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Abstract—Industry pipeline fault, like blockage can create
major problems for engineers and financial loss for the company.
The blockage detection is necessary for smooth functioning of
an industry and safety of the environment. This work presents
a model for non-invasive inspection of pipes. It proposes the
use of a neural network to identify the obstruction stage in
fertilizer industry, using external thermal images obtained from
the pipelines. A dataset capable of mapping the external thermal
behavior in profile of the internal deposit is developed. The
Multilayer Perceptron neural network was able to learn the
thermal pixel mapping in a deposit profile, obtaining satisfactory
results.

I. INTRODUCTION

This paper involve the use of the visual computation in
thermal images and 3D laser for inspection non-invasive of
pipe in fertilizer industry. The paper proposes a model using
artificial neural networks to determine the dust deposit profile
in clogged pipes.

The growing world population has been responsible for the
increase in the demand for food. The International Fertilizer
Industry Association (IFA) mentions that soil fertility is a
major point in this context as it is necessary to replenish
nutrients removed from the soil through plantations. The three
main nutrients are nitrogen (N), phosphorus (P) and potassium
(K), they are key to increasing food production [1].

The fertilizer industry demands not only more better quality,
but also productivity and customized solutions. To approach
these needs, technological advances in software and hardware
bring greater capabilities to operations, smart factories or In-
dustry 4.0 are focused on integrating technologies to promote
increased productivity and operational efficiency [2].

The production of fertilizers takes place in basically three
stages: production of raw and basic materials, basic fertilizers
and mixtures, this last stage is responsible for mixing the basic
fertilizers nitrogen (N), phosphorus (P) and potassium (K)
according to the particular requirements of the soil, composing
the bulk blend fertilizers [3]. This mixing happens inside the
ducts in the factory and the chemical substances are in the
form of dust/powder.

The dust in the presence of heat and moisture chemically
reacts forming a sediment that can obstruct the duct and
compromise the whole function of the industry machinery.
In fertilizer production, pipeline systems are very heavily
loaded by aggressive transport. The build-up of deposits and
impurities is favourable in these conditions.

Manual periodic cleaning is necessary to unblock the duct,
which causes the whole production to stop. The total stop of
the factory leads to a significant loss in the company’s profits.
The cleasing maintenance of pipelines is of great importance
to keep the flow of the production process.

The idea is to use thermal images and 3D laser to model
the accumulation using Neural Network (NN) Algorithms. Due
to the inhospitable feature of the environment we propose a
scaled dataset where a scaled pipe mockup is used to simulate
different obstruction patterns. A thermal camera is used to
image the pattern and the 3D scanner to obtain the ground
truth associated with the accurate dust deposit (label). Thus
the NN can learn to map the thermal image (input) in a
precise depot model (label). A scaled model was developed
to map the external thermal behavior and the deposit profile
in a controlled environment and determine parameters for the
real case application in a large fertilizer company.

Thermography is a non-destructive and non-invasive tech-
nique that enables temperature measurement and thermal
imaging of a component, equipment or process from infrared
radiation. This monitoring is able to provide sufficient data for
trend analysis without interrupting the production cycle.

Recently, visual computing technology has been widely
used for non-invasive inspection applications in industry [4],
[5], [6]. Technologies such as digital cameras, thermal cam-
eras, augmented reality and 3D laser scanning made possible
the acquisition, analysis and synthesis of visual data through
the use of computer resources, [6]. In this work two of these
technologies are used, thermal camera and 3D laser scanner.

In this paper a non-invasive thermal-based inspection tech-
nique is used to model the pattern of the closure of dust
pipelines due to fertilizer accumulation inside.

The paper is organized as follows. Section II is a brief
about visual computing and artificial neural networks. Section
IIT introduces the methodology where NN algorithms are
development to map thermal images to depot profile. Section
IV presents the proposed dataset. Section V a discussion of
obtained results is presented. The conclusions are introduced
in Section VI

II. VISUAL COMPUTING AND ARTIFICIAL
NEURAL NETWORKS

There is a worldwide movement in some of the most ad-
vanced economies seeking to improve industrial manufacturing



productivity and efficiency by incorporating the latest advances
in Information and Communication Technology (ICT) com-
bined with artificial intelligence mechanisms [5].

For the future of production, academics and professionals
anticipate significant efficiencies mainly through the con-
sequent digital and intelligent integration of manufacturing
processes [7].

