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Abstract—Traditionally, proficiency in chess has been mea-
sured by metrics based on accuracy and response time or
performance in tournaments, but not considering how cognitive
signals influence in the decision making in this complex game. In
this work, we have carried out a performance analysis of chess
players comparing a standard ranking measure with a novel one
proposed here. Using the idea of treating participants eye move-
ments and brain signals, when answering several on-screen valid
chess questions of distinguished complexities, as high-dimensional
data we have shown that expertise is consistently associated with
the ability to process visual information holistically using fewer
fixations rather than locally focusing on individual pieces. Results
show that traditional metric to quantify proficiency presented
accuracy up to 73,3%, while the proposed cognitive one reached
accuracy up to 87,5% and 98,9% for the electroencephalography
and eye movements, respectively. These findings might disclose
new insights for teaching and predicting chess skills.

I. INTRODUCTION

CHESS game has attracted the interest of many academic
works in distinct areas of the scientific knowledge, due to

its fundamental questioning about human reasoning. [1], [2].
In the last years, biosignals like electroencephalography [3]–
[5] and eye movements [6]–[8] have been used to describe
and explain differences between chess experts and novices
depending on their responses to chessboard configurations
presented on a computer screen.

In this work, following these earlier investigations, we have
moved one step further and explored the potential role of
such biosignals’ measurements as ranking metrics de facto to
analyze the performance of chess players. More specifically,
we have implemented a novel chess ranking measure based
on eye movements and brain signals in order to compare their
results with the traditional metric based on high accuracy and
short reaction time. In all experiments carried out, the visual
perception measure has ensured the best classification of the
participants’ expertise on a question-by-question basis.

The remainder of this paper is structured as follows. Section
II presents equipment used in the experiments and volunteers
who participated in this study. Section III explains the proce-
dure followed here and how brain signals and eye movements
were processed. In Section IV is explained the metrics used

here to measure proficiency and how to compare them. In
sequence, Section V presents example of questions and discuss
it. Finally, in Section VI, we conclude this article and open
new possibilities for future works.

II. APPARATUS AND PARTICIPANTS

Eye movements were recorded with a Tobii TX300 equip-
ment that comprises an eye tracker unit integrated to the lower
part of a 23in TFT monitor. The eye tracker performs binocular
tracking at the data sampling rate of 300Hz, and has minimum
fixation duration of 60ms and maximum dispersion threshold
of 0.5 degrees. These are the eye tracker defaults for cognitive
research. Data collection were performed with the use of the
Tobii Studio programming package running on an attached
notebook (Core i7, 16Gb RAM and Windows 7).

Brain electrical signals were obtained through an EEG
device, OpenBCI. This is an open-source equipment, it has
sampling frequency of 125Hz and resolution of 32 bits per
channel. In this experiment, we have used an EEG headcap
to acquire 16 channels according to the 10-20 conventional
system, which was used as reference for the positioning of
the electrodes ??. In this study, electrodes Fp1, Fp2, F3, F4,
F7, F8, T3, T4, T5, T6, C3, C4, P3, P4, O1 e O2 were chosen
to cover the maximum scalp area. Figure shows the electrodes’
positioning.

Fig. 1. Electrodes’ positioning.



A total number of 32 participants, aged from 6 to 54 years,
were involved in this study, with different qualifications: 4
professional chess players with ELO rating [11], 4 chess
teachers, 4 school children who commonly compete in national
chess championships, and 20 participants who know chess
but not practice it regularly. All subjects participated on a
voluntary basis and written informed consent was obtained
from all participants.

