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Abstract—Noisy Labels are commonly present in data sets
automatically collected from the internet, mislabeled by non-
specialist annotators, or even specialists in a challenging task,
such as in the medical field. Although deep learning models have
shown significant improvements in different domains, an open
issue is their ability to memorize noisy labels during training,
reducing their generalization potential. As deep learning models
depend on correctly labeled data sets and label correctness is
difficult to guarantee, it is crucial to consider the presence of
noisy labels for deep learning training. Several approaches have
been proposed in the literature to improve the training of deep
learning models in the presence of noisy labels. This paper
presents a survey on the main techniques in literature, in which
we classify the algorithm in the following groups: robust losses,
sample weighting, sample selection, meta-learning, and combined
approaches. We also present the commonly used experimental
setup, data sets, and results of the state-of-the-art models.

I. INTRODUCTION

Deep Neural Networks (DNNs) have shown great perfor-
mance to deal with different computer vision tasks, such as
image classification [1], segmentation [2] and object detection
[3], to different areas of applications [4]-[6]. One of the
factors that improve the performance of deep learning models
is the use of large-scale datasets, such as ImageNet [7].
Unfortunately, the labeling process of large-scale datasets is
expensive and time-consuming, and researchers sometimes
resort to cheaper alternatives, such as online queries [8] and
crowdsourcing [9], which can produce datasets with incorrect
or noisy labels. Incorrect labels may also be present in small
datasets, where the labeling task is difficult or have divergent
opinions between annotators, such as medical images [10],
[11].

As stated in [12], noisy labels may occur naturally when
human annotators are involved. Frenay et al. [13] summarize
the main sources of noisy labels into four types: 1) insufficient
information to provide reliable labeling, such as poor quality
images; 2) mistake made by experts; 3) variability in the
labeling by several experts; and 4) data encoding or commu-
nication problems (e.g., accidental click). Figure 1 illustrates
the labeling strategies and sources of noisy labels.

Most of the solutions using DNN assume that either the
labels were annotated by experts or were curated and therefore,
would have been perfectly annotated. However, that is not a
realistic assumption, mainly when dealing with data collected

in an unsupervised way (eg., web queries). As a consequence,
a DNN trained with noisy labels might decrease the accuracy
and require larger training sets [14].

Noisy labels are also related to semi-supervised learning.
As observed by Wang et al. [15], when missing labels are in-
correctly labeled in a semi-supervised approach, the challenge
of semi-supervised learning approximates to noisy labels. The
same can be said about pseudo-labeling techniques, where
samples can be mislabeled. However, the noisy label problem
is even more challenging than previous problems because we
do not have information about which samples have clean
labels.

Zhang et al. [14] have shown that Convolutional Neural
Networks (CNNs) can easily fit any ratio of noisy labels,
leading to poor generalization performance. However, it was
shown that easy patterns, corresponding to easy samples with
clean labels, are learned first, while difficult patterns, which
are closer to noisy labels, are learned later. Based on this
observation, many proposed methods are based on the small-
loss trick, which consists of selecting the samples with small
loss to be used as clean samples [16]-[18].

Most of the works proposed to deal with noisy labels
try to answer the following questions: How to identify the
noisy samples?, or more generally: How to effectively train
on noisy labeled datasets? [19]. To address this problem,
different strategies have been proposed: robust losses [20],
[21], label cleansing [22], [23], weighting [24], meta-learning
[25], ensemble learning [26], and others [9], [27], [28]. This
survey describes the main approaches proposed in the literature
related to training deep neural networks in the presence of
noisy labels.

II. LABEL NOISE: DEFINITION AND TAXONOMY

A. Definition

In this document, we refer to noisy samples as the ones
whose labels are different from their true class. For these
samples, we denote their labels as noisy labels, which means
their labels are wrong. Therefore, when referring to noisy
samples in the scope of this paper, it means that the noise
is present only in the labels and not in the input data.
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Fig. 1. Labeling process and noise sources.

B. Problem statement

Lets consider a classification problem with a training set
D = {(z1,Y1), -+ (Tn,yn)}, where ; € X is the i" image
and y; € Y is a one-hot vector representing the label over ¢
classes. In a noisy label scenario, the labels might be wrong
and we denote y € Y as the observed labels, which may
contain noise (i.e., incorrect labels). We denote the true label
of z; as y;. We denote the distribution of different labels for
sample x by p(c|z), and Zc 1 p(clz) = 1.

