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Abstract—In several countries the wild boar is an invasive
species that remains widespread mainly due its adaptability
and uncontrolled reproduction. The monitoring of populations
of this pest by camera traps is a promising technique. These
devices capture a large variety of animals, including native species
that share similarities with the wild boar, therefore the precise
identification of the animal species is essential to control the
wild boars. To address this problem, we evaluated 18 different
texture analysis methods on their ability to discriminate between
two native “bush pigs” species of the Brazilian fauna, collared
peccary (Pecari tajacu) and white-lipped peccary (Tayassu pecari),
and one invasive species, wild boar (Sus scrofa). Results show that
species identification is a difficult task due to the similarities
among classes, being the distinction between native and invasive
species an easier task, and that combining of texture methods
improves the accuracy while it diminishes the number of false
positives (i.e., native species classified as invasive).

I. INTRODUCTION

The wild boar (Sus scrofa) is a species originally from
Eurasia and thereafter spread due to human intervention,
making it the most widespread swine [1]. The species is
present in all continents, except Antarctica, either in the wild
or the feral form [2], descending from escaped domesticated
swines.

Despite overhunting and alterations in land use, the species
remains widespread and abundant, being considered a pest in
several countries, as result of its adaptability, uncontrolled
reproduction [3], depredation on crops and possibility of
disease contagion to other species [4], including native species
of swine. In 2017, the Brazilian government published and it
is executing a plan for the monitoring of wild boars [5].

A straightforward strategy for the task of monitoring is the
use of camera traps. Such devices work 24 hours a day with
the aid of infrared sensors during the night-time hours and use
movement sensors to take pictures of wild animals or record
videos.

Among the pictures taken, several species of wild animals
are registered, producing large quantities of images every
day. In special, we can mention two native species of “bush
pigs” commonly found in almost the entirety of Brazilian
territory: the collared peccary (Pecari tajacu) and the white-
lipped peccary (Tayassu pecari). Both species are physically
very similar to the invasive wild boar, therefore the precise

identification of what animal is in a picture is essential to the
control of wild boars.

Separating the wild boar from its similar counterparts is a
difficult task, specially due the wide range of circumstances
images such as the obtained from camera traps are subject
to, e.g. due to noise, motion blur, low contrast, occlusions,
cropped data, etc. Pattern classification, computational vision
and image processing are essential on this task.

In this paper, we evaluate 18 texture analysis methods
applied to the classification of the wild boar, as well as
the native South American “bush pigs”, the collared peccary
and the white-lipped peccary, chosen according to aspects
such as applicability, novelty and efficiency. Firstly, we use
those methods to extract texture descriptors for each image
belonging to the dataset. The number of descriptors varies
from method to method. Afterwards, we approach the classifi-
cation task of identifying the animal species using K-Nearest
Neighbors (KNN), and Linear Discriminant Data (LDA) [6].
The paper organization is: in the Section II, we discuss the
literature focused on identifying wild animals. Section III
presents details of the dataset, and describes the texture anal-
ysis and classifiers adopted. Section IV presents and discusses
our results. In Section V we present our concluding remarks.

II. RELATED WORK

Animal identification is a recurrent theme in the literature
of computer vision and image processing. In contrast to plant
biology, the identification task is less complex, owing to the
fact that animal species present well-defined morphological
patterns. Indeed, this is a field with a great deal of attention.

Sharma and Shah [7] studied cow detection in images
using Histogram Oriented Gradients (HOG). The effect of
the distance from the animal to the capturing device is also
explored. Another study that focuses on the detection of cows
is ref. [8], in which Haar features are used along with cascade
classification. In [9], the detection of wild animals used both
shape and texture attributes extracted from animal heads. A
new set of attributes is proposed, which the authors refer to
as Haar of Oriented Gradients (HOOG), later used with an
AdaBoost classifier to find the species.

Wildlife images from the Internet are classified in [10],
where a segmentation step is combined to the responses gen-



erated by Gabor filters. The use of distinct attribute selection
methods is also addressed. Ding et al. [11] use a convolutional
neural network (CNN) to identify four species of fishes using
a dataset obtained from the web.

