
Weakly Supervised Character Detection for License
Plate Recognition

Luis Felipe Zeni
Informatics Institute

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Email: luis.zeni@inf.ufrgs.br

Claudio Jung
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Email: crjung@inf.ufrgs.br

Abstract—Automatic Licence Plate Recognition (ALPR) is an
essential task in the context of intelligent transportation systems.
In a typical ALPR pipeline, the last stage receives as input a
cropped license plate region and outputs the string with the plate
characters. This paper presents a Weakly Supervised Character
Detection (WSCD) approach that requires only string-level an-
notations (as in generic text recognition methods) but is able
to detect characters individually (as in detection-based methods,
which require character-level annotations). The proposed method
is evaluated in five distinct datasets and present very competitive
results against other state-of-the-art methods.

I. INTRODUCTION

Automatic License Plate Recognition (ALPR) has been
playing an important role in a wide range of transportation
applications such as detection of stolen vehicles, traffic law
enforcement and automatic toll control, to name a few. Al-
though ALPR has been an active field of research in the past
decades, it still presents challenges, such as different license
plate (LP) layouts, variability in image acquisition conditions
and dealing with small annotated datasets.

The ALPR pipeline can be divided into two main steps:
license plate detection (LPD) and license plate recognition
(LPR). The first task aims to extract the LP region from
the input image, while the second one is responsible for
producing the LP string. While LPD methods have shown
good generalization to different layouts, LPR methods are
often trained for a specific country/region, such as in [1], [2].

LPR can be split into two main groups: methods that
depends on costly bounding box character annotations, such
as supervision [2]–[7]; and approaches that use only the plate
string as supervision [8]–[10]. Methods require the bounding
box as supervision tend to have a better adaptation to different
plate layouts because they learn the appearance of each charac-
ter separately. However, annotating bounding boxes is a costly,
tedious, and error-prone task. To alleviate this annotation cost,
some methods utilize only the string as supervision to learn a
coarse localization of the characters and the final string. The
drawback of these methods is that they tend to not generalize
well to new plate layouts.

In this paper, we present a Weakly Supervised Character De-
tection (WSCD) method that explores the best of both worlds:
it uses only the string-level annotations as training supervision,
which is utilized to learn the bounding boxes of the characters

in a weakly supervised fashion. We start with a baseline
Multiple Instance Detection Network method [11] with Online
Instance Refinement [12] and Knowledge Distillation [13] and
present modifications to deal with the LPR problem. Our main
contributions are: i) the introduction of an instance aware
online refinement approach that can be used when the number
of category is know; ii) a sub-network for estimating the
number of characters that guides the final recognition result;
and, iii) an extensive evaluation of the generalization capability
of state-of-art text recognition methods applied to LPR. Next,
we present the related work, and then describe the proposed
methodology with the experimental results and conclusions.

II. RELATED WORK

In this section, we start by briefly revising generic Optical
Character Recognition (OCR), OCR focused on LPR and
Weakly Supervised Object Detection.

A. Optical Character Recognition

Optical Character Recognition (OCR) has been studied by
the computer vision community for a long time. In the past
years, methods based on deep learning have shown to achieve
the best results for generic text detection and recognition in
natural images [9]. These approaches typically aim to handle
a variety of fonts and explore some kind of language model
(as n-grams). Although LPs do not present grammar-related
rules, we briefly review next some generic text recognition
methods that could be potentially applied to LPR and that
require string-level annotation as supervision.

Shi et al. [14] presented an end-to-end approach by mod-
eling scene text recognition as a sequence problem. They
combined convolutional and recurrent layers and explored
Connectionist Temporal Classification (CTC) to train the
model. Other recurrent modules such as Bidirectional LSTMs
(BLSTMs) have been using in conjunction with CTC [15], and
non-recurrent layers such as CNNs have also been explored
with CTC for modeling sequential data [16].

Attentional mechanisms have also been used to highlight
and align textual information in several approaches, with
promising results. Cheng et al. [8] proposed a Focusing
Attention Network (FAN) that combines an attention model
that highlights the characters and a focus correction module.

Bai and collaborators [17] presented an alternative correction
module called edit probability that requires less supervision
than [8]. In [9], the authors remedy the alignment problem
using a decoupled attention network that explores visual in-
formation, avoiding the use of historical decoding information.

Baek and collaborators [10] showed the strong dependency
between the used dataset and performance of text recognition
methods, and also provided a generic framework that allows
the combination of several individual modules typically used
in OCR. As we will show later in this work, such dependency
also exists in the context of LPR.

B. Licence Plate Recognition

Although LPR might seem a particular case of generic
OCR, that is not exactly the case. On the one hand, the
font and size variability in ALPR is smaller than a generic
OCR problem; on the other hand, there is no grammatical
or semantic information that relates the characters, and LPs
captured “in-the-wild” might present strong shadows, non-
uniform illumination and other special characters that might
be mis-detected as a character.

Some LPR approaches follow a pipeline similar to generic
OCR methods, exploring some kind of recurrent module. In a
nutshell, they are mostly generic OCR approaches that are
customized to the LPR problem, and sometimes combined
with a License Plate Detection (LPD) module. For example,
Li et. al [18] combined traditional features (such as HoG
and LBP) with recurrent networks and CTC for character
recognition, then used a deep feature extractor with a similar
LPR module in [18]. In a subsequent work [19], the same
authors presented an end-to-end network that explores CTC
in the final task. Youssef and colleagues [20] presented a text
recognition approach based on a fully convolutional network
without any recurrent connections using a CTC loss. They
show good results in applications such as Captcha recognition
and ALPR (for a single dataset).

