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Abstract—The recently introduced Lottery Ticket Hypothesis
has created a new investigation front in neural network pruning.
The hypothesis states that it is possible to find subnetworks
with high generalization capabilities (winning tickets) from an
over-parameterized neural network. One step of the algorithm
implementing the hypothesis requires resetting the weights of
the pruned network to their initial random values. More recent
variations of this step may involve: (i) resetting the weights to the
values they had at an early epoch of the unpruned network train-
ing, or (ii) keeping the final training weights and resetting only
the learning rate schedule. Despite some studies have investigated
the above variations, mostly with unstructured pruning, we do
not know of existing evaluations focusing on structured pruning
regarding local and global pruning variations. In this context,
this paper presents novel empirical evidence that it is possible to
obtain winning tickets when performing structured pruning of
convolutional neural networks. We setup an experiment using the
VGG-16 network trained on the CIFAR-10 dataset and compared
networks (pruned at different compression levels) got by weight
rewinding and learning rate rewinding methods, under local
and global pruning regimes. We use the unpruned network as
baseline and also compare the resulting pruned networks with
their versions trained with randomly initialized weights. Overall,
local pruning failed to find winning tickets for both rewinding
methods. When using global pruning, weight rewinding produced
a few winning tickets (limited to low pruning levels only) and
performed nearly the same or worse compared to random
initialization. Learning rate rewinding, under global pruning,
produced the best results, since it has found winning tickets at
most pruning levels and outperformed the baseline.

Index Terms—neural network compression, structured prun-
ing, winning tickets, weight rewinding, learning rate rewinding

I. INTRODUCTION

Solutions based on Deep Learning, more specifically Deep

Neural Networks (DNNs), are the state-of-the-art for a wide

range of AI-based complex tasks, such as computer vi-

sion, natural language processing, neural machine translation,

speech recognition and several others [1]. However, such tasks

usually rely on complex and continuously evolving DNN

architectures, which are often over-parameterized [2]–[4]. By

over-parametrized, we mean DNNs in which the number of

parameters is vast and sometimes even surpasses the number

of input features or the number of training instances. As a

result, such DNNs have high computational costs for both

training and inference. For comparison, LeNet-5, one of the

first convolutional neural networks, introduced by LeCun et al.

(1998) [5], has approximately 60 thousand parameters and was

designed for the MNIST dataset which has 60 thousand train-

ing 28x28 grayscale images. Deeper neural networks easily

reach hundreds of millions of parameters, such as the VGG-

16 architecture introduced in [6], which has approximately

138 million parameters and was designed for the ILSVRC-

2014 [7], which has 1 million training color images with an

average resolution of 482x415.

It is worth notice that over-parametrization is well known

for helping local search algorithms reach low training er-

ror since it favors the creation of a large manifold of

globally optimal solutions during training [8]. Moreover,

over-parametrization, combined with regularization, may help

achieve better generalization. Given the considerable search

space involved in building tailored DNN architectures for

specific tasks, it is common practice to select off-the-shelf

architectures well known for working well in various complex

tasks. If the selected model is more complex than needed,

one can apply techniques to reduce model complexity (e.g.,

regularization) while retaining (or even improving in some

cases) the original model’s generalization power, as explained

in more detail in the sequel.

Due to the resource-hungry nature of DNNs, running them

on computers with limited resources, such as edge devices

based on commodity hardware, is often unfeasible. The ex-

ecution of such DNNs is usually associated with special-

ized hardware such as general purpose graphic processing

units (GPUs) or the more specialized tensor processing units

(TPUs). Nevertheless, many works have appeared in recent

years proposing novel techniques to enable the training and

inference of such complex DNNs on commodity hardware.

This is an emerging research area that is commonly referred

to as neural network compression and acceleration [9].

Among the existing compression techniques, Neural Net-

work Pruning is a well-established family of techniques aim-

ing at reducing storage consumption, memory footprint, and

computational resources usage without significantly harming

the DNN accuracy, even for aggressive pruning levels [10].

Such techniques consist of removing unnecessary components

(and corresponding weights) from a neural network according

to a given criterion. A wide range of pruning techniques are

structured according to these three core steps:

(1) Train the neural network until convergence.



(2) Prune the neural network to a specific sparsity level

according to some heuristic.

