distance between

the latent representation f tj of the j-th target sample and
C
ỹt
j

is the centroid of the assigned class ỹtj . The parameters

φ = {πk, σk, δk}Kk=1 of the K mixture models are estimated
using an Expectation-Maximization (EM) algorithm. The main
idea is that samples that are closer to the class centroid in the
feature space are more likely to be correctly labeled and are
modeled by the Gaussian component of the mixture. On the
other hand, if the feature representation of a sample is far
from the class centroid, then it is more likely to be incorrectly



Fig. 1. Correct pseudo-labeling probability estimation procedure. First, the features from both source xti and target xtj samples are extracted using the
feature extractor F . Then, the pseudo-labels ỹtj are assigned based on the classifier C output. A dimensionality reduction method is used to transform the
features fsi and f tj into the lower-dimensional representations rsi and rtj . The ground-truth source labels ysi and target pseudo-labels may be used during
the dimensionality reduction step, for example when we use the Partial Least Squares (PLS) algorithm. The cosine distance between each representation and
the class centroids are then calculated. The Expectation-Maximization (EM) algorithm is executed on the calculated distances in order to obtain the optimal
values of the parameters πk , σk and δk for each mixture k. Finally, the Gaussian-uniform mixture models are used to estimate the correct pseudo-labeling
probabilty γj of the target samples based on the distance to the class centroid calculated for each of these samples.

1: procedure TRAINING(F,C,D)
2: Optimize F , C and D using the Basic Loss Lbas

(Equation 2) for Nepochs epochs.
3: for stage = 1 to Nstages do

ỹtj , γj = GETCORRECTPROBABILITY(F,C)
4: Unfreeze and reinitialize the weights of F , C and
D randomly.

5: Train F , C and D with the L loss (Equation 1),
for Nepochs epochs.

6: procedure GETCORRECTPROBABILITY(F,C)
7: Freeze the weights of F and C.
8: Obtain the features fsi and f tj produced by F for all

Source xsi and Target xtj samples.
9: Assign the pseudo-labels ỹtj based on the output of C.

10: Run a dimensionality reduction algorithm on fsi and
f tj to obtain the reduced features rsi and rtj .

11: Compute the centroid Ck for each class k =
{1, 2, . . . ,K} in the reduced space.

12: Compute the distances dsi and dtj between each
reduced feature and the respective class centroid
(groundtruth labels for source samples and pseudo-labels
for target ones).

13: Run the EM algorithm, as defined in [10], to obtain
parameters πk, σk and δk for each k mixture model.

14: Estimate the correct pseudo-labeling probability for
the Target samples γj with the Gaussian-Uniform mixture
models.

return the estimated pseudo-labels ỹtj with their
respective probability γj .

Fig. 2. Algorithm detailing the proposed approach.

labeled and is modeled by the uniform component of the
mixture.

In the original formulation of RSDA, only the features
from target samples are used in the EM algorithm. This can
lead to a loss of concept problem if a considerable amount
of samples agree to an incorrect label, what would not be
captured by the mixture models as the distance between the
features and the centroids would be small. Therefore, the first
proposed modification to the RSDA method consists of using
data from both domains during the parameters estimation. As
the ground-truth labels of the source samples are known, the
estimation of the mixture parameters would be even more
robust, thus making the deviation caused by incorrectly labeled
target samples more unlikely.

The use of data from both domains is possible due to
the domain invariance promoted by the domain discriminator
D, that is also used in RSDA as it is based on the DANN
[9] method. As throughout the training D encourages the
feature extractor F to produce domain invariant features due
to adversarial game played between them, it is expected that
the distribution of the produced features will not be too far
apart, hence allowing the use of data from both domains in
the EM algorithm.

In summary, we propose that, in contrast to what is done
in the original RSDA method [10], both labeled data from
source {(xsi , ysi )}

Ns
i=1 and pseudo-labeled data from target

{(xtj , ỹtj)}}
Nt
i=1 domains should be used during the mixtures

parameters estimation with an EM algorithm in order to avoid
class concept shift problems.

B. Dimensionality Reduction

We also propose to apply a dimensionality reduction method
to the features produced by the feature extractor F before cal-
culating the distances d that will be used during the mixtures
parameters estimation. This is supported by the assumption,
also made in [21], [22], that adaptation in lower dimensional
spaces would be easier, as semantic-related information would
be privileged with a lower amount of dimensions. Being that



(a) Office-Home dataset [24]. Image extracted from [24].

(b) Office-31 dataset [25]. Image adapted from [26].

Fig. 3. Datasets used in the experiments. Notice that even though the semantic meaning of each class (columns) is the same, the images conditions vary
significantly across the domains (rows).

we consider the homogeneous scenario, in which the label
space is the same across the domains and the domain shift is
mainly caused by difference in image conditions, privileging
information related to the semantic structure of the problem
should lead to better adaptation results.

For our approach, given the samples x and their feature rep-
resentation f , a dimensionality reduction algorithm is applied
to f , generating reduced representations r. Then, the distance
d input to the mixture models, as presented in Equation 5, is
computed using the reduced features r.

