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Abstract—Shape, number, and position of teeth are the main
targets of a dentist when screening for patient’s problems on
X-rays. Rather than solely relying on the trained eyes of the
dentists, computational tools have been proposed to aid specialists
as decision supporter for better diagnoses. When applied to X-
rays, these tools are specially grounded on object segmentation
and detection. In fact, the very first goal of segmenting and
detecting the teeth in the images is to facilitate other automatic
methods in further processing steps. Although researches over
tooth segmentation and detection are not recent, the application
of deep learning techniques in the field is new and has not
reached maturity yet. To fill some gaps in the area of dental
image analysis, we bring a thorough study on tooth segmentation
and numbering on panoramic X-ray images by means of end-to-
end deep neural networks. For that, we analyze the performance
of four network architectures, namely, Mask R-CNN, PANet,
HTC, and ResNeSt, over a challenging data set. The choice of
these networks was made upon their high performance over
other data sets for instance segmentation and detection. To
the best of our knowledge, this is the first study on instance
segmentation, detection, and numbering of teeth on panoramic
dental X-rays. We found that (i) it is completely feasible to detect,
to segment, and to number teeth by through any of the analyzed
architectures, (ii) performance can be significantly boosted with
the proper choice of neural network architecture, and (iii) the
PANet had the best results on our evaluations with an mAP of
71.3% on segmentation and 74.0% on numbering, raising 4.9 and
3.5 percentage points the results obtained with Mask R-CNN.

Index Terms—deep neural networks, instance segmentation
and numbering, panoramic dental X-rays

I. INTRODUCTION

X-rays are a valuable resource that helps dentists diagnose
cysts, tumors, fractures, and other conditions that require
more information than that is possible to gather by directly
examining the patient [1]. However, interpreting an X-ray
is not a trivial task, usually taking years of training and
experience before a professional can give reliable reports. It
is a time-consuming and prone to errors task that requires
many aptitudes from the professional. Another potential issue
is that there are many different types of X-rays, each having
peculiarities and challenges that make the screening difficult
[2].

Due to the aforementioned reasons, some methods have
been proposed to perform automatic analyses over X-rays
using tooth detection and classification [3, 4, 5, 6], tooth
segmentation [7, 8, 9, 10], caries detection [11, 12, 13, 14],
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Fig. 1. The FDI (French acronym for World Dental Federation) two-digit
notation is used by dentists to report their findings, where number, shape, and
location of teeth are essential information to support decisions in dentistry.

osteoporosis diagnosis [15, 16, 17], and forensic identifi-
cation [18, 19, 20]. These methods usually intend to carry
out analyses on the most common types of dental X-rays:
periapical, bitewing, and panoramic.

According to Silva et al. [8], before 2018, most academic
research on automatic analysis of dental X-rays based their
studies on handcrafted feature extractors. The majority of
these works also overlooked panoramic X-rays, probably due
to the challenging nature of this type of image. Indeed,
differently from periapical and bitewing X-rays, panoramic
images include several parts of the body like teeth, gums,
jaw, skull, spine, and other bones. These characteristics, along
with the low contrasts, turn handcrafted strategies unsuitable
for panoramic images.

Silva et al. [8] also examined several handcrafted feature
extractors for semantic segmentation of teeth and concluded
that these methods perform poorly compared to a state-of-the-
art deep learning network. Under these circumstances, where
the deep learning techniques offer the most promising avenue
to medical image analysis, we investigate end-to-end neural
networks’ feasibility for tooth segmentation and numbering on
panoramic X-rays. This is a rather relevant task since shape,
position, and type of teeth are the main targets of dentists and
many computer methods for X-ray analysis. For instance, the



first findings in dental reports are missing teeth, which are
usually specified in a two-digit notation (see Fig. 1).