A supervised classification learns a function f : X — Y
that maps the input space to the label space. Training the
classifier has as objective to find the optimal parameters 6
that minimize an empirical risk defined by a loss function.
Given a loss function, L, and a classifier, f(.), the empirical
risk is defined as follows:

RL(f) = E@yenlL(f(2),Y)] = Eay, [L(f(2),y2)], (1)

where E denotes the Monte-Carlo expectation using the train-
ing set D.

C. Types of noise

We denote the overall noise rate by n € [0,1] and 7;.
represents the probability of a class 5 be flipped to class c,
as p(y; = clyf = j). The main types of noise studied in
literature are described as follow:

1) Symmetric Noise: Symmetric noise is also called random
noise or uniform noise, and it represents a noise process when
a label has equal probability to flip to another class. Among
the symmetric noise definition, there are two variations: symm-
inc and symm-exc [27]. In symm-inc, the true label is in-
cluded into the label flipping options, which means that in
Nje = 721,V € Y, while in the symm-exc the true label is
not included, which means 7;. = &L,j # c. The symmetric
noise, or random noise, is unlikely to represent a realistic
scenario for noisy labels, but it is the main baseline for noisy
labels experiments. Figure 2 (a) shows the transition matrix
for symmetric noise, with n = 0.4.

2) Asymmetric Noise: : The asymmetric noise, as described
in [29], is closer to a real-world label noise based on flipping
labels between similar classes. For example, using CIFAR10
dataset [30], the asymmetric noise maps TRUCK— AUTO-
MOBILE, BIRD — PLANE, DEER — HORSE, as mapped
by [31]. For MNIST, [29] maps 2 — 7, 3 — 8, 7 — 1 and
5 — 6. For asymmetric noise, ;. is class conditional. Figure
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Fig. 2. Transition matrix of different noisy types: (a) symmetric, and (b)
asymmetric, for n = 0.4 and 5 classes.

2 (b) shows the transition matrix for asymmetric noise, with
n=0.4.

3) Open-set Noise: : The noisy label problem can fall into
two categories: closed-set and open-set. A closed-set noisy
problem is when all the true labels belong to the known
classes. For example, for MNIST, if a subset of samples has
the labels flipped to wrong labels, their original images, and
corresponding true classes belong to MNIST.

The open-set noise is when a sample has a true class that
is not contained in the known classes of the training data.
For example, if an image from CIFAR is contained in MNIST
training with an incorrect label of 7, it will be trained as a class
7, but it would be an open-set sample. This type of noise is
commonly found when obtaining images from automatic web
search engines (e.g., Google Images).

III. LITERATURE REVIEW

Learning in the presence of noisy labels is a problem
studied during the last decades [32], and several strategies
have been proposed to make models more robust to noise
[13]. In this work, we are grouping the main approaches in
the area in the following groups: noise transition matrix, robust
losses, sample weighting, sample selection, meta-learning, and
combined approaches. Each category is described below:

A. Noise Transition Matrix

Most of the first approaches proposed to deal with noisy
labels were based on estimating a noise transition matrix
to learn how labels switch between classes, as illustrated in
Figure 2. The cross-entropy loss with transition matrix is
defined as follows:

N
LO) =+ > —log p(y = ynlzn.0), 2)
n=1
where
1 N c
=N > —log(d>ply = yaly” = ip(y" = ilzs,0)).
n=1 [
3

Several methods have been proposed to estimate the transition
matrix. Patrini et al. [29] estimate this matrix using a pre-
trained model. Hendricks et al. [33] use a clean validation



set to calculate the transition matrix, while Sukhbaatar et al.
[34] propose the use of the difference between the transition
matrices calculated from clean and noisy data.

Reed et al. [35] uses a transition matrix combined with a
regularized loss that uses a combination of the noisy labels and
labels predicted by the model. Goldberger et al. [36] use the
expectation-maximization (EM) algorithm to find the optimal
parameters of both network and the noise. The use of transition
matrices has been further explored in different ways [37]-[39].