C. Training

The proposed approach has the same training procedure as
the original RSDA method [10], with the difference laying
on how the mixtures’ parameters are estimated. The steps are
shown in Figure 2.

More details regarding the architecture used for each com-
ponent and the values defined for the hyperparameters are
given in the next section.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed modifications on
two commonly used datasets in the Domain Adaptation liter-
ature, comparing the achieved results with the ones obtained
by the original RSDA method.

A. Datasets

We evaluate the proposed approaches on the Office-31 [25]
and Office-Home [24] datasets.

The Office-31 dataset contains 4,110 images of 31 cate-
gories of objects commonly found in an office environment.
These images are distributed across 3 domains: Amazon,
DSLR and Webcam. The Amazon domain consists of images
scrapped from the online store, hence the pictures usually do
not have a background and have more uniform illumination
and quality. The DSLR and Webcam domains are comprised of
images taken with a DSLR camera and a webcam, respectively,
in an actual office. Therefore, the images from these two
domains have a background and have more variation in quality
and overall conditions, such as illumination and the pose of
the object.

The Office-Home dataset is similar to the Office-31, but is
bigger and more challenging. It has 15,500 images of 65 object
categories divided in 4 domains: Artistic images, Clip Art,
Product images and Real-World images. The main difference
to the Office-31 dataset is the Clip Art domain, that consists
of vector drawings of the objects, making it very challenging
to adapt to real world images.

Some sample images from these datasets are presented in
Figure 3. We follow the standard evaluation protocol for these
datasets, in which the accuracy achieved on target data is
reported by varying the source/target pairs.

B. Implementation details

The proposed modifications were implemented using Py-
Torch, based on the code distributed by the authors of RSDA
[10] (Available at https://github.com/XJTU-XGU/RSDA). We
use the ResNet-50 [3] with weights pre-trained on ImageNet
as the feature extractor F . For the classifier C and domain



TABLE I
TARGET CLASSIFICATION ACCURACY (%) ON OFFICE-31 [25] DATASET. *EXTRACTED FROM [10]

Amazon-DSLR Amazon-Webcam DSLR-Amazon DSLR-Webcam Webcam-Amazon Webcam-DSLR

No Adapt (ResNet-50 [3]) 80.00±3.56 79.66±0.29 59.46±2.41 91.40±1.07 61.88±0.90 99.00±0.82
DANN [9]* 79.7±0.4 82.0±0.4 68.2±0.4 96.9±0.2 67.4±0.5 99.1±0.1
RSDA [10] 90.63±0.09 92.03±0.74 72.25±1.11 97.61±0.18 75.74±0.55 100.00±0.00

RSDA + PCA 89.36±0.16 92.20±0.13 71.96±0.77 98.11±0.10 74.48±0.00 100.00±0.00
RSDA + PLS (c = 10) 90.03±0.34 93.75±0.21 71.00±0.33 97.90±0.16 75.01±0.42 100.00±0.00
RSDA + BOTH 93.04±0.34 93.42±0.33 75.79±0.46 98.66±0.47 77.52±0.83 100.00±0.00
RSDA + BOTH + PCA 92.30±0.25 92.96±0.88 75.93±0.39 99.18±0.06 77.92±0.12 100.00±0.00
RSDA + BOTH + PLS (c = 10) 93.37±0.16 93.84±0.37 79.27±0.35 99.16±0.12 78.84±0.36 100.00±0.00

TABLE II
TARGET CLASSIFICATION ACCURACY (%) ON OFFICE-HOME [24] DATASET. *EXTRACTED FROM [10]

Art-Clipart Clipart-Art Clipart-Product Product-Clipart Product-Realworld

No Adapt (ResNet-50 [3])* 34.9 37.4 41.9 31.2 60.4
DANN [9]* 45.6 47.0 58.5 43.7 68.5
RSDA [10]* 51.50±0.05 67.10±0.04 72.10±0.02 51.10±0.05 81.08±0.06

RSDA + BOTH + PLS (c = 10) 53.13±0.21 65.68±0.19 73.36±0.34 53.09±0.71 81.09±0.46

discriminator D, we use the spherical layers and activation
functions described in the original paper [10], with a bottle-
neck dimension of 256. All parameters, including the network
learning rate and the EM-related ones are defined as in the
original RSDA paper [10], in order to correctly evaluate the
impact of the proposed modifications. We use the variation of
RSDA based on the DANN [9] method. Therefore, we do not
consider the semantic-matching loss.

C. Dimensionality Reduction

We evaluate the proposed addition of a dimensionality
reduction step to the original RSDA pipeline with two popular
algorithms: Principal Component Analysis (PCA) and Partial
Least Squares (PLS). PCA reduces the dimensionality of
data while preserving the data’s variance by finding principal
components, which are the dimensions with higher variance.
PLS will build a lower dimensionality space by taking into
account both the data and the labels. It will try to find the
multidimensional direction in the data space which will better
explain the variance in the label space.