A. Related works

The advent of deep learning techniques boosted the perfor-
mance of automatic image analysis methods. This is rather
remarkable on the panoramic dental X-rays due to the tradi-
tional methods’ poor performance on such challenging images.
In the following, we detail the studies on the matter, according
to the image task.
Semantic segmentation: Silva et al. [8] present a thorough
literature review on classic methods to segment teeth on
panoramic dental X-rays. They also introduce a considerably
large and diverse data set, called UFBA-UESC Dental Images
data set. Experiments on this data set allowed the authors
to conclude that the Mask R-CNN solution [21], in which
the whole dental arch is considered a single instance, is
by far better than classic methods. That was the first study
to demonstrate the advantages of applying deep learning on
panoramic X-rays. Koch et al. [10] trained a U-Net [22] on
the UFBA-UESC Dental Images data set, where horizontal
flipping and model ensemble improved performance. Both
solutions surpassed the results of classic methods. However,
semantic segmentation does not provide the necessary details
for further processing steps in most of the automatic dental
analysis.
Detection and segmentation: Jader et al. [9] were the first to
investigate detection and segmentation of teeth on panoramic
X-rays, although without numbering. They modified the
UFBA-UESC Dental Images data set to include information
of tooth instances, coining this new data set as UFBA-UESC
Dental Images Deep. This was done by manually separating
the teeth of the binary masks that represented the entire dental
arch. A Mask R-CNN, backboned by a ResNet-101, was
trained and validated with 193 and 83 images, respectively.
The final network was then tested in the remaining 1224
images of the data set in a binary pixel-wise fashion, and an
F1 score of 88% was reported.
Detection and numbering: Tuzoff et al. [4] were the first to
apply deep learning to detect and number teeth on panoramic
X-rays. This method is different from the approach proposed
by Jader et al. [9], since the latter detects and segment the
teeth, but does not number them. The work of Tuzoff et al.
[4] used two neural networks. The first one, a Faster R-
CNN [23], outputs bounding boxes. Then, regions of the input
image are cropped accordingly, feeding the second network –
a VGG-16 [24] –, which numbers each tooth into one of the
32 possibilities. Finally, heuristics guarantee the consistency
of the numbering. Tuzoff et al. [4] evaluated this two-stage
approach on a data set containing 1352 images for training
and 222 images for testing. This complex solution does not
allow for end-to-end training, and heuristics could drive the
results to undesirable traits. Under this perspective, the method
proposed by Chung et al. [6] brings some advantages. The
method consists of a neural network based on point-wise tooth
localization that first performs center point regression of 32

points. Each point represents the location of a single tooth in
an adult mouth, regardless of its presence, which allows for
the automatic assignment of a label. Later, the tooth centers
are refined, and bounding boxes are determined in a cascade
way. However, the proposed method was trained on a data set
smaller than the one used by Tuzoff et al. [4].

B. Contributions

Table I summarizes related works according to the number
of training images (#Train images), the number of validation
images (#Validation images), the number of testing images
(#Test images), the deep learning method used (DL method),
and if the work proposes to detect (Detection), to segment
(Segmentation) and/or to number (Numbering) teeth on
panoramic X-rays. It is worth noting that no prior work
simultaneously investigated tooth segmentation, detection, and
numbering. Bare all that in mind, we propose to investigate
the performance of several end-to-end deep learning networks,
specialized in instance segmentation, on panoramic X-rays.
This is done through a benchmark that includes four network
architectures chosen for having reached state-of-the-art results
on the COCO data set [25]. They are: Mask R-CNN [21],
Path Aggregation Network [26], Hybrid Task Cascade [27],
and Split Attention Network [28]. The performance of these
networks was assessed over a modified version of UFBA-
UESC Dental Images Deep data set [9], specially annotated
to have segmentation and numbering information. To the
best of our knowledge, our work is the first one to exploit
instance segmentation with numbering on a considerably large
panoramic X-ray data set.

II. SEGMENTING AND NUMBERING TEETH BY
END-TO-END DEEP NETWORKS

A healthy adult mouth contains 32 teeth, which are des-
ignated by their functions (incisors, canines, premolars, and
molars), quadrants (upper right, upper left, lower left, lower
right), and positions (first, second, third). Because the teeth
names are so long, it turned necessary to use a concise notation
to expedite the filling of forms, being the FDI World Dental
Federation notation the most common one (see Fig. 1). The
FDI notation specifies the permanent teeth through a two-digit
number: the first digit indicates a quadrant, while the second
one represents the tooth type. Dentists use this notation, along
with the teeth location and shape, to make their analyses and
report their findings. These analyses can be supported and
automated by instance segmentation neural networks.

Today’s state-of-the-art methods for instance segmentation
are heavily based on object detection techniques, which are
usually grouped into two families: the one-stage detectors
and the two-stage detectors. As the name suggests, the one-
stage detectors can localize and classify all objects in a
single stage, having the YOLO network [29] as the most
distinguishable member of the family. On the other hand, the
two-stage detectors, mainly represented by the Faster R-CNN
[23], propose regions of interest (RoIs) in their first stage. In
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Fig. 2. General structure of an end-to-end instance segmentation network based on a two-stage detector.