In the next few years, computer vision should be increas-
ingly present on the shop floor, being an important investment
to increase the productivity and competitiveness of industries.
Accurate computer analysis can save industry time and im-
prove quality. Because of this, visual computing is considered
one of the keys to achieve industry 4.0 [6], this technology
involves capturing, analyzing, and synthesizing visual data
through computational technology [5], including techniques
for computer graphics, such as real-world object modeling and
simulation, human-machine interaction, image processing, and
more [6].

A. Thermography

Thermography is a technique for obtaining images in which
the infrared spectrum is adopted to measure the heat emitted
by an object [8]. This technology uses pseudo-color image
processing to describe the surface temperature distribution of
an object of interest. Measurement systems are calibrated to
provide accurate temperature information for each detector
pixel. Colors are obtained according to the calibration adopted
to represent temperatures in the infrared spectrum [9]. Thermal
images produce color or gray images of infrared rays invisible
to humans or heat radiation. This allows the measurement of
temperatures without the need for any contact with the target
object, i.e. a noninvasive technique [10].

The most recent contributions related to the application
of Infrared thermography (IRT) in the industrial context are
classified into three main groups, namely, electrical, me-
chanical and other applications; however the application of
thermography is not limited and its application has been
appearing in other fields [11]. One of the advantages is that
the thermography is not destructive, it is not necessary to stop
the machine and disassemble it to see the condition of any
component or process.

B. The 3D Laser Scanner.

A 3D laser scanner is a device capable of analyzing objects
or environments in the real world and collect data about their
shape and even their color. With the data collected it is possible
to build three-dimensional digital models [12], [13]

A laser stripe is projected onto a surface and the reflected
beam is detected by CCD (Charged Coupled Device) cameras.
Through image processing and triangulation method, three-
dimensional coordinates are acquired. The laser probe is
mounted on a three-axis transport mechanism and moves along
the scan path that consists of a series of predetermined line
segments [12].

The Point Cloud in three dimensions is the most basic data
of Laser Scanning 3D, from which we can perform modeling

(2D or 3D) or the extraction of information to meet a certain
purpose [13].

C. Neural Network

The neural network is inspired by natural biological sys-
tems, and if it is well-trained, it has a very high predic-
tive ability. An artificial neural network is a computational
method that, with the help of a learning process and the
use of processors called neurons, tries to present a mapping
between the input and the positive environment (output data)
by recognizing the intrinsic relationship between the data.

A Multilayer Perceptron (MLP) is an example of a neural
network. It is a model of interconnected nodes, or neurons,
that is able to represent the map between input data and output
data [14]. Each connection between the neurons have weights
and activation functions. The architecture of a MLP consist
of different layers, one input layer, hidden layers and output
layers.

A training data is required for the Multilayer Perceptron
to learn. In the training step the MLP network is repeatedly
presented with the training data and the weights in the network
are adjusted until the desired mapping is found [14]. The
goal is to find the combination of weights which result in
the smallest error value. The most common learning is the
backpropagation algorithm.

The backpropagation [15] algorithm is widely used to adjust
synaptic weights to minimize the error between the desired
and actual outputs. The backpropagation algorithm seeks for
the minimum global error by propagating the error signal
back through the network and then adjusting the weights to
minimize the error [14], [16].

III. METHODOLOGY

This work proposes a non-invasive method based on com-
puter vision to infer the degree of pipe obstruction in fertilizer
industries. An overview of the method can be seen in Figure
1.
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Fig. 1: Overview of the proposed method to infer the degree
of obstruction in pipes.

The idea is to use a thermal camera that acquires images
associated with the temperature emitted by the external surface
of the pipe. This image will be processed by a neural network
that will provide the normal deposit height with the curvature
of the pipe section. The proposal uses neural networks to map
thermal images in deposit profiles. The idea is to use a neural
network to map the relationship between the pixels of the
thermal image obtained from the outside of the tube and the
sediment profile inside.
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Fig. 2: Proposed neural network for mapping the thermal
behavior in the deposit profile.

The hypothesis adopted is that the fertilizer is a less
thermochemical material than the steel of the pipe and the
air inside it. Which makes it possible to capture in the image
the accumulation of sediment from the thermal behavior of
the outside of the duct.

It is possible to observe in the Figure 4b that the temperature
of the tube decreased with the addition of sedimented material,
which leads to the perception that the fertilizer acts as a
thermal barrier. This indicates that when the temperature in
the duct decreases, an undesirable accumulation of sediment
is occurring. And this can lead to an adverse situation to the
point of affecting the entire operation of the production of
fertilizers.