III. EXPERIMENTAL DESIGN AND DATA PROCESSING

The experimental design consists of 50 on-screen questions
related to full size (8x8) and valid chessboard configurations
divided into 5 categories, composed of 10 questions each, of
distinguished complexities [3], [12]: Object recognition (C1),
where participants had to simply respond whether or not, for
example, a specified chess piece was on the board; Check
detection (C2), where participants should respond whether
or not a specified king was in check; Checkmate judgment
(C3), where participants should determine whether or not a
specified king was checkmate; Checkmate in one move (C4),
in which the decision was whether or not exists a piece on the
board that could checkmate a specified king in the next move;
Rule retrieval (C5), in which participants analyzed whether or
not a simple, single move of a specific piece is valid. The
time of presentation of each stimulus was controlled by the
participants themselves, but they were instructed to produce
their responses as correctly and quickly as possible.

The experiments began with a calibration procedure as
implemented in the Tobii apparatus and positioning EEG
headcap on volunteers. On each trial, the question to be solved
was shown only once before its chessboard diagram, presented
afterwards on a new screen. All the stimuli were presented
centralized on a black background using the 23in TFT monitor
with a screen resolution of 1280x1024 pixels. All chessboard
configurations were visualized on the TFT monitor with 800
pixels wide and 800 pixels high. Each question followed by
its corresponding chess diagram preceded the next pair of
question and chess diagram stimuli until all the 50 trials were
presented. Figure ?? presents how the test was performed.

A. EEG data processing

EEG data collected by OpenBCI does not have any prior
processing. Due to this, a high pass filter with cut-off fre-
quency of 0.5Hz, a low pass filter with cut-off frequency
of 50Hz and a band-stop filter with cut-off frequency of
60Hz were used to pre-process the signal. After the electroen-
cephalogram signals have been filtered, we have processed
according to the method proposed by Rocha et al. [14], which
investigates the communication among the specialized neural
agents involved in cognition, using the EEG data 2 seconds
prior to decision-making.

The first step of this summarization is to calculate the
linear correlation coefficients among the electrical amplitude
values registered by each electrode and all the others. It was
adopted here the Pearson correlation for being a parametric

Fig. 2. Question’s experiment sequence.

test [15]. The next step was the entropy calculation based on
the Shannon entropy formula [16]:

h(ci,j) = −ci,j log2 ci,j − (1− ci,j) log2(1− ci,j), (1)

where ci,j is the correlation of two distinct channels.
Analogously the entropy of the average correlation of each

electrode can be calculated according to the equation (2),

h(ci) = −ci log2 ci − (1− ci) log2(1− ci), (2)

where,

ci =
1

(n− 1)

n−1∑
j=1

ci,j , (3)

and n is the number of electrodes. In this case, n = 16.
The information provided by each electrode is given by the

sum of the differences between the average entropy correlation
and the entropy of the electrode with the other channels, that
is,

h(ci) =

n∑
j=1

(h(ci)− h(ci,j)). (4)

The information provided by each electrode can now be
composed as a data matrix X in a way that the corresponding
sampled input data can be treated as a high-dimensional point
in a multivariate space.

B. Eye movement data processing

As the output of the software is the heatmap and diagram
together in one image, it is necessary to remove the back-
ground of each image to analyze only the focus of attention of



volunteers. For this, the diagram is subtracted to the heatmap
obtaining, then, an image 800x800 with only the focus of
attention of the volunteers in RGB. It is not necessary that
the information from the heatmap has three dimensions, then
this image was transformed to gray-scale to become a two-
dimensional image. For this transformation, it was assumed
that the points of greatest fixation in red would be transformed
to the value of 255 in the gray-scale scale, while the lowest
fixation in green color was transformed to the value 64. The
other colors varied within the lower and upper limits according
to the scale of color adopted for the construction of heatmaps.
Figure 3 shows this transformation.

Fig. 3. Heatmap in RGB to grayscale.

IV. METRICS OF PROFICIENCY EVALUATION

A. Traditional metric

To quantify a traditional discriminant measure, we have used
the general Volke’s strategy of high accuracy and short reaction
time calculated as [3]:

Vs =

(
Kc −

N

2

)
· RT
RTs

, (5)

where Vs is the performance value of participant s, Kc the
participant’s number of correct responses, N the total number
of pre-defined trials, RT the mean reaction time across all
participants and pre-defined trials, and RTs the participant’s
mean reaction time across all pre-defined trials.