TABLE I
SUMMARY OF WORKS ON SEGMENTATION, DETECTION AND NUMBERING ON PANORAMIC DENTAL X-RAY IMAGES.

Paper #Train images #Validation images #Test images DL method Detection Segmentation Numbering

Silva et al. [8] 753 452 295 Mask R-CNN
Koch et al. [10] 1200 - 300 U-Net
Jader et al. [9] 193 83 1224 Mask R-CNN
Tuzoff et al. [4] 1352 - 222 Faster and VGG
Chung et al. [6] 574 162 82 Point-wise Localization

Ours 324 108 111/778 Several

the second stage, these regions are labeled, and their bounding
boxes are refined.

Although slower than the one-stage detectors (which can
be even employed in on-the-fly applications), the two-stage
detectors are usually more precise, and the incorporation of a
mask prediction branch in their structure is straightforward.
These characteristics make the two-stage detectors a more
suitable choice for instance segmentation on panoramic X-
rays because this type of application requires high precision,
but not necessarily speed. Hence, we only considered the two-
stage networks, which usually rank on the top of benchmarks.

The general structure of a two-stage instance segmentation
network is depicted in Fig. 2. A backbone extracts features,
which are then passed to a region proposal network (RPN).
Through the use of anchors, the RPN determines RoIs, in
which an object can be localized. For each RoI, there is
a corresponding volume of the feature map that needs to
be converted into a fixed shape through some pooling tech-
nique. These fixed shape volumes feed the second stage of
the network, which uses fully connected layers to predict
the classes and refine the bounding boxes. In the case of
instance segmentation, an additional branch, usually comprised
of convolutional layers, is used for mask prediction.

To build our benchmark, we selected neural networks
that reached state-of-the-art performance by introducing new
techniques for the components of the two-stage detectors
(backbone, pooling technique, mask predictor). In order to
conduct a fair comparative analysis, we fixed the backbone to
be the ResNet-50 [30], because all chosen architectures have
available implementations with it. The exception is due to the

ResNeSt architecture [28]. In this case, the work’s novelty is
the backbone itself, so we performed our experiments with
ResNeSt-50 since it has a similar number of weights as
ResNet-50. In the next sections, we briefly discuss the four
chosen neural network architectures.

A. Mask R-CNN

The Mask R-CNN [21] was the first network to extend the
Faster R-CNN for instance segmentation, surpassing, even in
its basic implementations, the winners of the COCO 2016
Challenge on the instance segmentation task. This was at-
tained with few improvements in the Faster R-CNN structure,
namely: (i) a mask predictor branch, (ii) the incorporation of
the feature pyramid network (FPN) [31] in the backbone, and
(iii) the development of the RoiAlign technique.

The mask predictor branch generates low-resolution binary
masks (typically 28 × 28) for each instance through fully
convolutional layers. The FPN modifies the backbone by
adding a top-down path that is created by lateral connections
with the original backbone. All that allows predictions with
rich semantic features and spatial information at all scales,
improving object detection. He et al. [21] also introduced the
RoiAlign strategy – a quantization-free pooling technique that
preserves the spatial locations, while significantly impacting
the mask predictions.

B. Path Aggregation Network

The Path Aggregation Network (PANet) [26] was the winner
architecture of the COCO 2017 Challenge on the instance
segmentation task. PANet owns a core structure different from



TABLE II
CHARACTERISTICS OF THE DATA SETS USED IN OUR STUDY.

Cat. 32 Teeth Restoration Appliance Num & IS Segm.

1 23 57

2 174 80

3 42 11

4 92 68

7 36 87

8 128 355

9 14 33

10 34 87

Total 543 778

the Mask R-CNN in few aspects: (i) the addition of a bottom-
up path in the backbone, (ii) the development of the adaptive
feature pooling (AFP), and (iii) the use of tiny fully connected
layers in the mask prediction branch. The bottom-up path uses
lateral connections with the FPN backbone aiming to ease
information propagation, which can pass through more than
100 layers in some backbones. Differently from the RoiAlign,
the AFP allows the combination of features of all levels of
the hierarchy, letting the network to pick the best. Finally, tiny
fully connected layers aim to provide spatial location notion
to the mask prediction branch.