Another direction toward LPR is to perform OCR using
object detectors. The core idea of these methods is to detect
each character in the LP independently, and then exploring
the set of detection results to build the LP string. The works
of Silva and Jung [3]–[5] and Laroca et al. [6], [7] presented
LPR modules based on modified YOLO-v2 architectures [21].
The main difference among them is the choice of the anchors,
number of layers and the dataset used for training their models.
Lee and colleagues [22] presented a network that segments the
characters and regresses the expected number of characters
in the LP, and recognition is performed using YOLOv3 [23].
Björklund et al. [2] presented a detection-based LPR method
that is trained solely using synthetic data.

LPR methods based on the specialization of text recognition
methods [18], [20], [24] present the advantage of requiring
only string-level annotation, but also produce as an output a
sequence of characters with no clear spatial localization. On
the other hand, LPR methods based on object detectors [2]–[7]
require more detailed annotation data (the bounding boxes of
each character), but are able to provide a spatial location for

each detected character. This localization property is particu-
larly interesting to deal with LPs that presents two rows of
characters, such as motorcycles. This work tries to combine
the benefits of both classes of methods.

C. Weakly Supervised Object Detection

WSOD is a category of methods that aim to learn the
localization information (bounding box) of object classes using
only the category annotations (presence or absence of the
class in the image). Impressive advancements have happened
in WSOD after the adoption of CNNs as an image feature
extractor. Cinbis et. al. [25] proposed a multi-fold multiple
instance learning procedure that combines Fisher Vector and
CNN features as descriptors. Li et al. [26] introduced a two-
stage adaptation algorithm that first collects class-specific
object proposals with higher precision and uses the most
confident object candidates to turn image classifiers into object
detectors.

Bilen et al. [11] proposed a two-stream smooth MIL ap-
proach, where one stream performs classification and the other
detection. Tang et al. [12] proposed an online instance classi-
fication refinement (OICR) module that can be plugged in a
cascaded way to [11] with increases the detection performance.
In [27], the authors improved the refinement process adding
proposal clusters to select one or more supervision boxes
during the training, whereas Zeni and Jung [13] proposed
a refinement knowledge distillation module and an adaptive
refinement supervision function to the OICR, called boosted
OICR (BOICR).

Some methods explore the usage of Class Activation Maps
(CAM) [28] to select the best boxes during the training
process. Diba et al. [29] proposed a three-stage cascaded
method that uses CAM to mine boxes. Wei et al. [30] employ
a similar approach to mine tight object boxes by exploiting
segmentation confidence maps to train a model based on [12].
The drawback of these CAM based methods [29], [30] is that
the training process of it is overly complex and the accuracy
improvements do not pay off.

Wan et al. [31] proposed a min-entropy latent model to
measure the randomness of object localization. Wan et al. [32]
introduced a continuation optimization method that uses a
series of smoothed loss functions to approximate the target
(desired) loss to alleviates the non-convexity problem in MIL.
In contrast, Tang et al. [33] proposed a region proposal
network that explores the responses in mid-layers of a network
to create object proposals removing the need of using an
external proposal generator such as Selective Search [34].

This work starts with BOICR [13] as the baseline WSOD
method. It introduces an instance aware online refinement ap-
proach (since we know the number of instances per category),
and a sub-network for estimating the number of characters to
guide the final recognition result.

III. WEAKLY SUPERVISED CHARACTER DETECTION

We present an overview of the proposed architecture and
its modules in Fig. 1. The input to our method is a “rectified”

SPP
layer

Multiple Instance Detection Network

Ba
ck

bo
ne

512xHxW

Px512x49

PxC PxC

Softmax
over classes

PxC PxC

Softmax
over proposals

PxC

Hadamard
product

C

Sum
over proposals

Two FC
layers

Proposals Feature Extraction

Px4096

Proposal
feature vector

FC
layer

FC
layer

1-st Instance Refinement

PxC+1 PxC

Softmax
over classes

FC
layer

Supervision
1-st

refinement
loss

classification
loss

k-th Instance Refinement

PxC+1 PxC

Softmax
over classes

FC
layer

Supervision

Knowledge
Distillation

PxC+1

PxC

Softmax
over classes

FC
layer

Supervision

Distillation
loss

k-th
refinement

loss

... ...

External
Localization and

Rectification

Plate corners
detection

Rectification

Selective
search

Proposals

Number of Characters Classification

number of
char loss

32xHxW
4

GAP

32xHxW

ReLU

4xHxW

ReLU

(Optional)

Fig. 1. An overview of the proposed architecture and its modules. The localization and rectification module localizes the corners of the car plate, and
these points are used to apply an affine transformation to reduce the perspective deformations of the plate in the image. The rectified image is feed in the
proposals feature extraction module, which uses an SSP layer to extract features from proposals generated by selective search. The image features extracted
using the CNN backbone are used by the number of characters classification module to estimate the number of characters present in the plate. The multiple
instance detection network module learns to select the best proposal instances and generates an image classification score. The instance refinement modules
are cascaded into k instances, and each one learns to refine instances from its predecessor result. Finally, the knowledge distillation module combines the
output of all the refinement modules to increment the detection accuracy.

LP image that corresponds to (or emulates) a fronto-parallel
view of an LP. In scenarios where the LP is already captured
in a frontal pose, any approach based on bounding boxes
can be used. However, there are approaches that can detect
the four corners of the LP (such as [1], [2], [4]), so that a
planar homography can be used to warp the detected LP to an
approximately fronto-parallel view.