B. Robust Losses

Loss correction approaches usually add a regularization or
modify the network probabilities to penalize less the low
confident predictions, which may be related to noisy samples.
One of the advantages of these approaches is that they can
be used with any model. Most of the methods treat the noisy
and clean samples the same way, but penalise less the low
confident prediction samples, compared to the standard cross-
entropy [3].

Manwani et al. [40] show that 0-1 losses are more noise-
tolerant than commonly used convex losses. [41] compare
categorical cross-entropy (CCE) with mean absolute value
of error (MAE) losses, and show that MAE is more noise
tolerant because MAE treats all data points equally. However,
training with MAE usually leads to underfit, and it may not
be beneficial using it depending on the noise type. Zhang
and Sabuncu [31] propose a generalized cross-entropy loss
by combining the benefits of mean absolute error and cross-
entropy losses. Wang et al. [20] propose an improved version
of MAE (IMAE), which uses hyperparameters to adjust the
weighting variance of MAE. Wang et al. [21] propose the
symmetric cross-entropy, based on the fact that CCE is not
symmetric. By adding symmetry to the loss, they show that it
helps to deal with noisy labels. Ziyin et al. [42] propose the use
of a loss function that encourages the model to abstain from
learning samples with noisy labels. This idea is similar to re-
weighting or sample selection, where the noisy samples can
be observed as having zero weight or removed. Similarly, [43]
also proposes a loss function that permits abstention during
training. Although some approaches benefit from removing
noisy samples, using them through relabelling or giving a
lower weight has shown to improver results.

Ma et al. [44] propose a robust loss function called Active
Passive Loss (APL) that combines two robust loss functions
that mutually boost each other. Ma et al. identify that existing
robust loss functions can deal with noisy labels, but suffer
from the problem of underfitting. Their proposal addresses this
problem by combining losses that cause overfit, such as CCE,
with one that causes underfit, as MAE.

Liu et al. [45] propose a peer loss function inspired in a peer
prediction mechanism. They show that peer loss functions on
the noisy data lead to the optimal or a near-optimal classifier
as if performing training over the clean training data.

C. Sample Weighting

Wang et al. [46] propose a weighting scheme to reduce
the contribution of the noisy samples. Similarly, [47] uses a

method based on Curriculum Learning, which defines a weight
to each sample based on an unsupervised estimation of data
complexity.

Xue et al. [48] use a probabilistic Local Outlier Factor
algorithm (pLOF), which is used as an outlier detector, to
estimate a probability value of a sample be an outlier (i.e.,
noisy sample). [46] also uses the pLOF, but combined with
a Siamese Network training. Using siamese networks encour-
ages the model to learn similar features between clean samples
of the same class and different ones among clean and noisy
samples.

Harutyunyan et al. [49] show that the memorization of label
noise can be reduced by reducing the mutual information
between weights. In their proposal, they update the weights
based on the gradients of final layers, without accessing the
labels.

Lee et al. propose the CleanNet [50], which uses a pre-
defined subset of reference images. The visual features of the
reference subset are extracted using autoencoder and each new
sample for training is compared with the features from the
reference set. Based on the distance, a weight is set for each
sample and the weighted cross-entropy is calculated.

D. Sample Selection

Jiang et al. [16] proposes MentorNet, which uses a cur-
riculum scheme by learning first the samples, which are
probably correct. MentorNet learns a data-driven curriculum
dynamically with a second network, called StudentNet.

Co-teaching is proposed by Han et al. [51] and trains two
deep models simultaneously, and each network selects the
batch of data for each other, based on the samples with a
small loss. Later, they propose Co-teaching+ [17], that uses the
samples with a small loss, but that disagree on the predictions,
to select the data to each other. Wei et al. [52] uses the
same idea of CoTeaching, but it uses the joint agreements
instead of disagreement and calculates a joint loss with Co-
Regularization.

Nguyen et al. propose an algorithm called SELF [53]. SELF
uses a filtering mechanism based on a model ensemble learn-
ing the remove the noisy samples from the supervised training.
However, they still use the removed samples to leverage the
learning using an unsupervised loss. The ensemble mechanism
is based on the model’s predictions in different epochs, using
an exponential moving average of model snapshots. Different
from most of the state of the art methods, SELF requires a
small clean validation set to perform well.

E. Meta Learning

The methods described here use as main approach Meta-
Learning models to deal with noisy labels. Although in the
end they use meta-learning to reweight or filter samples, we
grouped them here because they use a different approach to
address the problem.