Due to the complexity of an analytical model that describes
the nonlinearities of this phenomenon, Al techniques are used
to learn complex mapping relations from data [16]. Thus, to
map the thermal image at the obstruction level it is decided to
use a Multilayer Perceptron (MLP) neural network due to the
small amout of data available. A MLP requires smaller number
of parameters for a good generalization when compared to a
CNN (Convolutional Neural Network) that are more complex
and requires a bigger number of parameters and data samples
for a good performance [17], [18].

The MLP network will analyze the image in small windows
of nxn pixels (input) providing the deposit profile associated
with the center (a, b) of the window (output). Figure 2 presents
the architecture of the neural network used. The network has
an input layer with n? neurons (n xn mask), a hidden layer and
an output layer with a scalar neuron (height 2z of the deposit
profile).

That said, it becomes necessary to build a dataset to train
the network. Obtaining such an accurate dataset, in situ, is
not a simple task. This difficulty is due to the fact that the
interior of the duct presents a highly inhospitable environment
for measuring equipment. The large flow of dust and the high
temperatures make it impossible to obtain an adequate ground
truth of the deposit. To contour this difficult, it is proposed to

adopt a dataset obtained in a controlled experiment. A scale
model of the tube is then used. Possible sediment deposition
models capable of defining the ground truth are manually
elaborated and their shapes and dimensions are obtained with a
3D laser scanner. These models are installed inside the model
duct. Hot air flows are forced inside the model tube and the
temperatures that occur outside are captured by a thermo-
graphic camera. With the data obtained in these experiments,
the desired ground truth is then built. This procedure is further
detailed in the section that follows.

IV. THE SCALED DATASET

Figure 3 shows an overview of the experiment to obtain our
scaled dataset. Each sample of the dataset is composed by a
thermal image (input) and a 3D profile of deposit (label).
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Fig. 3: Proposed method solution.

A. Dataset Input: The Thermal Image

The thermal image is obtained by pointing the thermo-
graphic camera towards the scale duct, which has a thermal
blower and an exhaust fan installed in it. The necessary
processing is then performed in the region of interest (ROI)
of the thermal image obtained from the outside of the pipeline
under study. In this way, the thermal behavior of the exterior of
the model duct is obtained under typical operating conditions
of the real duct.

Figure 4a shows an example of an infrared thermography
image of the duct scale model when it was empty. While
Figure 4b is the same duct but with fertilizer sediment inside
the pipe.

B. Dataset Label: the deposit profile

Sedimentation of the fertilizer occurs at the bottom of
the tube, in horizontal tubes. The deposit profile z(x,y) is
obtained with a handheld 3D laser scanner. A view of the
scanned profile is shown in Figure 5. With the scanned object it
is possible to obtain the dimensions of the stone and associate
each position of the thermal image in a deposit profile.



(b) Obstructed pipe,

(a) Empty pipe.

Fig. 4: Examples of thermal images obtained in the experi-
ment.

Fig. 5: The fertilizer sedimentation.

The result of the accumulation scan is a file exported from
the 3D scanner’s own software. The output file is a data
structure containing a list of vertices and a list of faces of
the object. Each vertex is a point in three-dimensional space
and each face is a triangle formed by three points, that is,
the scanned surface is formed by polygons. The vertices are
(x,y, z) coordinates and the faces are lists of three vertices
each.

Transverse slices are made along the length of the object,
the slices are intersections of planes with the 3D object. Each
intersection results in sets of points that form a polygon and
each polygon corresponds to a 2D slice of the deposit model.
Figure 6a shows an example of a slice made on the scanned
object.

The heights of the slices are measured by the intersection
of vertical lines along the width of the object with the polygon
that forms the slice, Figure 6b. Each intersection results in a
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(a) Example of a 2D slice obtained.. (b) Intersection of vertical

Fig. 6: Example of a slice made in the object to obtain the
measures, the red dots correspond to vertices which belong
to the object and are being intercepted by the plane that
corresponds to the slice.

hir of points. The distance between these points corresponds
b the height of the accumulation at a given point on the
ice. The calculated heights are stored in a vector associated
ith each slice. The final image of the deposit model is then
enerated where the point x, y represents the thickness of the
rtilizer.

@ Association of Thermal Images with Deposit Profile

To generate the dataset, a fragment of the original thermal
image is considered in order to obtain the intensity of the
thermal pixels in the window. Two different approaches of
obtaining the obstruction level are used. In the first the
intensity of the thermal pixels in the window is used as
input to the NN. And in the second, besides the intensity
of the thermal pixel, the height in which the patch is being
slid in the thermal image is also used to feed to the input
of the MLP. This second alternative explicitly incorporates
into the network structure the thickness distinction resulting
from measuring a specific region of the pipe. Thus, it is
expected with this supplementary information to decrease the
complexity of mapping the network.