In [12], Support Vector Machines (SVM) classified regions
with distinct color patterns to identify elephants. The detection
method of large animals in aerial images by [13] introduces
a semi-supervised shape recognition approach employing the
wavelet transform and fuzzy neural networks. In [14], the
authors detect cattle from aerial images [14]. They achieved
good results for different CNNs. Similarly, [15] applied CNNs
for detecting wildlife animals from UAV aerial data. A
CNN approach is also used by [16], where the task is the
identification of individual pigs based on face recognition.
The authors adopted Haar feature-based classifiers to detect
physical characteristics such as face details and eyes, achieving
an accuracy higher than 80% in the best case.

Deep learning techniques are used in [17] to classify animal
species captured by camera traps. Such techniques successfully
automated the task of labeling the images. In [18], shape
analysis worked sucessfully for detecting of seals in thermal
images. In [19], the authors detect bears based on shape and
movement attributes.

As we can see from the literature, computational tech-
niques allow that several features, not manually possible to
measure practice, extracted and then used to identify and
classify animal species. Such attributes extend and improve
the information about the dataset, yielding to a more effective
identification. To the best of our knowledge, the environmental
issue of the spreading of both the wild boar and its feral form is
not yet discussed in the context of image processing, although
some related works mention the species [20], [21]. Therefore,
we believe this paper is the first to address the identification
of wild boars and two of its similar but native counterparts,
the collared and the white-lipped peccaries.

III. MATERIAL AND METHODS

A. Dataset

We collected for this study images of three different species
of wild animals: the invasive wild boar (Sus scrofa); and the
native collared peccary (Pecari tajacu) and white-lipped pec-
cary (Tayassu pecari). Despite belonging to distinct families –
the invasive species belongs to Suidae family, while both the
native ones are representative of Tayassuidae family, all the
three species present very similar appearance and behavior,
making the visual identification of each species a given animal
belongs to a difficult task, even for humans. Figure 1 illustrates
how similar these animals are in appearance.

The dataset has 900 images, 300 for each species. Condi-
tions are diverse, ranging from the capture device (e.g. camera
trap, smart phone, etc.) to aspects such as noise, sharpness,
dimensions and color information (e.g. colored, grayscale).
We cropped the images to a size of 224 × 224 pixels, and
considered them as RGB images, even in the case of the
grayscale samples. We considered this image size as it was

the minimum square region that could be cropped from some
images withouth resizing them.

A human oracle – an expert – labeled all the images, clas-
sifying each one as either wild boar or its native counterparts.
The entire dataset was checked to eliminate the presence of
artifacts in the images.

B. Texture Analysis Methods

Over the years, researchers in the area proposed a vast
number of texture analysis methods. Among them, we selected
18 methods based on their good results reported, wide range of
applications and novelty. A brief description of each method
follows:

• First-order: from the image histogram, we computed
mean, variance, kurtosis, energy and entropy features,
totaling 5 descriptors;

• Haralick [22]: this method uses the joint probability
distributions between pairs of pixels at a given distance
and direction to describe the image content. For this
work we considered non-symmetric matrices with θ =
{0◦, 45◦, 90◦, 135◦} and distances d = {1, 2}. Energy
and entropy are computed from each matrix, totaling 16
descriptors;

• Fourier descriptors [23]: given an image, we applied
the bi-dimensional Fourier transform. After applying the
shifting operator over the resulting spectrum, we were
able to compute 111 spectrum descriptors. We computed
each descriptor as the sum of all absolute coefficients at
the same radial distance from the center of the image;

• Gabor filters [24]: from the mathematical procedure and
the parameter values proposed in [25], we created a set
of filters applied over the input image, where each filter
is obtained by modulating a 2D Gaussian function with
a sinusoid with different orientations and frequencies. In
the experiments we used 4 scales, 6 rotations, and lower
and upper frequencies of 0.04 and 0.5, respectively, thus
totaling 48 descriptors;

• Wavelet descriptors [26], [27]: from the input image we
computed 3 dyadic decomposition using Daubechies 4.
For each decomposition we computed energy and entropy
from horizontal, vertical and diagonal detail coefficients,
totaling 18 descriptors;