C. Hybrid Task Cascade

The winner architecture of the COCO 2018 Challenge on
the instance segmentation task was the Hybrid Task Cascade
(HTC) network [27]. The main novelty of the HTC architec-
ture is a cascade framework that pursues better performance
by interweaving the object detection and segmentation, rather
than in parallel, as the conventional cascade solutions [32].
The information flow is also modified through direct branches
between the previous and the next mask predictors. The
architecture also contains a fully convolutional branch that
enhances spatial context, which can improve performance by
better discriminating instances from clutter backgrounds.

D. Split-Attention Network

Zhang et al. [28] propose the Split-Attention Network
(ResNeSt), which, combined with a Cascade R-CNN [32],
achieves today’s state-of-the-art performance on instance seg-
mentation on the COCO data set. Therefore, the performance
was boosted by developing a more powerful backbone rather
than designing specific segmentation techniques. The ResNeSt
architecture accomplishes this by stacking ResNet-like blocks
that incorporate attention mechanisms. This produces better
results than the ResNet alone, especially in downstream ap-
plications, such as object detection and segmentation, since
the ResNet was specifically conceived for image classification.
Due to the split-attention blocks’ modularity, we find different
versions of ResNeSt, such as ResNeSt-50 and ResNeSt-101.
Our experiments with the ResNeSt are carried out with a Mask
R-CNN backboned by a ResNeSt-50, which we simply refer
to as ResNeSt.

III. MATERIALS AND METHODS

After selecting the neural networks for the benchmark, a
protocol was established. The rationale was to make the most
of each architecture, yet keeping fair comparison conditions.
In this sense, the same criteria were applied for all, with
symmetrical parameters and hyperparameters for training, as
well as for inference, when it was possible. Next, we detail the
methodology for implementing the chosen neural networks,
the data set used, and the training and evaluation protocols.

A. Neural network implementations

The codes for all networks were gathered from public
repositories1, using open-source implementations. This way,
we could avoid any mistake in implementing the networks,
purely focusing on the result analysis. We also benefited from
transfer learning strategies, using weights provided by the
authors of the networks. This was particularly helpful for our
study since the used data set consists of a few hundred images
in contrast to the hundred thousand ones from the COCO
data set used to provide all the network weights. The training
hyperparameters, mainly from the optimizer (learning rate and
batch size), were all homogenized to keep the symmetry of the
comparisons. The optimizer was chosen to be the stochastic
gradient descent (SGD), while the momentum value was set
to 0.9 to comply with a standard value usually used in the im-
plementations. The weight decay regularization was removed
because it worsened the first experiments’ performance with
the training and validation data sets. The base learning rate
for all original implementations were 0.02 with a batch size
of 16, but it was linearly adjusted to a batch size of 4 (learning
rate ended up with a 0.005 value). This was done to train all
neural networks in a single Titan 24 GB GPU. Also, the several
parameters and hyperparameters related to Faster R-CNN were
kept consistent. Fortunately, with few exceptions, standard
choices were already in use by the original implementations.

B. Data sets

Until recently, only small sets of images were available
for dental image analyses, and almost all of which were
intraoral X-rays (bitewing or periapical). To fill this gap, Silva
et al. [8] published the UFBA-UESC Dental Images data set,
which turned out to be a valuable resource for the community.
This data set is comprised of 1500 high-variability panoramic
images grouped into ten categories. However, the data set was
originally published along with annotations only for semantic
segmentation, where binary masks pixel-wisely separate teeth
from non-teeth. Later, Jader et al. [9] adapted the UFBA-
UESC Dental Images data set to include instance segmentation
information and used 276 images containing 32 teeth for train
and validation, and the remaining 1224 images for testing.
This data set was called UFBA-UESC Dental Images Deep.

1Original source codes and weights can be found at:
Mask R-CNN – https://github.com/facebookresearch/detectron2
PANet – https://github.com/ShuLiu1993/PANet
HTC – https://github.com/open-mmlab/mmdetection
ResNeSt – https://github.com/zhanghang1989/detectron2-ResNeSt



TABLE III
RESULTS ON THE VALIDATION DATA SET (4-FOLD CROSS VALIDATION WITH 108 IMAGES PER FOLD).