For the thickness image of the fertilizer sediment the same
window is used but considering only the central pixel of the
patch. Different window sizes can be used. In this work, 3x3
and 5x5 windows are used to compose the dataset. The data
are normalised and then applied in the neural network.

D. A model to map thermal images to deposit profile

The ultimate goal is to develop a deposit model using non-
invasive thermal images. For this, it is proposed to use neural
networks that learn the association between the pixels of the
thermal image I7(a,b) and the deposit profile z(a,b). It is
considered to run a patch over the thermal image in order to
acquire data to train the neural network, as shown in Figure
2.

The neural network used is a Multilayer Perceptron. The
network architecture has an input layer with n? neurons, a
hidden layer with 2n? neurons and 1 neuron in the output
layer. The ReLu activation function is used in all layers. The
optimization algorithm Adam [19] is used to adjust the weights
of the network in order to minimize the error function.

V. RESULTS

To validate the proposed methodology a scaled dataset was
developed. The neural network is trained with this dataset.

A. The Setup and the Dataset

The approach considers that a NN can learn a scaled dataset
to map thermal image to deposit profile. A scaled mockup of
a steel pipe was developed. It contains 600 mm of length,
100 mm of external diameter and a 0,43 mm wall thickness, a
wooden frame for support the pipe at each end, an adjustable
heat gun at one side and an air extractor at the other. The idea
behind it is that several different scenarios could be set up, by
adjusting the temperature, flow rate and distribution of dust
piles inside the duct.



The Infrared Thermography is made by a Thermoteknix
307k thermal camera. It captures monochromatic heat signa-
tures at 640x480 pixel resolution. It also has Non Uniformity
Compensation (NUC), a feature that enables self-calibration
on account of small variations between neighboring pixels,
which is normal for devices of this type [20]. The component
that captures the image inside the camera is not a Charged
Coupled Device (CCD), but instead a Microbolometer array
that is made up of amorphous silicon and vanadium oxide
elements. Those are affected by electromagnetic radiation of
wavelengths between 7.5 and 14 micrometers, changing their
internal resistance and thus composing the thermal image [20].

To start the imaging procedure, the distance between the
camera lens and the model is set at 800 mm, the heater at
100°C, and fan input voltage at 12V. The camera scale is
fixed at 25°C' minimum and 55°C' maximum and its color
palette set to grayscale. If necessary, the temperature scale
can be readjusted, being careful to compensate for it on pre
processing. Then, a period of 60 minutes is required for
stabilization of the thermal process. This can be checked
with the capture of a thermal image every 20 minutes. If
the difference between them is only the noise, the model
is considered stable. It is important to trigger the camera
self-calibration routine before capturing any image, to ensure
consistency due to the non-uniformity factor.

The fertilizer grains of the NPK type (Nitrogen, Phosphorus
and Potassium) are added inside the scaled duct so they can
agglutinate with heat and form the deposit. The heat blower
is then turned on for approximately 60 minutes to capture
the thermal image of the duct with the fertilizer sediment.
The experiment stabilization is verified and the new image is
captured and annotated. The data is analyzed when the entire
process is completed.

The next step is to scan the fertilizer rock that has settled
with the heat present in duct scale model. The scanning
is made by pointing the SenseTM 3D laser scanner to the
sedimentation and rotating it in a 360° spin around the object,
scanning all faces of the fertilizer sediment.

Processing of the images and the scanned object is realized
in a numerical computing environment, such as MATLAB
[21].

B. The Training of NN

Each sample corresponds to an nzn window containing the
intensity of the pixels (3x3 and 5x5 size windows were used).
The window slides through the thermal image. The sample
label (Zjcignt) is the central pixel of the same nxn size mask
obtained from the laser scanner measure of the same area.
When considering a 3x3 window 8799 samples were obtained
to train the NN. And when considering a 5x5 window 8365
samples were used to train the neural network.

The data was divided in an 80/20 configuration, for the
training and test sets respectively. The predicted and measured
results are obtained after 1000 epochs, as in Figures 7a, 7b, 8a
and 8b. The implementation of the NN was made in Spyder
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Fig. 7: Mapping results obtained when sliding a 3x3 window.