These performance values served as a discriminant measure
of the participants’ chess skills on a question-by-question ba-
sis, considering only the subjects classified here as belonging
to the sample group of novices or experts. We have considered
novices and experts all the subjects whose overall Volke’s per-
formance values arranged from smallest to largest correspond
to the first and fourth statistical quartiles respectively.

B. Cognitive metric

In this work, we want to separate expert and novice groups.
For that, we have used the Linear Discriminant Analysis
(LDA). To quantify the cognitive characteristics among groups
of experts chess players and novices, it is proposed here to
treat each vector of brain signal characteristics and each gray-
scale heatmap of eye movement characteristics as a pattern in
a n-dimensional space, making this a problem of multivariate
statistics.

To analyze brain signals, a data matrix is then created
with the information from volunteers classified as proficient
and novice. The gray-scale heatmap can now be presented

as a matrix with two dimensions. For each heatmap of each
volunteer to be represented as information each of the lines
were sequentially concatenated into a single vector, repre-
sented by x = [x1, x2, ..., xk]. This vector represents the
extraction of characteristics of the eye movements. In this con-
catenation, it becomes mathematically unfeasible to process
due to the amount of data. To decrease the dimensionality,
PCA (Principal Component Analysis) was used in which
the dimensionality has been reduced to the number of main
components, whose self values are non-null [17]. After the
application of the PCA, just as it was done with the EEG
signals, these data will be treated as a matrix in a multi-
dimensional space. as such:

X =


x1

x2

...
xN

 =


x11 . . . x1n
x21 . . . x2n

...
...

...
xN1 . . . xNn

 , (6)

where N is the number of volunteers and n is the number of
electrodes (n = 16) when EEG is analyzed or n is the number
main components when eye movements are analyzed.

Since the goal is to create a metric that can measure
chess players proficiency through their cognitive signals and
obtaining a numerical value as a result, as well as the tradi-
tional metric, it is proposed here to use the well-known LDA
technique (Linear Discriminant Analysis) to achieve this goal.
Let the between-class scatter matrix Sb be defined as

Sb =

g∑
i=1

Ni(xi − x)T (xi − x), (7)

where xi is the unbiased sample mean, g is the total number
of groups (here, g = 2), Ni is the number of training patterns
of each group i and the grand mean vector x is given by

x =
1

N

g∑
i=1

Nixi =
1

N

g∑
i=1

Ni∑
j=1

xij . (8)

Now, let the within-class scatter matrix Sw be defined as

Sw =

g∑
i=1

Ni∑
j=1

(xj − xi)T (xj − xi). (9)

The main objective of LDA is to find a projection vector L
that maximizes the ratio of the determinant of the within-class
scatter matrix, described as

L = argmax
| PT SbP |
| PT SwP |

. (10)

where P is the eigenvector matrix.
However, in limited sample and high dimensional problems,

Sw is either singular or mathematically unstable and the
standard LDA can not bee used to perform the separating task.
[18]. In order to avoid this problem, we have used a maximum
uncertainty LDA-based (MLDA) that considers the issue of



stabilizing the Sw in Fischer’s criterion formula described in
Equation (10) with its regularization version [18].

To project all volunteers in the most discriminant EEG and
eye-tracking hyperplane, it is subtracted the training data with
zero mean from intermediate data matrix and multiplied by
the result of MLDA, as it follows:

Hs = (xi − x)L, (11)

where Hs is the most discriminant feature of the information
provided by brain signals or eye movements on MLDA space
for each volunteer (subject).

C. Metrics comparison

To assess the degree of monotonicity between both dis-
criminant measures, we calculated the standard Spearman’s
correlation given by

ρ =

∑N
j=1(Rj − R̄)(Qj − Q̄)√∑N

j=1(Rj − R̄)2
∑N

j=1(Qj − Q̄)2
, (12)

where Rj and Qj represent, to a given on-screen question
and chessboard diagram, the rankings of the same set of N
paired participants determined respectively by their Vs and Hs

discriminant measures described in equations (5) and (11).