(3) Retrain the pruned network to compensate for any

eventual loss of accuracy and generalization power.

In most of the existing techniques [11]–[14], the standard

procedure used for retraining a pruned network is fine-tuning.

Starting with the weights inherited from the original neural

network, fine-tuning comprises further training the pruned

network using a small fraction of the training epochs, used

in the original model, while using the same learning rate from

the final epochs of the original neural network’s training.

According to Liu et al. (2019) [15], the above three steps

have support on two common beliefs. The first one is that

over-parameterized DNNs train better than those with fewer

parameters, because of the high generalization capacity of

larger models [16]. After training, a set of redundant weights

could then be pruned from the over-parameterized network

without degrading its accuracy. Previous work, such as [13],

[17], has reported this procedure to be better than training a

smaller network from scratch. The second belief, as discussed

by Han et al. (2015) [11], is that not only the resulting

architecture got by pruning but also its associated weights are

essential for producing the final compressed model. From this,

it is easy to see why a great deal of pruning techniques prefer

to fine-tune a pruned model instead of training it from random

weights.

Some more recent works found that retraining a pruned

network from scratch can achieve the same accuracy and

sometimes even outperform fine-tuned DNNs. These works

refer to the pruned networks that match or even outperform

their unpruned counterparts as winning tickets [10], [18]–[21]

in reference to The Lottery Ticket Hypothesis, which is further

discussed in Section III. An important step for implementing

this hypothesis is to reset the weights of the pruned network

to their initial random values. Follow up alternatives for this

step are: (i) resetting the weights to the values they had at an

early epoch of the unpruned network training, or (ii) keeping

the final training weights and resetting only the learning rate

schedule.

We can categorize pruning according to different criteria. A

well-known distinction refers to structured versus unstructured

pruning [22]. Unstructured pruning can remove parameters

from a DNN without a specific geometry or constraint, which

is difficult to compute efficiently in most existing hardware.

For example, in a fully connected layer, removing some

individual connections to a neuron (which is usually done by

zeroing those connections) does not bring any reduction in

inference time, since the MVM (Matrix-Vector Multiplication)

still needs to take place to compute layer-outputs. Structured

pruning assures the remaining parameters are kept at well-

defined locations. For instance, in a convolutional neural net-

work, structured pruning may remove an entire filter kernel but

not individual kernel weights, thus preventing the formation

of sparse filters. Here, the MVM assigned to the removed

filter is not needed anymore, which saves CPUs or GPUs

cycles, running models more efficiently. We may also classify

a pruning method as local or global, which relates to removing

the elements/parameters when taking (or not) into account

their location in the network. Whenever the parameters are

removed proportionally in all layers of the network, we say

the pruning is local, otherwise, it will be global.

Recent studies have shown that DNNs can be pruned for

aggressive levels of compression without harming the final

accuracy of the pruned network [18], [20], [21]. However,

although impressive, such results were observed in the contexts

of: (i) unstructured pruning [18], which produces pruned

networks without real performance gains in general purpose

hardware; and (ii) structured pruning with predefined optimal

architecture [20], which is unfeasible for most applications

due to the large search space of the pruning rates per layer in

deep neural networks. In addition to that, we do not know of

existing studies comparing local and global pruning variations

under the Lottery Ticket Hypothesis.

This paper contributes with novel empirical evidence that

supports obtaining winning tickets when performing structured

pruning of convolutional neural networks. We experimentally

evaluate and discuss the emergence of winning tickets using

Weight Rewinding and Learning Rate Rewinding on respect to

iterative structured pruned networks with automatic architec-

ture definition [13], [23] and compare the results of pruned

networks found using these retraining approaches with the

same networks trained with randomly initialized weights.

The remainder of this paper is organized as follows. Sec-

tion II introduces some definitions aiming at a better un-

derstanding of the concepts used in this paper. Section III

contains a discussion of related work. Section IV presents

the experimental protocol and the obtained results. Finally,

we offer our conclusions and directions for future work in

Section V.

II. THEORETICAL BACKGROUND

In this section, we present a brief recap about DNNs

pruning, regarding its different types and methods.