Using the rectified images we train a WSOD pipeline that
learns the location of the plate characters using only the plate
string as supervision. We build our method on top of [12]
and the improvements recently proposed in [13]. We call this
process Weakly Supervised Character Detection (WSCD).

The WSCD process starts by extracting candidate proposals
from the input image using selective search [34]. We then
extract deep image features using a CNN backbone and use
these features in two streams. In the first stream, we use Spatial
Pyramidal Pooling (SPP) [35] to obtain a fixed-sized subset
of features related to each region proposal. The proposals
feature maps are then fed to two fully connected (fc) layers
and generate proposal feature vectors, which are branched into
three different stages in the same way as in [12], [13]. Second,
the CNN features feed another sub-network called “Number
of Characters Classification” that aims to estimate the number
of characters present in the image based on visual content.
Although this task could be tackled as a regression problem,
the number of characters in an LP does not vary much
(typically from 4 to 8), so we adopt a classification-based
approach. More precisely, we explore CAMs with Global
Average Pooling (GAP) [28], so that images with different
input resolutions can be used as input without resizing.

The proposal-based feature vectors are used as input by the
remaining modules. The first two modules are similar to [12],
where the first one trains a basic instance classifier, and the
second stage trains a set of K cascaded refinement modules.
We also included the refinement knowledge distillation module
proposed by [13] to extract extra knowledge from all the other
refinement modules, which has shown to improve the results
in generic visual classes provided in the Pascal VOC dataset.

A limitation in the supervision process of most WSOD
methods is that they are typically applied in a dataset where
the class labels are known, but not the number of instances
from each class (e.g., the annotation indicates that a person
exists in a given image, but does not tell how many there
are). In our adaptation to the LPR problem, we know exactly
how many category instances are present in the image because
the car plate string is given as supervision. Therefore, we
extended the adaptive supervision function proposed in [13]
to deal with more than one top-scoring supervision instance
if needed. In the rest of this section, we will explain in detail
all the employed modules and contributions.

A. Instance selection

Following [12], [13], we employ the multiple instance
detection network proposed by [11] because it presents a good
trade-off between results and difficulty of implementation. The
instance selector scores all the candidate proposals according
to the desired classes. The process starts by branching the
extracted proposal feature vectors into two streams. Each
stream classifies the proposals features using an fc layer
that produces two matrices xc, xd ∈ RC×|R|, where C is

the number of classes and |R| is the number of proposals
generated by the region proposal module (in our case, selective
search). A softmax function is applied to both matrices along
different dimensions, yielding

σ(xc)]ij =
ex

c
ij∑C

k=1 e
xc
kj

, σ(xd)]ij =
ex

d
ij∑|R|

k=1 e
xc
ik

. (1)

The interpretation of these streams is that the first one learns
the probability of proposal j belonging to class i, and the
second learns the contribution of proposal j to classify the
image as category i.

Both streams matrices are combined using element-wise
product, that is xR = σ(xc)�σ(xd) = [xRcj]. Lastly, the classi-
fication score φc ∈ (0, 1) for each class c is obtained by adding
all values over proposal dimension, i.e,. φc =

∑|R|
j=1 x

R
cj . Since

each LP image tends to present different characters (classes),
we use the multi-label cross entropy loss, defined in [12] as

Lclass = −
C∑

c=1

yc log φc + (1− yc) log(1− φc), (2)

where yc ∈ {0, 1} are the category annotations. More details
in [11]–[13].

B. Instance aware online instance refinement

Proposed in [12], the online instance refinement strategy
aims to iteratively refine the output of the instance classifier
to improve the quality of the final detection results. In contrast
with the instance classifier, each kth refinement step adds an
additional dimension for the background class. As such, the
scores for each proposal j are coded as xR,k

j ∈ R(C+1)×1,
k ∈ 1, 2, ...,K, where k is the index for the refinement,
K is the total number of cascaded refinements, and the
C + 1th dimension relates to the added background. The
score vector from the instance classifier is represented here
as xR,0

j ∈ RC×1, and is used as a starting supervision point
to the online refinement process.

The vectors xR,k
j for each refinement step (with k > 0) are

obtained passing the proposal-related feature vectors through
a single fc layer, and a softmax function is applied over all
classes.

The supervision of each refinement step k is obtained
from the scoring matrix xR,k−1 related to the previous step
and a supervision label vector is built for each proposal j
in the format Yk

j = [yk1j , y
k
2j , · · · , yk(C+1),j]

T ∈ R(C+1)×1.
As generic category-level annotations provide no information
about the number of instances in the image, authors of [12]
assume that if a category label is present in the annotation,
at least one instance of that category must be present in the
image. Therefore, the supervision process proposed by [12]
starts by selecting the top-scoring proposal for each class.
Since we know exactly the number of instances for each
category, we changed this process to take into account this
information.

Let us consider that sc is the number of annotated instances
for a given class c. When sc > 1, we must select more than one

(a) OICR [12] (b) Knowledge Dist. [13] (c) Instance Aware

Fig. 2. Effect of different supervision strategies. Green denotes the supervision
boxes, blue boxes pass the threshold (selected), red boxes fail (selected as
background), and yellow boxes are ignored in loss.

proposal for class c – one for each instance. To avoid selecting
more than one proposal for the same instance, we first apply
non-maxima suppression (NMS) to all the proposals, obtaining
a reduced set of proposals R. We then sort them in descending
order with respect to its score xR,k−1

cj ∀r ∈ R, and retrieve the
sc top-scoring proposals jk−1c1 , jk−1c2 , · · · , jk−1csc for the class c.
The set of all top-scoring proposals is denoted by Rt.