(a) Results obtained using the intensity of(b) Results obtained using the intensity of
the thermal pixel as input for the NN. the pixel and the height at which the.

Fig. 8: Mapping results obtained when sliding a 5x5 window.

scientific development environment, using Python and libraries
such as Keras, Pandas and Scikit-learn.

In the graphs of Figures 7b and 8b, it is possible to observe
a smaller dispersion of the data, in relation to the graphs of
Figures 7a and 8a. The closer the data points to the regression
line, the more suitable the model is.

The root-mean-square error (RMSE) Eq. 1, and the mean-
absolute-error (MAE) Eq. 2 were chosen to evaluate the perfor-
mance of the model. The RMSE calculates the quadratic mean
of the differences between measured values and predicted
values. The mean absolute error represents the mean deviation
between measured and predicted values. The coefficient of
determination, R?, is the proportion of the variance in the
dependent variable that is explained by the linear model. The
R? ranges from O to 1, the closer the value of R? is to 1
the better the model fits the data. For RMSE and MAE lower
values indicates better fit to the dataset.

The results obtained can be observed in Tables I and II.

n

1
RMSE = | — Z(Measuredi — Predicted;)?. (1)
i
1 n
MAE = - Z |Measured; — Predicted;| . 2)
i=1

TABLE I: Results obtained using a 3x3 window.

Input RMSE | MAE | R?
Thermal pixel intensity + height 0.09 0.06 0.6
Thermal pixel intensity 0.14 0.09 0.3

The residual is the difference between the true measured
value and the one predicted by the neural network. Residuals



TABLE II: Results obtained using a 5x5 window.

Input RMSE | MAE | R?
Thermal pixel intensity + height 0.04 0.9
Thermal pixel intensity 0.10 0.4

(a) Thermal pixel intensity as input.

(b) Thermal pixel and height as input.

Fig. 9: Residual color map obtained when considering a 3x3
window size.

represent the part of the target value that the model cannot
predict. Residual color maps and histogram of residual are a
way to analyze the residual behavior and the performance of
the model.

Figures 9a, 9b, 10a and 10b represent color maps of the
residuals in shades of gray. The results are relative to the test
set of the model used. Larger residues are represented in darker
tones. The absence of dark spots indicates that there are no
areas that the neural network had any problem to learn.

As for the histogram of residuals when symmetric bell-
shaped and centered at zero indicates that the model makes
mistakes in a random manner. If the residuals do not form
a zero-centered bell shape, there is some structure in the
model’s prediction error. A positive residual indicates that the
model is underestimating the target (the actual target is larger
than the predicted target). A negative residual indicates an
overestimation (the actual target is smaller than the predicted
target).

The model showed good results that can be observed in
Figures 11a, 11b, 12a and 12b. All histograms of residuals
obtained are bell-shaped and distributed around 0.

Using not only the intensity of the pixel, but also the height
at which the patch is being extracted as input for the neural
network brings better results to the model, as more information
is added, thus removing possible ambiguities in the data.

VI. CONCLUSION

The work presents a model for non-invasive inspection of
pipes, using a thermal camera, 3D laser scanner and neural
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(a) Thermal pixel intensity as input. (b) Thermal pixel and height as input

Fig. 10: Residual color map obtained when considering a 5x5
window size.

PRI T1 | S a. ol e -l . -
08 08 04 02 ) 02 o4 02 [ 02 s

(a) Thermal pixel intensity as input for the NN.

Fig. 11: Histogram of residuals when considering a 3x3
window size.
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(a) Thermal pixel intensity as input for the NN.

Fig. 12: Histogram of residuals when considering a 5x5
window size.

networks. The model is capable to identify the stage of
obstruction in fertilizer industry ducts.

A neural network is proposed to model the deposit profile
using thermal non invasive images and 3D scanner associated
with a scaled mockup dataset.

A scale model was developed in a controlled environment
and determines parameters for the real case application in a
big fertilizer company.

The Multilayer Perceptron neural network learned the map-
ping between each thermal pixel to a deposit profile and
obtained good results, showing that it is possible to detect
the sedimentation that is occurring inside the duct from an
external thermal image.

Adding more variables to the model might help the model
capture the patterns that are not captured by the current model.
The use of the pixel intensity together with the value of
the height at which the window is in the thermal image
brought better results for the mapping, as it removes possible
ambiguities that the dataset may contain.

Future work aims to extend the dataset to other fertilizer
distribution profiles, as well as to evaluate in detail the effect
of scaled trainned NN in real scenarios.
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