A. Unstructured pruning

Unstructured pruning, also known as sparsity-inducing or

weight pruning, consists of removing connections between

neurons or filters of adjacent layers. In doing so, zero values

are introduced into the weight tensors, which has the effect

of removing them. Despite the effectiveness of unstructured

pruning methods [18], their application is still limited, since

general purpose hardware (e.g. CPUs and GPUs) and libraries

(e.g., BLAS) do not deal well with sparse matrices, penalizing

the execution of pruned networks in this way [11].

B. Structured pruning

Structured pruning, as the name suggests, comprises the

removal of entire structures from the neural network [13] [24].

These structures can be neurons of fully connected networks

or entire filters of convolutional neural networks. The major

benefit of using structured pruning is that by not adding

unstructured sparsity to the network, the pruned architecture



allows effective network acceleration in nearly any hardware

and software libraries. Figure 1 shows how both unstructured

and structured pruning affects the neural network architecture.

(a) Unpruned network (b) Unstructured
pruned

(c) Structured pruned

Fig. 1. Effect of different pruning types on the neural network architecture.
Dashed units and connections means that they were pruned.

C. Pruning locality

Some pruning techniques, as in the works of Li et al.

(2017) [13], and He et al. (2019) [24], require a user-defined

pruning rate to be applied to the model. This pruning rate

indirectly represents the number of weights, neurons, or filters

to be removed during the pruning procedure. Regardless of

the pruning rate applied, it is necessary to define from where,

in the DNN, the elements will be removed, either locally or

globally. Figure 2 illustrates how both local and global pruning

affects the DNN architecture.

1) Local pruning: In the local pruning, the elements are

removed taking into account their location. Regardless of

the criterion adopted, the weights, neurons, or even entire

convolutional filters are ranked and pruned proportionally in

all layers of the DNN. Han et al. (2015) [11] and Frankle and

Carbin (2019) [10] are examples of works that apply local

pruning on some scenarios.

2) Global pruning: In the global pruning, as applied by

Frankle et al. (2019) [18], Salama et al. (2019) [25], Renda

et al. (2020) [20], the elements are removed without taking

into account their location. Thus, to achieve a certain pruning

rate, variable pruning rate fractions are applied in different

layers based on the global ranking of the neural network

elements. The final reduction of weights, neurons, or filters

are equivalent to the initial pruning rate applied.

It is worth noticing that any continuous compression rate,

used for pruning, should be mapped into a discrete number

representing the number of elements to be effectively removed.

Thus, the number of elements to be removed will not always

match the compression rate chosen, but, instead, the nearest

possible one. Besides, global pruning can break a model de-

pending on the level of compression applied. This issue could

happen, for example, when all weights, neurons, or filters are

completely removed from a given layer. Furthermore, it is not

allowed to remove elements from the output layer since it is

responsible for the outcomes of the model.

(a) Locally pruned net-
work

(b) Globally pruned
network

Fig. 2. Effect of different pruning localities on the neural network architecture.
Dashed objects means that they were pruned.

D. Pruning Scheduling

In addition to the local pruning, the pruning schedule must

be defined. The scheduling can be broadly distributed into

three categories [15], [20], as follows:

• One-Shot pruning. Pruning is applied to the trained

DNN all at once so that the defined pruning rate is

achieved at the end of the process.

• Iterative pruning. In this approach, small fractions of the

DNN are pruned at the end of an entire training cycle.

Thus, the pruning rate is achieved at the end of several

training and pruning iterations.

• Gradual pruning. In this approach, the DNN is pruned

throughout the training process, so that at the end of the

training a pruned neural network is produced.

Due to the integration between training and pruning in grad-

ual pruning, there is no need to do an additional step to retrain

the pruned network, since pruning is done in conjunction with

the neural network training. However, in one-shot pruning and

iterative pruning, whose elements are removed at the end of

the training process, the pruned networks often need to be

fine-tuned or retrained to compensate for the information loss.

Furthermore, in this paper we only evaluate pruned networks

obtained by iterative pruning, since previous studies have

shown that iterative pruning is able to generate pruned net-

works with a higher level of compression and lower accuracy

reduction [10], [11], [20], [21] when compared to those

obtained by one-shot pruning or gradual pruning.