For all the remaining proposals, we must either assign it to
an existing class or to the background (class C + 1), which
is done by geometrical similarity/proximity. For a candidate
proposal j, we compute its Intersection over Union (IoU) with
all elements in Rt, and retrieve the proposal j′ ∈ Rt with the
largest IoU, which is assigned to class c′. The class c∗j assigned
to proposal j is given by

c∗j =

 c′, if λ ≤ IoU(j, j′),
C + 1, if λign ≤ IoU(j, j′) < λ
−1, otherwise

, (3)

where 0 < λign < λ < 1 are IoU thresholds. The largest
threshold λ is used to consider the two proposals being
compared as belonging to the same object, and hence present-
ing the same label. The smallest threshold is used to detect
proposals with a partial overlap λign, which are considered
background to avoid growing the object region too much. If
the overlap is smaller than λign, we use a fake label c∗j = −1
to indicate that the proposal should be ignored. The motivation
for ignoring some proposals is that sometimes the best sc
proposals for a given class do not reflect the real location of
the characters in the image (specially in early training stages),
and labeling all proposals with IOU < λ as background will
probably cause the network to classify the real locations as
background in future. We present an example of a plate with
two instances of ’1’ and the effects of different supervision
strategies in Fig. 2 .

We employed the same adaptive strategy proposed in [13]
to select the values for λ and λign. It explores a monotonically
increasing function such that more candidates are aggregated
in the beginning (since the top-proposals are typically small
and represent only a part of the object) and less at the end of
the training. This concept is also explored by [32] is a different
context. More precisely, we defined

λ =
1

2

log(s+ lb)− log lb
log(S + lb)− log lb

, (4)

where s is the current training step, S is the total of training
steeps, and lb defines the velocity that the curve grows.

Threshold λign is given by

λign = λmax − λ, (5)

where λmax defines an upper bound for λign.
After this step, all proposals j present an associated class

label, and the supervision vector Yk
j can be built. Each

element ykcj is updated using c∗j , that is, ykcj = 1 if c = c∗j
and zero otherwise. Finally, the refinement loss function is
defined as

LK
agent = −

1

|R|

|R|∑
j=1

C+1∑
c=1

wk
j y

k
cj log x

R,k
cj , (6)

where wk
r is a weight regularization term introduced to reduce

noise during the supervision and is obtained as wk
j = xR,k−1

cjk−1
c

,
which is the classification score of the proposal at the previous
refinment k − 1. The weight wk

j is set to zero if the class
assigned to proposal j is −1 according to Eq. (3), meaning
that such proposal is ignored by the loss function.

C. Knowledge distillation module

We also included the knowledge distillation module pro-
posed in [13]. This distillation module learns using a combina-
tion of the outputs from the K sequential refinement modules,
and is defined simply as

xD
cj =

1

K

K∑
k=1

xR,k
cj , (7)

where xD
cj is the supervision matrix used by the distillation

module. The module also outputs a score matrix in the format
xDk
j ∈ R(C+1)×1. To obtain xDk

j , the proposals-related feature
vector is passed through a single fc layer, and a softmax layer
is applied over the class dimension. The remaining process is
similar to the described in section III-B and the loss function
Ldestill is the same as the weighted softmax loss in Eq. (6).

D. Classification of the Number of Characters

The number of characters in an LP typically depends on the
country/region. For some regions (as the case of Brazil), the
number of characters is fixed. However, European and North
American LPs present a variable number of characters, which
should be detected at inference time.

As in a typical object detector, our WSCD approach em-
ploys a detection threshold that intrinsically defines the num-
ber of objects (in our case, characters) that will be retrieved.
The problem with a fixed threshold is that is hard to choose
an ideal value, and probably the selected threshold will not
work well for all different regions producing more or fewer
characters than the ground-truth string.

In this work, we created a branch in the network that aims
to classify the number of characters of the given image. As the
string of each training sample is given, we can use the length
of the string as the ground-truth class and train a classifier
to produce the number of characters in the image. Since our
method deals with image inputs of different sizes, we based

our character number classification branch on the CAM-based
classification presented in [28].

The process starts receiving the image feature map S ∈
Rb H

2p c×b
W
2p c×L, where bH2p c × b

W
2p c are the image height and

width adjusted to the final size after p max-pooling layers in
the backbone and L is the number channels. The feature map
S is passed through two convolutional layers of 512 channels
with the kernel size of 3×3 and Rectified Linear Units (ReLU)
as the activation function. In the sequence, a convolutional
layer with D channels and kernel size of 1× 1 (no padding),
where D is the number of classes in this module. Then, the
output is fed into a Global Average Pooling (GAP) layer
followed by a softmax activation to generate a D-dimensional
score vector η for the number of characters in the LP.

As the loss function Lnum char we used the same function
defined in Eq. (2) based on the cross-entropy, with the obvious
difference that the classes are not the same, and the ground-
truth labels are given by yc = 1 if c = #plate string.

E. Final loss function

The classification, refinement, distillation, and number of
characters modules present individual loss functions. However,
we train our model using a single loss that integrates all
individual loss functions defined by

L = Lnum char + Lclass + Ldistill +

K∑
k=1

Lk
agent. (8)

.