Ren et al. [24] use a Meta-Learning paradigm to reweight
the training samples based on their gradients directions. They
perform a meta gradient descent step to minimize the loss on



a clean validation set. In [54] it is also used a meta-learning
approach with a clean validation set, but they use a multi-layer
perceptron to learn a loss-weighting function.

Li et al. [19] propose optimize a meta-objective before
conventional training. By generating synthetic noisy labels,
they aim to optimize a model that does not overfit to a wide
spectrum of artificially generated label noise. By training the
model in several generated synthetic noisy, they aim to have a
noise-tolerant model able to consistently learn the underlying
knowledge from data despite different label noise.

F. Combined Approaches

Mixup [55] is a technique proposed for data augmentation,
that uses a linear combination between samples and labels.
Their paper shows that their method is noise-tolerant, and
recent literature methods started to incorporate Mixup as an
important part of their algorithms. Zhang et al. [S6] combine
the reweighting approach using meta-learning, proposed by
[24], with pseudo-label estimation and Mixup. Although they
achieve state of the art for high noise regimes, it requires a
small clean validation set.

Kim et al. [27] propose the use of the learning method called
Negative Learning (NL), where it is used as a complementary
label (i.e., a label that is different from the annotation). By
using complementary labels, the chances of selecting a true
label as a complementary are low, and NL decreases the risk
of providing incorrect information. Therefore, training with
NL is more robust to noise. However, this approach requires
a longer training time, and the chance of providing incorrect
information increases as the number of classes in the prob-
lem increases. In their approach, they propose three stages:
Negative Learning, Positive Learning (standard training), and
fine-tuning with relabeled samples.

Han et al. [57] propose to estimate class prototypes using an
iterative training divided into two stages. The first stage train
the network with the original noisy labels and the modified
labels from the second stage. The second stage uses the
trained network from the first stage and refines the prototypes,
relabelling samples. With the automatic identification of pro-
totypes, it does not need the use of a clean auxiliary set.

The DivideMix approach [58] combines several methods
used in literature to deal with the noisy label problem. It first
separates the samples in clean and noise based on Arazo’s
approach [18], using Mixture of Gaussians. At the same time,
it uses the co-training strategy, where it trains two networks at
the same time to avoid error accumulation. After it splits the
data in clean and noisy, it trains the model in a semi-supervised
approach, using MixMatch [59]. The whole process is repeated
at each epoch.

The main approaches described in this section are summa-
rized in Table I that shows the combined strategies used by
the methods of the state-of-the-art. Table II shows the main
components of the combined techniques in the state-of-the-art
and the difference between them.

IV. EXPERIMENTAL SETUP

Most of the papers in the literature evaluate their methods by
generating synthetic noise on commonly used data sets and by
using data set with images collected from the internet, which
may contain closed-set and open-set noise. The most used
data sets used for robust model evaluations in literature are
CIFAR-10/CIFAR-100 [30], Clothing1M [60], Webvision [61]
and Food101-N [50].

CIFAR-10 has 10 classes with 5000 32x32 pixel training
images per class (forming a total of 50000 training images),
and a testing set with 10000 32x32 pixel images with 1000
images per class. CIFAR-100 has 50000 training images, but
with 100 classes with 5000 3232 pixel images per class. This
data set was curated and it is assumed not to have any noisy
label. Therefore, it is a common approach to add synthetic
noise and evaluate the robustness of the model in a noisy data
set compared to the original clean version.

Clothing1M consists of 1 million training images acquired
from online shopping websites, with labels generated by
surrounding texts provided by sellers. The images from the
data set may vary in size, but a common approach is to resize
the images to 256x256 for training. This data set contains
real-world error on the labels and it is composed of 14 classes.

The Webvision contains 2.4 million images collected from
the internet, with the same classes from ILSVRCI12, from
ImageNet [7]. The images from the data set are not all with
the same size, being a common approach to resize the images
to 256256 for training. Although ImageNet has 1000 classes,
most of the papers use only the 50 first classes for training,
because they contain most part of the the noise. The evaluation
from the models trained using Webvision is usually done using
both Webvision and ILSVRCI12 validation sets.