III. RELATED WORK

This paper is mainly related to the neural network pruning

literature, more specifically structured pruning techniques and

the Lottery Ticket Hypothesis. The “Optimal Brain Dam-

age” [26] and “Optimal Brain Surgeon” [27] are among

the pioneering works on pruning with the idea of using a

sensitivity measure to estimate the impact of removing units

from the networks. However, the use of sensitivity estimates

involves the additional calculation of second order derivatives,

making these methods computationally costly when applied to

over-parameterized networks.

As an alternative to sensitivity-based methods, recent studies

have advocated towards magnitude-based approaches [11],

[13], [19], [24], which consider the magnitude of the weights



of a trained network as a proxy measure for unit importance.

Since calculating the magnitude is computationally simpler

and more efficient than calculating second order derivatives,

such methods can scale up and be applied to deeper networks

with hundreds of millions of parameters.

Among recent influential research on neural network prun-

ing, Frankle and Carbin (2019) [10] formulated the Lottery

Ticket Hypothesis, which states that it is possible to find sparse

subnetworks (winning tickets) from an over-parameterized

neural network and to train them from scratch so that the

sparse sub networks can achieve similar or even greater

accuracy than their unpruned counterpart. The steps for finding

winning tickets are the following:

(1) Randomly initialize a neural network.

(2) Train it until convergence.

(3) Prune a fraction of the network using the magnitude of

the weights as a criterion.

(4) Reset the remaining weights of the pruned network to

its initial random values.

(5) Train the pruned network until convergence.

By iteratively applying these steps, the authors were able to

achieve aggressively pruned networks that reach or even sur-

pass their unpruned counterparts’ accuracy, while converging

upon only a fraction of the original model required number

of epochs. Although the impressive results on fully connected

networks and simple convolutional networks, this approach

was not able to find winning tickets on deep convolutional

neural networks. Aiming to overcome such limitation, the

authors proposed an updated version of the Lottery Ticket

Hypothesis and the steps for finding Winning Tickets in a

follow-up work [18]. Instead of resetting the weights to its

initial random values, the weights are now reset to the values

they had at an early epoch of the unpruned network training.

With this retraining approach, named as “weight rewinding”,

it was possible to find winning tickets on deep convolutional

neural networks.

Because of the effectiveness of the Lottery Ticket Hy-

pothesis, further work focused on theoretical aspects of the

winning tickets. Zhou et al. (2019) [19] empirically evaluated

the pruning masks that emerge with the winning tickets and

discovered the existence of supermasks, which are pruning

masks 1 that can be applied to untrained networks, performing

better than chance. Morcos et al. (2019) [21] focused at

evaluating how well a winning ticket performs when re-used

on a different dataset.

More recently, Renda et al. (2020) [20] introduced the

Learning Rate Rewinding method, a novel retraining approach,

as a variation of weight rewinding. Unlike the weight rewind-

ing, the authors propose to keep the final training weights

(similar to fine-tuning) and reset only the learning rate when

retraining the pruned network. The results indicate that the

1A pruning mask is a binary matrix that shows whether a given weight or set
of weights should be pruned (0) or not (1). The pruned network (f(x;w⊙m))
results from the Hadamard product (⊙) of the weights matrix (w) and the
pruning mask (m).

learning rate rewinding produces winning tickets that matches

or outperforms those produced by weight rewinding.

In light of the aforementioned related works, we observed

that most claims and conclusions are based on experiments

with unstructured pruning, with the exception of Renda et

al. (2020) [20] who present preliminary experiments with

structured pruning. These experiments are however limited

to using per-layer pruning rates hand-picked by Li et al.

(2017) [13] and a set of pruning rates derived from these hand-

picked rates.

To the best of our knowledge, no prior work evaluated the

emergence of “winning tickets” when applying the concepts

of weight rewinding and learning rate rewinding in the context

of structured pruning where the target architecture is automat-

ically determined throughout the pruning process. In the next

section, we present the experimental methodology adopted in

this paper.

IV. EVALUATION

In this section, we evaluate the emergence of winning tickets

on deep convolutional networks and compare the efficacy of

two retraining approaches: weight rewinding and learning rate

rewinding, for finding winning tickets. Randomly initialized

structured pruned networks are used as baselines in the

comparison. In the following subsections, we describe the

experimental setup and discuss the obtained results.