V. RESULTS

We adopted a leave-one-out validation method to estimate
the classification accuracy of the visual perception discrim-
inant measure. The standard sample group mean of each
class has been calculated from the corresponding discriminant
scores and the minimum Euclidean distance from each class
mean has been used to assign a test sample to either the
novices or experts classes. Table I shows the average values
of visual perception and EEG accuracy (acc) and shows
Spearman correlation (corr) of each category for both cognitive
metrics.

TABLE I
AVERAGE ACCURACY OF EACH CATEGORY AND SPEARMAN

CORRELATION BETWEEN THE TRADITION AND COGNITIVE METRICS.

Cate Std Visual Perception EEG
gory Acc Acc Corr Acc Corr
C1 0.633 0.62-0.98 0.03 0.47-0.90 0.56
C2 0.800 0.67-0.98 -0.46 0.42-0.88 0.46
C3 0.733 0.61-0.99 -0.22 0.57-0.86 0.62
C4 0.600 0.48-0.99 -0.09 0.48-0.89 0.54
C5 0.900 0.56-0.98 0.04 0.43-0.82 0.42

Mean 0.73 0.58-0.98 -0.141 0.47-0.87 0.518

According to Table I, the visual information that volunteers
have used when making their on-screen decisions are highly
discriminant (greater than 98%) in all categories. Brain activity
is also discriminant, separating groups with minimum of
82.4% in all presented categories. The traditional metric used
to quantify proficiency showed the worst accuracy among
the metrics presented here, suggesting that the traditional
performance measure might be imperfect or incomplete. Table

I reveals that Spearman correlation between traditional metric
and visual perception and traditional metric between EEG
do not present statistically significant results and in some
categories correlation is even negative. In order compare those
results, one question from Category 3 and one question from
Category 4 will be analyzed as examples. Figure 4 shows
participants’ performance in category C3.

Fig. 4. (Participants’ performance in Category 3.

Figure 4 shows that both groups performed well for this
category. The expert group had more correct answers in almost
all the questions, except the question 44, in which the novice
group had one more hit. Comparing the time response between
the two groups, it is noted that the novice group with took
more time to analyze the questions presented and answer them.

Based on the information provided in Figure 4, EEG and
eye-tracking hyperplanes are generated for question 39, in
which the most proficient group had two more hits than the
other group. Figure 5 shows the results for this question.

The question showed on Figure 5 asks to the participant if
the black king is in checkmate. In this way, two conditions are
necessary to answer it: the king is threatened by another piece
and it cannot escape from this attack. So, one possibility to
solve this question is to identify if the black king is threatened,



Fig. 5. (Top left) Chessboard diagram of the C3 (one of the easiest
categories) on-screen question ”Is the BLACK KING in CHECK MATE?”.
The correct answer is no; (Top right) Spearman’s correlation of the degree
of monotonicity between the series of paired participants ranked by the
Volke, Visual Perception and EEG classifications shown as one-dimensional
discriminant axes (in the middle); (Middle) From left to right, corresponding
brain activation maps of the participants 8 (expert), 27 (novice) and 12
(expert); (Bottom) From left to right, corresponding spatial attention maps
of the participants 27 (novice), 12 (expert), and 8 (expert).

if not, it is not necessary to check the second condition.
Volunteers 8 and 12, proficients, analyzed where the king
was and squares near to it, consequently they were able to
answer this question correctly. On the other hand, volunteer
27, novice, presented fixation in squares that were not relevant
to solve the question, such as the squares b7, b6, c6, e5, e4,
f4, e2 and c4. These results are consistent with the prediction
that the experts define fewer points of fixation to extract
relevant information to solve the problem, and these fixations
are grouped in the most relevant points of the scene. Eye-
tracking hyperplane and traditional metric have separated all
volunteers linearly, which explains its high correlation (0,82).
EEG hyperplane has not presented a linear separation between
groups, where all volunteers were projected near to each,
except by volunteer 12. Brain maps show that volunteer 27 and
8 presented more brain activation in the area from electrode
O1, related to the primary vision process [19], while volunteer
12 had activation in all areas of his brain, except for T5
electrode area.