F. Extracting the LP string from the detections

To extract the final LP string, we first combine the output of
all the K refinement and distillation modules, i.e., we compute
the scores

xF
cj =

1

K + 1
(xD

cj +

K∑
k=1

xRk
cj), (9)

restricting the analysis to c ∈ {1, 2, · · · , C} (we discard the
background class introduced in the refinement step). We then
select the indices of the top-scoring class for each proposal

bj = argmax
c

xF
cj , (10)

and apply NMS to discard highly overlapping results, resulting
in a set of pruned detection proposals b′j sorted in decreasing
order w.r.t. the detection score.

Next, we obtain the predicted number of characters N from
score vector η as

N = argmax
n

ηn, (11)

and use it to select the N top-scoring proposals b′j for j =
1, 2, · · · , N . Note that if the number of characters in the LP is
known a priori (for instance, if we analyze only Brazilian LPs,
we know that the LP will present N = 7 characters), then the
prediction of the number of characters can be ignored. Finally,
we sort the retrieved boxes in increasing order with respect
to the horizontal coordinate xmin of the top-left corner and

OpenALPR BR OpenALPR EU OpenALPR US AOLP CCPD UFPR
OUN4297 KMB0RAK

OUZ2198 OY09FEU

PJB7392 4B39376 DCK6344

OVA1319 W0BVWMK4 6T1X874

5517RH

6237JJ

HZ6217

0533DG

A786G0

B76840

A4T885

AMZ111

K179658 AYB7892 AO11778

BAA2384 1JU1870

AYF2480 AQC5349

AYX8803

Fig. 3. Some examples of the character detected in different plate layouts. Green rectangles represents proposals that have the correct character detected,
and red rectangles are proposals with wrong character.

generate the LP string by concatenating the class predictions
of the boxes.

To handle LPs that present two rows of characters (such
as motorcycle LPs in Brazil), we first identify the detections
related to each row. We first retrieve the central vertical
coordinate vi of each detected box and compute the mean
value µ of vi in a robust manner using an α-trimmed mean
that ignores the lowest and highest values (which might be
related to outliers). Then, characters presenting vi smaller than
µ are assigned to the first row, and the others to the second
row. For each row, detections are scanned from left to right
(as described before).

IV. EXPERIMENTAL RESULTS

We conducted our experiments using datasets with LPs from
different regions, namely: Brazil, China, Taiwan, United States
and European Union. We chose to use only a subset of these
regions to train our method, and test using all regions. This
allows us to investigate how well our method can generalize
to unseen LP regions. We start describing each dataset, its
characteristics, and what modifications we made. Next, we
perform an ablation experiment to compare the effects of
our contributions to [12] when applied to the LPR problem.
Finally, we compare our model with other state-of-art methods.

A. Datasets

We use five different datasets in our experiments. Three of
them were used for both training and testing (AOLP, Fazenda,
CCPD), and the other two (OpenALPR and UFPR-ALPR) are
used to test the model. Due to the LP fonts, we used the pairs
’I’-’1’ and ’0’-’O’ as a single label each, yielding 34 classes
for character detection.

We ran an LPD method (unpublished) to extract the four
LP corners (except for CCPD, which already provides such
annotation) and rectify them to a fronto-parallel view using
a planar homography, keeping a 3 × 1 aspect ratio for cars
and 1.17 × 1 for motorcycles1. CCPD [1] contains Chinese
plates. We use 100k images to train and 20k images from
the validation set to test. AOLP [36] contains Taiwanese
plates, 1,162 images were used to train and 776 images to
test. Fazenda is a private dataset of Brazilian LPs, we used

1The train/val/test sets and detections utilized in this paper are available at
http://github.com/luiszeni/WSCD

34,584 images to train and 20k images to test. OpenALPR2

contain 112 Brazilian, 173 American and 107 European plates.
UFPR-ALPR [37] have Brazilian plates. We selected only the
motorcycle subset as a test set, which contains 783 images
after running the LPD method.

B. Implementation Details

All experiments were performed using PyTorch 1.2, and
VGG16 [38] pre-trained on ImageNet as backbone. We used
a Nvidia Titan XP GPU to train the model, being able to
process 32 rectified images per second in a single batch. The
object proposals of the rectified images are extracted using
Selective Search [34] and we filter out proposals that present
width larger than the height to remove false candidates. For
the module that estimates the number of characters in the
LP, we used five classes (4 to 8 characters). For data aug-
mentation, the rectified images were re-sized into five scales
{480, 576, 688, 864, 1200} concerning the smallest dimension.

We also added other random modifications, such as colour
changes (in HSV colour space), morphological grayscale di-
lations or erosions (that thicken or thin the LP characters),
blur and noise during the training process. We chose the SGD
algorithm with momentum 0.9, weight decay 5e−4, and batch
size 4 to optimize the weights. In the adaptive aggregation
function, we set lb = 100 and λmax = 0.51 given in Eqs. (4)
and (5). The learning rate is set to 0.001 for the first 30K
iterations and then decreases to 0.0001 in the following 20K
iterations. In test time, all the five augmented images are
passed in the network, and the outputs are averaged.

C. Ablation Experiments and Classification of the Number of
Characters

We conduct some ablation experiments to illustrate the
effectiveness of the proposed improvements over the baseline
method OICR [12] and Bosted-OICR [13]. We evaluate four
different scenarios in all datasets, and for each dataset we
evaluate three detection thresholds: “0.5” and “0.6” mean that
proposals with a score lower than this threshold are pruned
after the NMS step, and “-1” means that the top S proposals
are selected after NMS. In the first three experiments, S is
the number of characters in the annotation file, and in the
last experiment, S is the output of the network that estimates

2Available at https://github.com/openalpr/benchmarks.

http://github.com/luiszeni/WSCD
https://github.com/openalpr/benchmarks.