A. Experimental Setup

1) Hardware and Libraries: All the experiments were

conducted on Ubuntu 16.04.6 LTS Linux Kernel 4.15.0-107-

generic equipped with Intel Core i7-8700K CPU @ 3.70GHz

processor, 2x16GiB DIMM Synchronous 2666 MHz memory

and GeForce 2080 RTX Ti graphic processing unit. The neural

networks and pruning algorithms were implemented using

PyTorch [28] v1.3.1 and datasets from the torchvision package

v0.4.2.

2) DNN Architecture and Datasets: For the experiments,

we selected the well known convolutional neural network

model VGG16 [6], which has ReLU activations [29] and

Batch Normalization layers [30]. The model is trained by

160 epochs on the CIFAR-10 benchmark dataset [31], since

this network and dataset are used for evaluating pruning

methods in prior works [13], [15], [32], [33]. The CIFAR-

10 dataset contains 60,000 32 × 32 color images organized

in 10 classes, with 6,000 images per class. There are 50,000

training images and 10,000 test images. In addition, during

the training we apply standard data augmentation as proposed

by He et al. (2016) [34]. SGD with momentum is used as

the optimization method, with an initial learning rate of 0.1,

which decay (dividing by 10) at epochs 80 and 120 as in Li

et al. (2019) [15].

3) Pruning Approaches: We assess the emergence of “win-

ning tickets” by pruning the VGG16 network using iterative

pruning in two scenarios: local pruning and global pruning. For

both scenarios, we use the L1-norm of the convolutional filters

as pruning heuristic, removing at each pruning iteration those
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filters with the lowest norms according to a chosen pruning

rate. We performed 10 pruning iterations and, at each iteration,

we applied 20% pruning rate, as in prior work [10], [20],

[21]. Since the accuracies in the final four pruning iterations

were lower than that of the unpruned network and therefore

no winning tickets were found, those iterations were omitted

in the results presentation.

B. Results and Discussion

The results obtained using each retraining techniques are

presented in this section. The plots in Figures 3, 4 and 5

show the median, maximum and minimum test accuracies

from five different training runs. For comparison, we also

consider retraining the pruned networks obtained by both

weight rewinding and learning rate rewinding with random

initial weights, as discussed next.

1) Weight Rewinding: For evaluating the emergence of

winning tickets by weight rewinding on structured pruned

networks, we consider the retraining technique as presented in

Frankle and Carbin (2019) [10] and Frankle et al. (2019) [18]

and we consider the epochs 0 to 4 as weight rewinding epochs.

As we can see in Figure 3, rewinding to the initial random

weights (epoch 0) or the weights from early training epochs (1

to 4) does not have a significant impact on the final accuracy

of the pruned model by structured pruning, either for local

or global pruning. On average, the sub-networks obtained by

weight rewinding presented lower accuracy than the unpruned

network, even in the initial pruning iterations. Although few,

winning tickets emerged when global pruning was applied and

the weights were rewound to the weights of epoch 2 and epoch

3 of the unpruned network training. However, these winning

tickets emerged in the first iteration of pruning, when only 20%

of the convolutional filters were removed, so that it cannot be

considered an aggressive pruning level.

We can observe in Figure 3 that, although global pruning

generates pruned networks that generally present greater accu-

racy, it is less stable than local pruning and presents a greater

variation in accuracy in more aggressive pruning levels (i.e.

lower percentage of remaining parameters). This is due to

the fact that global pruning in combination with structured

pruning can cause the removal of many specific layer filters,

which makes it impossible for the pruned network to learn

the classification rule from and insufficient number of image

features.

In Figure 4, we compare the pruned networks generated

by weight rewinding with their counterparts retrained with

random initialized weights. We can observe that for almost all

the subnetworks generated, those trained with random weights

match the accuracy or outperforms the subnetworks obtained

by weight rewinding. This can be observed both when the

weights are rewound to the random initial weights (Epoch

0), and when the weights are rewound to the weights from

early training epochs (Epochs 1 to 4), in either global or local

pruning. In addition, it is still possible to notice a greater

occurrence of winning tickets (diamond shape points in the

plots) in the subnetworks trained with random weights.

These results suggest that, despite the unprecedented results

achieved for unstructured pruned networks [10], [18], weight

rewinding is not efficient for finding winning tickets in the

context of structured pruning and is not better than retraining

the pruned networks with random weights.