Food101-N [50] is an image data set containing about
310009 training images of food recipes classified in 101
classes and 25000 images for the testing set. As the image
size vary may vary, a common approach to resize the images
to 256256 for training. Its also a real-world data set, with an
estimated noise rate of 20%, and it is based on the Food101
data set [62], but it has more images and it is more noisy.

Table IV shows the main information about the most used
data sets for evaluation of solutions in noisy label environ-
ments.

V. STATE-OF-THE-ART RESULTS

Most of the state-of-the-art methods use the fact that CNN
tends to learn easy patterns first and then fit the hardest
ones [63]. Arazo et al. [18] showed in his paper how the
values of loss are different among clean and noisy samples.
Figure 3 shows the behavior of loss function for clean and
noisy, reported in [18]. The strategy of filtering the samples
based on loss is called small trick and has been exploited to
identify clean and noisy samples. However, the main problem
is that hard samples with correct labels can behave like noisy
samples, and at the same time, some noisy samples can behave
like a clean sample. Therefore, this approach can not be used to
filter all samples, but it helps identify most of the noise. Arazo



TABLE I

MAIN APPROACHES IN THE LITERATURE TO DEAL WITH NOISY LABELS.

Approaches

Methods

Advantages

Disadvantages

Transition Matrix
Robust Losses
Sample Weighting

Sample Selection

(291, [331-(39]

[20], [21], [31], [40]-[45]

[46]-[50]

[16], [17], [51]-[53]

Easy to implement.
It can be easily added to any training model.
Reduces the influence of noisy samples, but

still uses information from it.
Filter clean samples.

Difficult and complex to estimate the tran-
sition matrix in practice.

Requires to be combined with other strate-
gies to be competitive with state-of-the-art.
Hard to define a correct weighting without
the need of a clean auxiliary set.

Not competitive with state-of-the-art be-

Meta-Learning [19], [24], [54]

different tasks.

Has big potential of generalization among

cause do not use the noisy samples in an
unsupervised way.
Usually requires a clean validation set.

Combined [18], [24], [27], [55], [56], [58]  Good performance, being the state-of-the- Use a set of combined methods that adds
art. complexity to the solution.
TABLE 11
STATE-OF-THE-ART APPROACHES AND COMBINED TECHNIQUES
Method Mixup (Data aug.)  Weighting filtering  robust loss  regularization =~ Emsemble  Pseudo-labeling  val. set
NLNL [27] v v v
SELF [53] v v v v
M-correction [18] v v
Zhang [56] v v v v
Coteaching+ [17] v v
DivideMix [58] v v v v
TABLE IIT
MAIN DATA SETS USED IN LITERATURE FOR NOISY LABELS. 0 clean [ noisy [ clean [ noisy
6000
12500
Data set # of training  # of testing  # of class  estimated noise o o
3 4000 % 10000
CIFAR-10 [30] 50000 10000 10 0% 5 5 7500
CIFAR-100 [30] 50000 10000 100 0% 7] g
ClothingIM [60] M 10000 14 38.46% £ 2000 £ 5000
Webvision [61] M 50000 1000 20% 2 2 0
Food101-N [50] 310000 55000 101 19.66%
%00 02 04 06 08 10 00 02 04 06 08 10
normalised loss normalised loss
(a) Epoch 1 (b) Epoch 300

et al. proposes the use of a Gaussian Mixture Model (GMM) to
separate the clean and noise during the training, based on the
loss value of each sample. For the samples predicted as clean,
it uses standard training, with regular cross-entropy, while the
the samples predict as noisy are used to regularize the model
in an unsupervised way.

3 —Clean
2 2 = Noisy
S

1

0
0 50 100 150 200 250 300
Epoch

Fig. 3. Cross-Entropy loss of clean and noisy samples, for 80% noisy rate,
for CIFAR-10. Figure from Arazo’s paper [18].

DivideMix achieves a better split of clean and noisy samples
by using the small trick combined with Mixup algorithm.

Fig. 4. Loss histogram for clean and noisy samples, using DivideMix, for
80% noise rate, symmetric noise, for CIFAR-10.

Figure 4 shows the results of the split for 80% symmetric
noise rate for CIFAR-10.