As PLS takes into account the label information, we expect
to see better results with PLS when compared to the ones
obtained when using PCA. The 256-dimensional feature vector
produced by the feature extractor F are reduced to c = 10
dimensions when using PLS. With PCA, the dimensionality is
reduced until a threshold of 95% explained variance is met.
We use the PCA and PLS implementations available in the
scikit-learn package.

D. Results and Comparisons

The results achieved in the Office-31 dataset are reported in
Table I. We compare the target classification accuracy achieved
with each method. In the first and second rows, we show
the results achieved when no adaptation is done, that is the
model is trained using only source labeled data and no target

data are used, and the result achieved with the DANN [9]
method. Following, the results of the original RSDA method,
our baseline, as reproduced by us using the implementation
made available by the authors of [10], are presented.1 Then,
the results obtained when applying PCA or PLS in the original
method are shown. Finally, in the last three rows of the table,
we present the results obtained when using data from both
source and target domains in the EM algorithm. The values
displayed in the table are the average and standard deviation
of the accuracy achieved on target data in three independent
runs of each method.

According to the results in Table I, we can see that only
the addition of the dimensionality reduction step to the orig-
inal pipeline, using either PCA or PLS, did not result in a
great improvement in the model performance on target data.
However, when we combine the dimensionality reduction step
and the use of data from both domains during the mixtures’
parameters estimation, there was a significantly improvement
in the model performance, specially in the DSLR-Amazon and
Webcam-Amazon scenarios, that were the ones on which the
original method achieved the worst results.

The results indicate that the proposed modifications, when
combined, were able to improve the results achieved by the
original RSDA [10] method, specially in the configurations
where the discrepancy between the source and target do-
mains are higher (DSLR-Amazon and DSLR-Webcam). This
suggests that the use of source data in the Expectation-
Maximization algorithm and the reduction of the feature
dimensionality with PLS, a class-aware reduction, made the
original method more resilient for situations in which the
domains are very different.

1Even though we used the same architectures and parameters described in
[10], we could not fully reproduce the results reported in the original RSDA
paper. Here, we report the results we obtained with the parameters as described
in the original RSDA paper.



(a) Original RSDA [10]. (b) Proposed RSDA + BOTH + PLS (c = 10).

Fig. 4. t-SNE [27] visualizations of the features produced by the feature extractor F after the complete training procedure on the DSLR-Amazon setting
of the Office-31 dataset (Source - red, Target - blue). Notice how the proposed modifications to the original RSDA [10] method led to a better inter-class
separability of the features, as the number of points in the low-density areas between the clusters is reduced.

Figure 4 presents the t-SNE [27] visualizations of the
features produced by F after the complete training procedure
in the DSLR-Amazon scenario. Notice how the proposed mod-
ifications led to features with a better inter-class separability
in both source and target domains. This may be explained
by the more robust way through which the correct labeling
probabilities are estimated with the proposed approach.

The results obtained using the Office-Home dataset are
presented in Table II. Due to resource and time restrictions, we
report the results only on a subset of all possibles source-target
pairs. Nonetheless, the selected pairs should illustrate how the
proposed approach performs under different scenarios. In the
first three rows of Table II we present the results with no
adaptation, with DANN [9] and the original method. These
results were extracted from [10]. In the last row of the table,
we report the results achieved using the configuration that led
to the best results in the Office-31 dataset.

Through the analysis of the results in the Office-Home
dataset, we can see that the proposed modifications to RSDA
also resulted in an improvement over the classification per-
formance on target data achieved by the original method,
albeit the improvement seen on this dataset was not as big
as the one achieved in the Office-31 dataset. In the Clipart-
Art configuration there was in fact a reduction in the accuracy
on target data. Nevertheless, there was an improvement of up
to 2% in the accuracy achieved in the other configurations.

The overall analysis of the results presented in Tables I and
II shows that the proposed modifications led to an improve-
ment over the original RSDA method, thus indicating that the
hypothesis that guided this work do hold true. These results
then demonstrate that it is beneficial for domain adaptation

that we make an effective use of the available data in both
source and target domains and that the transformation of the
produced features to a lower dimensional space indeed leads
to a better adaptation of the semantic knowledge across the
domains.

V. CONCLUSION

In this paper, we presented two modifications to the state-
of-the-art Robust Spherical Domain Adaptation (RSDA) [10]
method with the goal to use data from the source and target
domains in a more robust way and to analyze the impacts of
adding a dimensionality reduction step to the original method’s
pipeline. Experiments conducted in commonly used datasets
in domain adaptation showed that the proposed modifications
indeed led to a better accuracy in target data in most of the
scenarios, specially in those where the domains have very
different conditions.

Aside from improving the results obtained by the original
method in the selected datasets, this work also provided
possible paths that could lead to an even more effective
adaptation. Exploring further dimensionality reduction strate-
gies and how to build the reduced space in order to better
capture the semantic meaning that is shared by the domains
could make adaptation even more robust. As the experiments’
results show, there is still room for improvement in some
scenarios in which no method can achieve a high accuracy on
target data. Therefore, the search for more effective domain
adaptation methods is still a very active research topic and
the modifications described in this paper can certainly help
guiding future works involving this subject.
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