Numbering Instance segmentation
Network Best Epoch (Avg.) mAP AP50 AP75 mAP AP50 AP75
Mask R-CNN 25 68.8±0.4 98.6±0.4 83.7±0.8 63.4±0.4 98.4±0.4 79.1±0.9
PANet 32 74.2±0.6 98.5±0.5 89.0±1.0 71.9±0.5 98.4±0.5 88.0±1.0
HTC 14 70.2±0.7 98.4±0.5 85.9±1.1 63.8±0.5 98.3±0.6 80.4±1.3
ResNeSt 40 73.3±0.4 98.2±0.4 88.5±0.3 70.3±0.8 98.0±0.4 86.8±1.2

TABLE IV
RESULTS ON THE TEST DATA SET (INSTANCE SEGMENTATION AND NUMBERING – 111 IMAGES).

Numbering Segmentation
Network Threshold mAP AP50 AP75 mAP AP50 AP75
Mask R-CNN 0.675±0.025 70.5± 1.1 97.2± 0.2 86.9± 1.8 66.4± 0.7 96.9± 0.2 85.1± 1.0
PANet 0.725±0.025 74.0 ±0.1 99.7 ±0.2 89.2 ±0.4 71.3 ±0.3 97.5 ±0.3 88.0 ±0.2
HTC 0.563±0.022 71.1± 0.5 97.3± 0.1 87.6± 0.5 63.7± 1.4 97.0± 0.0 82.2± 2.0
ResNeSt 0.663±0.022 72.1± 0.3 96.8± 0.2 87.3± 0.5 68.9± 0.5 0.966± 0.3 85.5± 0.4

TABLE V
RESULTS ON THE SEMANTIC SEGMENTATION DATA SET (778 IMAGES).

Network Accuracy Specificity Precision Recall F1-Score
Mask R-CNN 96.2 ± 0.1 98.6 ± 0.1 94.1 ± 0.2 86.6 ± 0.4 90.2 ± 0.2
PANet 96.7 ± 0.1 98.7 ± 0.2 94.4 ± 0.6 89.1 ± 0.9 91.6 ± 0.2
HTC 96.0 ± 0.2 98.5 ± 0.1 93.7 ± 0.4 85.9 ± 0.8 89.6 ± 0.4
ResNeSt 96.5 ± 0.1 98.3 ± 0.0 93.0 ± 0.1 89.5 ± 0.2 91.2 ± 0.1
Mask R-CNN [9] 95.9 98.9 94.8 84.2 89.2

For our experiments, we used the UFBA-UESC Dental
Images Deep data set, after making some changes. Table II
summarizes the information from the data sets used regarding
the presence of 32 teeth, Restoration and Appliance, and
the number of images used for Numbering and Instance seg-
mentation (Num & IS) and Semantic segmentation (Segm.).
Since we required tooth number information, we annotated 543
images with number information (which included the 276 used
by Jader et al. [9]), keeping 778 images to evaluate semantic
segmentation. We discarded the images from categories 5 and
6 due to the presence of implants and deciduous teeth. We
are providing our data set, upon request, under the name
DNS (Detection, Numbering, and Segmentation) Panoramic
Images2.

C. Training and evaluation protocols

We performed two quantitative experiments. The first ex-
periment was oriented to an instance-aware evaluation, where
we used average precision with 0.5 and 0.75 cut-offs (AP50
and AP75), and the mean average precision (mAP), with the
latter being the primary metric. We applied these three metrics
using the bounding boxes and masks, resulting in values for
numbering and instance segmentation. The second quantitative
experiment, which can be considered supplementary, was a se-
mantic evaluation done in a pixel-wise fashion following Jader
et al. [9]. F1 score was considered the reference metric since
it gives a better sense of the overall performance. To conduct
a robust analysis, a cross-validation procedure was carried out.

2Instructions on how to request the DNS Panoramic Images data set can
be found at https://github.com/IvisionLab/dns-panoramic-images

This way, we split our data into five-folds, where each fold
contains approximately 20% of each category images. One of
these folds was fixed as the test data set (111 images), and
the other four folds (108 images in each) compose our train
and validation data sets in a cross-validation fashion. For each
architecture and combination, a neural network was trained.
This procedure resulted in 16 neural networks (four models
per architecture).

The training was conducted with no time concerns. All
weights were kept unfrozen, and a linear warm-up strategy
was used during the first ten epochs. The single applied
augmentation technique was horizontal flipping, which was
used both on training and validation, carefully changing teeth
numbers to their corresponding new values (left teeth numbers
turned into the right numbers and vice-versa). We proceeded
with the training for 100 epochs because all models have
shown clear signs of overfitting during this interval. At the
end of each epoch, validation loss was computed, and the
model with the smallest one was kept. Prior to the evaluation,
we had to specify the detection score threshold to be used in
testing. This was done by varying the threshold from 0.05 to
0.95 in steps of 0.05 and selecting the value which minimized
the absolute error of the number of predicted instances and
ground truth instances in the validation data set. After that, we
performed all evaluations, which we discuss in the following
section.