OpenALPR BR OpenALPR US OpenALPR EU AOLPR Fazenda CCPD val 20k UFPR Mbike
Error Method -1.0 0.5 0.6 -1.0 0.5 0.6 -1.0 0.5 0.6 -1.0 0.5 0.6 -1.0 0.5 0.6 -1.0 0.5 0.6 -1.0 0.5 0.6

0

OICR 94.64% 41.07% 35.71% 72.83% 48.55% 45.09% 41.12% 10.28% 9.35% 98.20% 69.72% 65.46% 93.86% 42.27% 38.71% 99.48% 69.02% 67.39% 78.93% 45.08% 38.83%
OICR+KD 100% 100% 100% 83.82% 76.88% 75.72% 87.85% 73.83% 77.57% 98.20% 97.55% 97.55% 94.79% 93.41% 92.76% 99.85% 99.43% 99.51% 87.10% 74.58% 75.22%
OICR+KD+MS 100% 100% 100% 84.97% 72.83% 74.57% 98.13% 82.24% 83.18% 98.71% 98.20% 98.07% 94.58% 93.23% 92.78% 99.81% 99.43% 99.52% 86.08% 70.37% 73.31%
OICR+KD+MS+cont 100% 100% 100% 53.76% 72.25% 71.68% 5.61% 68.22% 75.70% 98.07% 97.81% 97.42% 94.55% 93.12% 92.50% 99.82% 99.13% 99.25% 86.97% 74.58% 72.29%

1

OICR 100% 84.82% 78.57% 89.60% 82.66% 77.46% 63.55% 48.60% 41.12% 99.48% 97.04% 95.62% 98.41% 82.75% 80.01% 99.76% 95.44% 94.88% 92.46% 85.31% 80.33%
OICR+KD 100% 100% 100% 98.27% 96.53% 97.11% 97.20% 95.33% 96.26% 100% 99.87% 99.87% 98.93% 98.82% 98.56% 99.97% 99.96% 99.96% 97.32% 96.30% 95.53%
OICR+KD+MS 100% 100% 100% 95.95% 97.69% 97.69% 99.07% 98.13% 99.07% 99.87% 99.74% 99.74% 98.66% 98.90% 98.75% 99.96% 99.96% 99.96% 96.04% 95.27% 95.02%
OICR+KD+MS+cont 100% 100% 100% 93.06% 99.42% 98.27% 96.26% 97.20% 97.20% 99.87% 99.74% 99.74% 98.87% 98.83% 98.58% 99.98% 99.97% 99.95% 96.42% 95.79% 94.25%

TABLE I
ABLATION STUDY ACCURACY PERFORMANCE ON ALL THE DATASETS

OpenALPR BR OpenALPR US OpenALPR EU AOLP Fazenda CCPD val 20k UFPR Mbike
100.00% 64.16% 5.61% 99.61% 99.99% 100.00% 99.74%

TABLE II
ACCURACY OF THE PROPOSED NUMBER OF CHARACTERS

CLASSIFICATION MODULE.

OpenALPR CCPD UFPR
Error Method BR US EU AOLPR Fazenda v. 20k Mbike

0

LPR of [3] 98.21% 69.36% 85.98% 94.20% 73.85% 58.45% 0.26%
LPR of [7] 98.21% 94.80% 99.07% 99.10% 86.57% 68.28% 84.93%
pretrained STR [39] 4.46% 0.57% 0% 31.82% 0.33% 0.15% 0%
retrained STR [39] 98.21% 34.68% 4.67% 97.68% 97.23% 99.86% 0.26%
OICR+KD+MS+cont 100% 53.76% 5.61% 98.07% 94.55% 99.82% 86.97%
OICR+KD+MS th=0.5 100% 72.83% 82.24% 98.20% 93.23% 99.43% 70.37%

1

LPR of [3] 100% 94.80% 98.13% 99.61% 93.74% 89.66% 0.26%
LPR of [7] 100% 99.42% 100% 99.87% 97.66% 94.69% 95.66%
pretrained STR [39] 9.82% 3.46% 9.34% 54.12% 1.71% 34.58% 0%
retrained STR [39] 100% 69.36% 28.97% 99.09% 99.84% 99.98% 12.13%
OICR+KD+MS+cont 100% 93.06% 96.26% 99.87% 98.87% 99.98% 96.42%
OICR+KD+MS th=0.5 100% 97.69% 98.13% 99.74% 98.90% 99.96% 95.27%

TABLE III
COMPARISON WITH OTHER STATE OF ART METHODS.

the number of characters. For all methods, we evaluate the
accuracy w.r.t. the edit error between the detected and GT
strings: Error 0 demands exact string match, and Error 1 allows
a one-character error tolerance.