DivideMix is currently the state-of-the-art for noisy labels,
considering symmetric and asymmetric closed-set noise, with-
out requiring a clean validation set. As described in section
III, DivideMix is a combination of methods, which combines
Arazo’s approach, using GMM to separate clean and noisy
samples, Mixup data augmentation and co-training strategy.
It also uses standard data augmentation, such as rotation and
flipping, as most of the methods described. The main idea
of DivideMix is to separate the clean and noisy samples,
using GMM, and then treat the problem as a semi-supervised
problem, using MixMatch algorithm, that is a variation of
the Mixup method proposed for semi-supervised problem.
Furthermore, the co-training strategy helps with the noisy
training.

As different methods in literature use different model archi-



tectures and sometimes different data sets, it is hard to make a
fair comparison between most of them. In Table IV we show
the state-of-the-art for CIFAR-10, CIFAR-100, Webvision and
ClothingIM, using PreActResNet18 (PRN18). We did not
include the methods which use an auxiliar clean validation
set, such as in [53] and [56], to make a fair comparison,
and only the methods that use PRN18 in the original paper.
Table VI shows the SOTA results for ClothinglM. Table V
shows the SOTA results for Webvision and ImageNet. Table
VII shows the SOTA results for Food-101N. All the results
are the ones reported in the original papers. The original code
for reproduction of the results are also available and reported
in original papers.

TABLE IV
SOTA RESULTS FOR CIFAR-10 AND CIFAR-100, USING PRN18.
COMPARISON RESULTS ADAPTED FROM [58]

Data set CIFAR-10 CIFAR-100

asym.| | sym.

|
Noise type | sym.
|

Method/ noise ratio 20% 50% 80% 90%‘ 40% H 20% 50% 80% 90%

Cross-Entropy [58] 86.8

Coteaching+ [17] 89.5 857 67.4 479| - 65.6 51.8 279 13.7
Mixup [55] 95.6 87.1 71.6 52.2| - 67.8 57.3 30.8 14.6
PENCIL [64] 92.4 89.1 775 589 885 69.4 575 31.1 153

Meta-Learning [19] 929 89.3 774 58.7| 89.2
M-correction [18] 94.0 92.0 86.8 69.1| 87.4

79.4 629 42.7| 85.0 62.0 46.7 19.9 10.1
DivideMix [58] 96.1 94.6 93.2 76.0| 93.4

TABLE V
SOTA RESULTS FOR WEBVISION AND IMAGENET ILSVRC12. RESULTS
ARE ADAPTED FROM [58].

Method Webvision  ILSVRC12

F-correction [29]  61.12 57.36

MentorNet [16] 63.00 57.80

Co-teaching [51] 63.58 61.48

Iterative-CV [65]  65.24 61.60

DivideMix [58] 77.32 75.20
TABLE VI

SOTA RESULTS FOR CLOTHINGIM. RESULTS ARE ADAPTED FROM [58].

Method Test Accuracy
Cross-Entropy [58]  69.21
M-correction [18] 71.00
PENCIL [64] 73.49
DeepSelf [57] 74.45
CleanNet [50] 74.69
DivideMix [58] 74.76
TABLE VII

SOTA RESULTS FOR FOOD-101N.

Method Food101-N
Cross-Entropy [50]  81.44
CleanNet [50] 83.95
DeepSelf [57] 85.11

VI. CONCLUSION

Several studies have been proposed in the literature to
address the noise label problem. Different strategies have been
investigated to make the training of deep learning models
more robust to noise labels. Combined strategies based on
data augmentation, robust loss, sample filtering, and semi-
supervised approaches are currently state-of-the-art. Although
we have seen an increasing interest in noisy label problems,
there is still much room for improvement, mainly related to
asymmetric noise and open-set noise.

Addressing the noisy label problem also impacts other areas,
such as pseudo-labeling, semi-supervised and unsupervised
training, where recent proposals use predicted labels to im-
prove the training, and these labels can potentially be incorrect.
At the same time, many recent strategies from these fields are
also applied to noisy labels.

Recent advances have shown that the loss values of samples,
mainly at the beginning of training, can help separate the clean
and noisy samples. Moreover, data augmentation strategies,
such as Mixup, can prevent the model from easily memorizing
the noisy samples. However, it is an open question of how
to differentiate hard clean samples from noisy samples. Also,
semantic noise and open-set noise must be more investigated
in future works.
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