IV. EXPERIMENTS AND RESULTS

After the training procedure, we applied the instance-aware
evaluation to each model on its corresponding validation
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Fig. 3. Confusion matrices of the average results of the PANet architecture split into 2 parts: (a) superior dental arch, (b) inferior dental arch.

data set, using the training score threshold (0.05). Table III
contains the summary of the results for each architecture,
which includes the average epoch that resulted in the best
validation loss (best epoch), and the average and standard
deviation values of AP50, AP75, and mAP for numbering and
instance segmentation. In this evaluation, the best performance
came from PANet architecture, which won in all metrics,
except in AP50 for numbering (small margin). The Mask R-
CNN won with AP50 on the segmentation case, tied with
PANet. However, computing AP50 for the numbering has
shown to be a rather loose metric under these conditions, since
all architectures reached values above 98%.

Following the evaluation protocol, we computed all instance
metrics using the test data set. Table IV summarizes the
mean and standard deviation of the metrics used, as well as
the threshold score found for each architecture. Under these
conditions (unseen data), the PANet architecture had the best
performance in all metrics. It is also remarkable that the
margin to the runner-up (ResNeSt) in the mAP metric was
large (1.9 percentage point on numbering and 2.4 percentage
point on segmentation). Figure 3 illustrates confusion matrices
of the winning architecture, PANet, computed with an IoU
threshold of 0.5, considering the average results for all models
trained on the testing data set. We split the results into two
matrices for better visualization: one for the superior dental
arch and another for the inferior dental arch.

To compare our results with [9], we ran final experiments
on a set of images considering annotations for semantic
segmentation. Table V shows the mean and standard deviation
results of each architecture following the metrics used in Jader
et al. [9]. We also included the evaluation of the Mask R-CNN
solution by Jader et al. [9] on the same 778 images, utilizing
the weights provided by the authors.

V. DISCUSSION AND CONCLUSIONS

Our results showed that instance segmentation and number-
ing are feasible to be accomplished by an end-to-end deep
network. In our experiments, PANet achieved the best results,
reaching an mAP of 74.0% on numbering, 71.3% on seg-
mentation, and a pixel-wise F1 score of 91.65% on semantic
segmentation, all of them with minimal standard deviations. It
is worth noting that PANet was also 2 percentage points better
than the runner-up network on semantic segmentation. It also
surpassed the Mask R-CNN architecture by 3.5 and 4.9 points
on numbering and segmentation, respectively. We consider all
these results remarkable since, so far, Mask R-CNN has been
the most common choice for instance segmentation.

Another important aspect to be noted is that all four
analyzed networks reached a better F1 score than the Mask R-
CNN model used in [9]. We must concede, however, that this
is not a completely symmetric comparison since the network
models here had a larger training and validation data sets with
higher variability of images. On the other hand, Jader et al. [9]
performed their experiments with a deeper backbone (ResNet-
101) and proposed a solution that does not number the teeth,
which eases the task.

Considering the results found in the confusion matrices
depicted in Fig. 3, PANet correctly classified the teeth more
than 90% of the times. The rare misclassifications were due
to teeth being numbered as one of their neighbors, mainly
occurring between the second and third molars. We also
gathered the best and worst image results obtained with all
the evaluated networks, considering instance segmentation and
numbering (see Figs. 4 and 5). We can observe that the models
perform best on healthy mouths with teeth in good conditions.
The worst results come from mouths with degraded teeth,
mislabeling of teeth, and crude annotations.

Future works should go toward the augmentation of the data



(a) Mask R-CNN (b) PANet

(c) HTC (d) ResNeSt

Fig. 4. The best result of each architecture according to mAP (ground truth is on the left side).

(a) Mask R-CNN (b) PANet

(c) HTC (d) ResNeSt

Fig. 5. The worst result of each architecture according to mAP (ground truth is on the left side).

set annotations, analyses on deciduous teeth, and improve-
ments on the numbering performance, possibly considering
the geometrical relationship between nearby teeth.

ACKNOWLEDGMENT

This work was supported by Fundação de Apoio à Pesquisa
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