2) Learning Rate Rewinding: In Figure 5, we present

the results from applying the learning rate (LR) rewinding

retraining technique as proposed by Renda et al. (2020) [20].



Unlike weight rewinding, by applying learning rate rewind-

ing we can notice a higher occurrence of winning tickets.

These winning tickets emerged even in later iterations of

pruning, i.e. for more aggressive pruning levels.

While with weight rewinding it was only possible to identify

subnetworks that nearly matched the accuracy of the original

unpruned network, the winning tickets generated by learning

rate rewinding presents greater accuracy than the unpruned

network. This phenomenon occurs even in subnetworks that

have less than 85% of parameters remaining, when compared

with the unpruned network. However, these winning tickets

only emerged through global pruning. We can also observe

that, as occurred with weight rewinding, globally pruned

networks tend to be less stable, presenting a greater variation

in final accuracy between different runs for the most aggressive

pruning levels.

Furthermore, it is noteworthy that the subnetworks obtained

through learning rate rewinding have higher accuracy when

compared to their retrained counterparts with random weights.

This is an indication that the learning rate rewinding retraining

technique has a significant impact on the final accuracy of the

structured pruned networks.

In addition, despite we considered an architecture (VGG-

16 [6]) different from those investigated by Renda et al.

(2020) [20] (ResNet-56 and ResNet-34 [35]), they were all

convolutional neural networks. Thus, without loss of gen-

erality, we were able to find winning tickets associated to

compression levels that were more aggressive than those

presented by the authors in structured pruned networks.

For comparison, Renda et al. (2020) [20] apply structured

pruning with learning rate Rewinding for a small range of

compression levels, from approximately 86.96% to 58.82%

of the remaining parameters on ResNet-56 and 92.60% to

79.36% of the remaining parameters on ResNet-34. Winning

tickets were only identified at the lower compression levels

(≈ 86.96% and ≈ 77.52% of the remaining parameters on

ResNet-56 and ≈ 92.60% and ≈ 86.96% on ResNet-34)2.

Differently from them, we considered a larger compression

interval, from approximately 66.27% to 1.02% of the remain-

ing parameters on VGG-16 and our winning tickets were

identified at higher compression levels (≈ 66.27%, ≈ 40.85%,

≈ 24.90%, ≈ 16.18% and ≈ 12.19% of the remaining

parameters).

In conclusion, our experimental evaluation covered a wider

range of compression levels and was able to identify more

compressed winning tickets (i.e. more suitable for computing

on hardware with limited resources).

V. CONCLUSION AND FUTURE WORK

In this work we have evaluated the emergence of winning

tickets by structured pruning on the VGG16 network trained

on the CIFAR-10 dataset by comparing iteratively pruned net-

works found by weight rewinding, learning rate rewinding and

2The percentage of remaining parameters was calculated from the reported
compression ratio values of Renda et al. (2020) [20].

their randomly initialized counterparts and considering local

and global pruning. Our findings suggest that winning tickets

can emerge by applying structured pruning with architectures

discovered automatically during the global pruning process

(i.e. the number of convolutional filters in each layer is not

predetermined and these filters are removed regardless of the

layer, according to the pruning rate and heuristics chosen),

while prior work were limited to unstructured pruning and

structured pruning with hand-chosen architectures (i.e. the

number of convolutional filters in each layer of the resulting

architecture is predefined).

Overall results indicate that, for both rewinding techniques,

the local pruning fails for finding winning tickets. Moreover,

few winning tickets emerged from weight rewinding, only for

low pruning levels. When compared to their counterparts with

randomly initialized weights they performed nearly the same

or worse. However, the learning rate rewinding was able to

find winning tickets even at aggressive pruning levels. The

networks obtained through learning rate rewinding outperform

their randomly initialized counterparts.

Future work might focus on identifying the characteristics

that make these two retraining approaches to behave differ-

ently in structured and unstructured pruned networks and on

evaluating weight rewinding and learning rate rewinding in the

context of structured pruning for more datasets (e.g. CIFAR-

100 [31] and ImageNet [36]) and neural network architectures

(e.g. ResNets [35] and DenseNet [37]) and for different

tasks (e.g data augmentation using Generative Adversarial

Networks [38], in addition to classification) aiming to validate

the generality of these rewinding techniques.
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