• Gray Level Dependence Matrix (GLDM) [28]: this
method uses the frequency of occurrence of two pixels
with a determined absolute difference in intensity given
a specific distance and intersample space. In this work
we used 4 distances ((0, d),(−d, d),(d, 0), and (−d,−d))
and 3 intersample spaces (1, 2 and 5). Then, from each
estimated probability-density function we computed 5
measurements (contrast, angular second moment, entropy,
mean, and inverse difference moment), totaling 60 de-
scriptors;

• Discrete Cosine Transform (DCT) [29]: from 3 1D DCT
basis vectors (U1 = [1, 1, 1]T , U2 = [1, 0,−1]T , and
U3 = [1,−2, 1]T ) we computed 8 3×3 DCT masks. After



Fig. 1. Animal species in the dataset. From top to bottom row: wild boar (Sus scrofa); collared peccary (Pecari tajacu); white-lipped peccary (Tayassu pecari).

applying each mask to the input image we computed the
local variance of the output, totaling 8 descriptors;

• Local Binary Patterns (LBP) [30]: this method describes a
texture based on local binary patterns, which relates to the
spatial configuration of local characteristics of an image.
From these patterns, it is possible to compute histograms
of their occurrences and use them as descriptors. In
our experiments we used three different configurations,
(P,R) = {(8, 1), (16, 2), (24, 3)}, thus leading to three
histograms;

• Complex Network Texture Descriptor (CNTD) [31]:
based on the complex network theory, this approach
models a texture pattern as a network. A feature vector
describes the texture by using the properties of the
original network submitted to dynamic transformations.
In this work, we used radius r = 3 to model the original
network and generated 36 transformations. Then, we
computed energy, entropy and contrast, thus resulting in
108 descriptors;

• Lacunarity [32]: initially proposed for binary images, and
later extended to grayscale images, this method uses the
spatial dispersion of gaps of a specific size to measure
and describe a texture pattern. For the experiments we
used a gliding-box with two threshold approaches (local
and global). For each approach the number of thresholds
was defined to maximize the accuracy in the dataset;

• Lacunarity 3D [32]: this method extends the gliding-box
approach from lacunarity to analyze the gray level inten-
sity as a third dimension of the image, thus computing
the number of gaps in a 3D grid. Likewise to lacunarity,
the number of thresholds was defined to maximize the
accuracy;

• Fractal Descriptors from Local Binary Patterns
(LBP+FD) [33]: This method combines image patterns
obtained using LBP with Bouligand-Minkowski fractal
dimension as a way to extract meaningful information
from an input image. This approach computes N = 11
LBP patterns and it extracts 8 fractal dimension values

from each, totaling 80 descriptors;
• Randomized Neural Network (RNN) descriptors [34]:

this method uses local texture patterns to train an RNN,
later using the weights of the output neuron layer to
describe the original texture image. In this work, we used
two approaches, with and without rotation invariance,
totaling, respectively, 30 and 150 descriptors;

• Tourist Walk [35]: this algorithm considers the image
pixels as cities explored by tourists. They can move
from city to city by going to the nearest (or farthest)
city not visited in the last µ time steps. Considering the
specification described in [35], we were able to compute
48 descriptors.

C. Classifier

After computing the texture features from the image dataset,
it is necessary to classify them in their respective classes. In
this paper we evaluated two different approaches of classifiers:
K-Nearest Neighbors (KNN) and Linear Discriminant Analy-
sis (LDA) [6]. A brief description of each classifier follows:

• K-Nearest Neighbors (KNN): this is an instance-based
classifier which uses a voting scheme to classify a sample.
Given an input sample, this algorithm finds out the K
closest samples from the training set based on a similarity
metric and it attributes to the test sample the class present
in most of the K selected samples. In our experiments,
we used Euclidean distance as metric and K = 1 with
standardized features;

• Linear Discriminant Analysis (LDA): this is a statistical
classifier that uses the mean vector of each class and the
covariance matrix of the dataset to compute hyperplanes
that separate the samples into their respective classes.