Table I shows that applying OICR [12] to LP images does
not yield good results, particularly for datasets that were not
present in the training set. Including the knowledge distilla-
tion and the adaptive function proposed in [13] (OICR+KD)
improves the results in OpenALPR BR (5.36%), OpenALPR
US(10.98%), OpenALPR EU (46.73%), Fazenda (0.92%),
CCPD (0.36%) and UFPR (8.17%) when considering Error
0 and threshold: -1. Including the number of instances in the
supervision as described in Sec. III (OICR+KD+MS) yields a
small improvement in unseen datasets OpenALPR US (1.16%)
and AOLPR (0.52%), and a higher gain for OpenALPR EU
(10.28%). Finally, we evaluate the results using our character
count classification module to select the top s proposals,
instead of relying on a fixed threshold (or knowing a priori
the number of characters in the LP). The full accuracy results
(Error 0) were very good for datasets present in the training
step and also for OpenALPR BR and UFPR (which contains
motorcycle LPs), being better than using a fixed threshold in
most of these datasets. Results were bad for OpenALPR US
and EU when evaluating full accuracy, but considerably better
when using the one-character tolerance. In fact, Table II shows
the accuracy of the classifier that estimates the number of
characters for all datasets. The accuracy is great for datasets
present in the training set and also for OpenALPR BR and
UFPR, which were not present in the training data but contain
Brazilian LPs, as dataset Fazenda. On the other hand, results
for ALPR EU and US were bad, which indicates overfitting
(we believe that the network is actually learning the LP
region/layout instead of effectively counting the number of

characters).

D. Comparison with state-of-the-art

We compare our method with three other state-of-the-art
methods for both generic text recognition and LPR, and results
are shown in Table III. “pretrained STR” is the pre-trained
generic text recognition approach presented in [39], which per-
forms really bad in all datasets. We believe that this behavior is
related to the LSTM memorizing the sequence of the datasets
where it was trained. We also retrained this model with our
datasets, which considerably improves the accuracy. However,
the generalization abilities in unseen datasets is disappointing,
and it is unable to handle motorcycle LPs (characters in two
rows). Quoting the authors of [39], “Dataset Really Matters
in STR”. We also evaluate the fully-supervised methods [4]
and [7] in all datasets, which are based on object detectors
and trained with character bounding box annotations. In [4],
LPs from different regions (Brazilian, Taiwanese, European)
were used to train the model with the help of synthetic
images. In [7], the authors also explore LPs from different
regions (Brazilian, Taiwanese, English, Chinese) and data
augmentation to increase variability. Using thresold: -1, our
method overperforms all other methods in the UFPR dataset
and has very competitive results in the AOLPR, Fazenda
and CCPD datasets. As discussed before, the classification
of the number of characters is bad for Open ALPR EU and
US, which compromises our final results for these datasets.
However, if using threshold: 0.5 (OICR+KD+MS th=0.5) our
results are competitive as well in these datasets.

V. CONCLUSIONS

We presented a weakly supervised character detection
(WSCD) method for License Plate Recognition (LPR). Our ap-
proach requires string-level annotation (as [39]) but is able to
produce detection-level outputs (as [4], [7]). Our experimental
results indicate that the proposed method is able to produce
state-of-the-art results for several datasets, and shows good
generalization capabilities for WSCD. However, the module
that classifies the number of characters seems to be overfitting.

As future work, we intend to explore other approaches for
selecting region proposals as alternatives to Selective Search.
One possibility is to use Maximally-Stable Extremal Region
(MSER), which was already explored in the context of text
spotting [40]. We also plan to include the errors done in
the rectification phase into the evaluation metrics and use
the bounding boxes predicted by our model to train object
detectors, so that our WSOD would bridge the gap between
string-level and character-level annotations.

ACKNOWLEDGMENT

The authors would like to thank the funding agency CAPES
(Finance Code 001), as well as NVIDIA Corporation for the
donation of the GPU used in this research.

REFERENCES

[1] Z. Xu, W. Yang, A. Meng, N. Lu, and H. Huang, “Towards end-to-end
license plate detection and recognition: A large dataset and baseline,”
in European Conference on Computer Vision, 2018, pp. 255–271.

[2] T. Björklund, A. Fiandrotti, M. Annarumma, G. Francini, and E. Magli,
“Robust license plate recognition using neural networks trained on
synthetic images,” Pattern Recognition, vol. 93, pp. 134–146, 2019.

[3] S. M. Silva and C. R. Jung, “Real-time brazilian license plate detection
and recognition using deep convolutional neural networks,” in Confer-
ence on Graphics, Patterns and Images, Oct 2017, pp. 55–62.

[4] ——, “License plate detection and recognition in unconstrained scenar-
ios,” in 2018 European Conference on Computer Vision (ECCV), Sep
2018, pp. 580–596.

[5] ——, “Real-time license plate detection and recognition using deep
convolutional neural networks,” Journal of Visual Communication and
Image Representation, p. 102773, 2020.

[6] R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves,
W. R. Schwartz, and D. Menotti, “A robust real-time automatic li-
cense plate recognition based on the YOLO detector,” CoRR, vol.
abs/1802.09567, 2018.

[7] R. Laroca, L. A. Zanlorensi, G. R. Gonçalves, E. Todt, W. R. Schwartz,
and D. Menotti, “An efficient and layout-independent automatic license
plate recognition system based on the YOLO detector,” arXiv preprint,
vol. arXiv:1909.01754, pp. 1–14, 2019.

[8] Z. Cheng, F. Bai, Y. Xu, G. Zheng, S. Pu, and S. Zhou, “Focusing
attention: Towards accurate text recognition in natural images,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 5076–5084.

[9] T. Wang, Y. Zhu, L. Jin, C. Luo, X. Chen, Y. Wu, Q. Wang, and M. Cai,
“Decoupled attention network for text recognition.” in AAAI, 2020, pp.
12 216–12 224.