Another example is Category 4. Figure 6 shows participants’
performance in this category.

This category is considered the most difficult one among
the categories that were selected to carry out the experiments.
The graphics shown in Figure 6 depict its difficulty, in which
only question 32 had 100% accuracy of the expert group while
novice group had mostly 50% or less volunteers who answered
the questions correctly, in addition to the average response

Fig. 6. (Participants’ performance in Category 4.

time being higher than in all other categories, indicating that
there was greater effort by volunteers to analyze the questions
and resolve them.

Based on the information provided in Figure 6, EEG and
eye-tracking hyperplanes are generated for question 37, in
which the accuracy was the least from all the others questions
in this experiment.

Figure 7 presents a question that volunteers must analyze
how black queen can checkmate the white king. One solution
to solve it is by checking squares in which black queen can
put the white king in check, those possibilities are: Qxe5,
Qxf3, Qc4, Qd4 and Qe4. Heatmap from volunteers 20, 11
and 8 are similar, in which only volunteer 20 has looked
to the middle center top part of the board and all of them
have looked to most important spaces of the board. Eye-
tracking hyperplane separated all volunteers linearly in two
groups, but Volke’s classification considered volunteers 8, 11
and 12 (experts) as novices and volunteer 30 (novice) as
expert. This difference between both hyperplanes explains the
low correlation. EEG hyperplane also presented confusion in
the classification of volunteers, in which volunteers 6 and



Fig. 7. (Top left) Chessboard diagram of the C4 on-screen question ”May the
BLACK QUEEN achieve checkmate in ONE move?”. The correct answer is
no; (Top right) Spearman’s correlation of the degree of monotonicity between
the series of paired participants ranked by the Volke and Visual Perception
classifications shown as one-dimensional discriminant axes (in the middle);
(Bottom) From left to right, corresponding spatial attention maps of the
participants 29 (novice), 8 (expert), and 33 (expert).

8 (experts) were designed among novices volunteers and
volunteer 11 had the best rating on the EEG hyperplane and
the worst rating on Volke. This confusion between both metrics
explains the low correlation between them. Brain maps reveal
that volunteer 20 had his main activation in the area of T3
electrode, associated to Brodmann Area 21, which has the
function to produce words and sentences [20], Volunteer 8 had
activation predominantly in the occipital region and electrode
T6 and volunteer 11 presented his main activation near to the
electrodes P3, P4, T3 e T4, parieto-temporal area, related to the
lolcalization storage and signals that call a person’s attention
[21].

VI. CONCLUSION

This work proposed and implemented a cognitive ranking
measure based on eye movements and brain signals to assess
the performance of chess players. Using several on-screen
questions of distinguished complexities. Our findings revealed
that the visual information and brain activity used by the
participants on a question-by-question basis when making
their decisions are discriminant and consistent regarding their
overall performance when compared with the traditional mea-
sure of high accuracy and short reaction time. More than
that, the traditional metric to quantify proficiency presented
accuracy up to 73,3%, while the proposed cognitive one
reached accuracy up to 87,5% and 98,9% for the electroen-
cephalography and eye movements, respectively. We believe
that the results reveal the potential of cognitive signals to
translate and understand better human proficiency in chess,

with an emphasis on the most discriminating patterns of eye
movements.

As future work, we intend to extend this analysis to other
cognitive signals, such as pupil dilation, which explains the
cognitive effort and, perhaps, predict whether a person can
become or not proficient, not only in chess, but any other
domain that cognitive signals are important to this propose.
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