For both classifiers we used leave-one-out as the validation
scheme. This approach considers each single sample as a test
set, while the remaining samples compose the training set. This
procedure is repeated until all samples are used as test sets.
At the end, we reported the number of test samples correctly
classified as the accuracy of the method being evaluated.



IV. RESULTS AND DISCUSSION

First, we evaluated each texture analysis method indi-
vidually. We considered two scenarios: i) images classified
according to the animal species (3 classes) and ii) images
classified as wild boar or bush pig (2 classes). The LDA and
KNN classifiers were also evaluated in both scenarios.

As we can see in Table I, LDA classifier presents a superior
performance in most cases when compared with the KNN
classifier and this difference of performance intensifies when
dealing with wild boar/bush pig classification. We also noticed
that classifying images into 2 classes is an easier problem than
the species identification, given that all texture analysis meth-
ods present a substantially superior performance regardless of
the classifier used.

Regarding the attribute used to discriminate the images, we
noticed that the number of classes involved in the problem
and the type of classifier affect the performance of each
texture method, so that no method gets the best result in more
than one test. More traditional methods (such as Gabor filters
and GLDM) present better results when dealing with wild
boar/bush pig classification, while more recent approaches are
superior for species identification. A possible explanation for
this lies in the fact that these approaches combine different
types of attributes into a single feature vector. That is the
case of LBP+FD method, which combines the analysis of
local binary patterns (LBP) with complexity analysis by fractal
dimension (FD).

We also evaluated whether combining of different texture
analysis methods improves the accuracy in each scenario.
Since we have 18 methods, it would be time-consuming to
evaluate all 218 combinations of methods. Thus, to the best
combination we used Particle Swarm Optimization (PSO) [36].
This algorithm describes a solution of a given problem as
a particle at position [X(1), X(2), . . . , X(D)] in the search
space, where D is the number of dimensions. A measure of
quality is also used to move the particles in the search space
to improve a candidate solution. In our case, D = 18 is the
number of dimensions (texture methods) in the search space
and the measure of quality is the accuracy obtained by the
classifier. During the execution of the PSO we considered
that an i-th texture method is included in the combination
of methods if X(i) ≥ 0.5.

Table II shows the methods selected by PSO for each
scenario. In general, we noticed that the KNN needs more
methods, and so it produces a larger feature vector, to improve
its classification result. Table III shows the results obtained
from these combinations of methods. We noticed a small gain
in the success rate regardless of the number of classes and
the classifier used. However, this gain follows a substantial
increase in the number of attributes used, mainly for the KNN,
where 5.56% gain in the success rate requires 9.1× more
attributes.

Another important aspect of our problem refers to the
number of false positive (i.e., collared peccary or white-lipped
peccary classified as wild boar). For our given problem, the

false positives must never occur (ideal case) or occur with a
very low probability, while it is tolerant of false negatives (i.e.,
wild boar classified as collared peccary or white-lipped pec-
cary). Figures 2 and 3 show the confusion matrices obtained
for the best single method and best combination of methods
for problems involving three and two classes, respectively.

When we consider the task of identifying of the animal
species (3 classes problem), the KNN classifier produces a
slightly lower rate of false positives, despite presenting a
lower accuracy than the LDA. Differently, for the problem
involving the wild boar/bush pigs classification, the LDA
classifier presents a substantially better result.

V. CONCLUSION

This paper addressed the problem of “bush pigs” iden-
tification in real-world footage. During the experiments we
considered two native species of the Brazilian fauna, collared
peccary (Pecari tajacu) and white-lipped peccary (Tayassu
pecari), and one invasive species, wild boar (Sus scrofa).
We evaluated the performance of different texture methods
in two scenarios: to identify the correct animal species and to
discriminate only between native and invasive species. Results
showed that the discrimination between native/invasive species
is an easier task than the identification of the species and
that combining texture methods improves the accuracy while
decreasing the number of false positives (i.e., native species
classified as invasive ones). As future work, we intend to test
more texture analysis methods and how they perform when
in combination with other methods, as also other classifiers,
such as SVM.
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