[10] J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S. J. Oh, and
H. Lee, “What is wrong with scene text recognition model comparisons?
dataset and model analysis,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 4715–4723.

[11] H. Bilen and A. Vedaldi, “Weakly supervised deep detection networks,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2846–2854.

[12] P. Tang, X. Wang, X. Bai, and W. Liu, “Multiple instance detection
network with online instance classifier refinement,” Proceedings - 30th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, vol. 2017-January, pp. 3059–3067, 2017.

[13] L. F. Zeni and C. R. Jung, “Distilling knowledge from refinement
in multiple instance detection networks,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp. 768–
769.

[14] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene
text recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 11, pp. 2298–2304, 2016.

[15] T. M. Breuel, “High performance text recognition using a hybrid
convolutional-lstm implementation,” in 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), vol. 1.
IEEE, 2017, pp. 11–16.

[16] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[17] F. Bai, Z. Cheng, Y. Niu, S. Pu, and S. Zhou, “Edit probability for scene
text recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 1508–1516.

[18] H. Li and C. Shen, “Reading Car License Plates Using Deep Convolu-
tional Neural Networks and LSTMs,” arXiv preprint arXiv:1601.05610,
jan 2016.

[19] H. Li, P. Wang, and C. Shen, “Toward end-to-end car license plate de-
tection and recognition with deep neural networks,” IEEE Transactions
on Intelligent Transportation Systems, vol. 20, no. 3, pp. 1126–1136,
2018.

[20] M. Yousef, K. F. Hussain, and U. S. Mohammed, “Accurate, data-
efficient, unconstrained text recognition with convolutional neural net-
works,” Pattern Recognition, p. 107482, 2020.

[21] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, jul 2017, pp. 6517–6525.

[22] Y. Lee, J. Lee, H. Ahn, and M. Jeon, “Snider: Single noisy image
denoising and rectification for improving license plate recognition,” in
Proceedings of the IEEE International Conference on Computer Vision
Workshops, 2019, pp. 0–0.

[23] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[24] K. Li, Z. Wu, K.-C. Peng, J. Ernst, and Y. Fu, “Tell Me Where to
Look: Guided Attention Inference Network,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition. IEEE, jun 2018, pp.
9215–9223.

[25] R. G. Cinbis, J. Verbeek, and C. Schmid, “Weakly supervised object
localization with multi-fold multiple instance learning,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 39, no. 1, pp.
189–203, 2016.

[26] D. Li, J.-B. Huang, Y. Li, S. Wang, and M.-H. Yang, “Weakly Supervised
Object Localization with Progressive Domain Adaptation,” 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3512–3520, 2016.

[27] P. Tang, X. Wang, S. Bai, W. Shen, X. Bai, W. Liu, and A. L. Yuille,
“Pcl: Proposal cluster learning for weakly supervised object detection,”
IEEE transactions on pattern analysis and machine intelligence, 2018.

[28] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Computer Vision and
Pattern Recognition (CVPR), 2016 IEEE Conference on. IEEE, 2016,
pp. 2921–2929.

[29] A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van Gool,
“Weakly supervised cascaded convolutional networks,” Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, vol. 2017-Janua, pp. 5131–5139, 2017.

[30] Y. Wei, Z. Shen, B. Cheng, H. Shi, J. Xiong, J. Feng, and T. Huang,
“Ts2c: Tight box mining with surrounding segmentation context for
weakly supervised object detection,” in European Conference on Com-
puter Vision (ECCV), 2018, pp. 434–450.

[31] F. Wan, P. Wei, Z. Han, J. Jiao, and Q. Ye, “Min-Entropy Latent Model
for Weakly Supervised Object Detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2019.

[32] F. Wan, C. Liu, W. Ke, X. Ji, J. Jiao, and Q. Ye, “C-MIL: Continuation
Multiple Instance Learning for Weakly Supervised Object Detection,”
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1, pp. 2199–2208, 2019.

[33] P. Tang, X. Wang, A. Wang, Y. Yan, W. Liu, J. Huang, and A. Yuille,
“Weakly supervised region proposal network and object detection,” in
European conference on computer vision, 2018, pp. 352–368.

[34] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International journal of com-
puter vision, vol. 104, no. 2, pp. 154–171, 2013.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[36] G.-S. Hsu, J.-C. Chen, and Y.-Z. Chung, “Application-oriented license
plate recognition,” IEEE transactions on vehicular technology, vol. 62,
no. 2, pp. 552–561, 2012.

[37] R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves,
W. R. Schwartz, and D. Menotti, “A robust real-time automatic license
plate recognition based on the YOLO detector,” in International Joint
Conference on Neural Networks (IJCNN), July 2018, pp. 1–10.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[39] J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S. J. Oh, and H. Lee,
“What is wrong with scene text recognition model comparisons? dataset
and model analysis,” in International Conference on Computer Vision
(ICCV), 2019.

[40] W. Huang, Y. Qiao, and X. Tang, “Robust scene text detection with
convolution neural network induced mser trees,” in European conference
on computer vision. Springer, 2014, pp. 497–511.

	Introduction
	Related Work
	Optical Character Recognition
	Licence Plate Recognition
	Weakly Supervised Object Detection

	Weakly Supervised Character Detection
	Instance selection
	Instance aware online instance refinement
	Knowledge distillation module
	Classification of the Number of Characters
	Final loss function
	Extracting the LP string from the detections

	Experimental results
	Datasets
	Implementation Details
	Ablation Experiments and Classification of the Number of Characters
	Comparison with state-of-the-art

	Conclusions
	References

