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Abstract—In direct volume rendering, the use of transfer
functions allows the visualization of specific parts of the vol-
ume, revealing significant structures such as boundaries between
different materials. To interactively specify an adequate transfer
function is a very challenging and time-consuming task. Besides,
a user can settle with a transfer function that does not reveal
the overall structure inside the volume. Hence, the importance
of generating adequate transfer functions automatically. Since
Kindlmann and Durkin’s seminal work on the semi-automatic
generation of transfer functions, many research works have
been conducted attempting to improve their proposal. Despite
some fine resulting visualizations, many of these works aimed to
diminish the problem of boundary overlaps, in the data domain,
by using two-dimensional transfer functions, thus decreasing the
focus on the automatic generation and leaving to the user, again,
the task to manually isolate isosurfaces. Moreover, fine-tuning
two-dimensional transfer functions is less intuitive than adjusting
one-dimensional ones. This paper redirects Kindlmann and
Durkin’s concepts of boundary characterization and proposes a
new method to automatically generate one-dimensional transfer
functions, more robust to boundary overlaps. This work also
suggests a rendering filter to isolate detected isosurfaces in the
visualization.

I. INTRODUCTION

A transfer function is an essential component of direct volume
rendering. It specifies the contribution of each voxel to the final
rendered image. Usually, it is a mapping from scalar value to
color and opacity. With the help of an interactive interface,
one may manually find an adequate transfer function that
reveals the volume boundaries; however, since this is mainly
a trial and error process, it requires some time and minimum
knowledge about the investigated data. Not surprisingly, (semi)
automatic generation of transfer functions is the subject of
ongoing researches over the last 20 years.

In 1998, Kindlmann and Durkin [1] significantly improved
the automatic detection of boundaries in volume data. They
started by characterizing an ideal boundary as a step function
blurred by a Gaussian. By computing directional derivatives
of the scalar value within the volume, they proposed a strategy
to set opacity values to boundary voxels automatically. Their
work is of great importance for the area. However, because
their proposal relies on average derivative values, it does not
adequately handle overlapping boundaries, where two or more
boundaries have overlapping ranges of values in the data

domain. Several later works have tried to improve Kindlmann
and Durkin’s method but invariably ended up suggesting the
use of two-dimensional transfer functions, thus decreasing the
focus on the automatic generation and giving attention to user-
friendly guided interfaces. Interactivity became an essential
component of these approaches.

In this paper, we revisit Kindlmann and Durkin’s boundary
model and propose adjustments to their method, obtaining an
improved procedure to detect boundary voxels. Our approach
is more robust for handling boundary overlaps and is capable
of automatically generating effective 1D transfer functions.
The generated transfer function reveals the overall structure
within the volume data, assigning a single strength value
to each detected boundary. As a consequence, we can offer
a simple user interface for turning on/off each isosurface
and controlling a Gaussian thickness function associated with
the boundaries. The interface provides an intuitive way of
adjusting the visualization; in general, no search for unrevealed
boundaries is necessary.

For rendering, we set an automatic filter to avoid wrong
rendering of overlapping boundaries. We also need a filter
based on the gradient threshold to prevent rendering of noisy
isovolumes.

The rest of this paper is organized as follows. In Section II,
we briefly describe other important works that have been
published on (semi) automatic generation of transfer functions.
Section III reviews in detail the method proposed by KindlI-
mann and Durkin [1] while, in Section IV, we present our
proposal. The results achieved using our method are shown
and discussed in Section V, followed by concluding remarks
in Section VI

II. RELATED WORK

Kindlmann and Durkin’s proposal [1], further detailed in
Section III, defines a conceptual boundary model. By cor-
relating the first and the second average derivatives, their
method extracts a 1D transfer function. The volume boundaries
are identified by arches in a 2D histogram that stores the
occurrences of each pair of a scalar value and first derivative.
Kindlmann and Durkin’s proposal [1] immediately showed its
application in the area of automatic transfer function synthe-
sis [2]. However, the crossing of two or more arches indicates



boundary overlaps in the data domain, which disturbs the
correct boundary detection by their method. The 1D transfer
function is replaced by a 2D version to handle boundary
overlaps, where a “lasso” tool is suggested to select each
boundary individually. In this context, Kniss et al. [3] [4]
improved the user interface to manipulate the transfer function
better over a 2D domain, which is also proposed by Wang et
al. [5] and Zou et al. [6].

Searching for a new data domain to generate transfer
functions, Pekar et al. [7] proposed the use of different average
curves to identify boundaries, as isosurface area, isosurface
curvature, and total gradient divided by curvature. Similarly,
Tenginakai et al. [8] indicate boundary isovalues with local
high order moments. Both works present a 2D histogram
where boundaries are revealed by patterns different than
arches, but no transfer function is generated automatically.

Distant from 2D histograms, Park and Bajaj [9] use a ray-
tracing to eliminate the averages of Kindlmann and Durkin’s
method by locally applying their concepts, thus obtaining
a spatial transfer function. This approach is more truthful
to volume variations, hardly showing displaced boundaries.
However, it is a technique susceptible to noisy volumes. Also,
it is difficult to provide a way for the user to fine-tune the
results.

Lum and Ma [10] proposed extracting transfer functions
from a different 2D histogram, storing the pair of scalar
values next to each voxel, in the gradient direction. The new
histogram identifies boundaries as lines instead of arches,
decreasing overlaps in the histogram space. Nevertheless, the
new domain still allows lines to cross each other, which does
not entirely prevent missing boundary overlaps. Besides, the
proposed method is not automatic, as it requires the user to
select regions in the histogram.

Many works followed this search for a new transfer function
domain. For instance, Sereda et al. [11] proposed the LH
histogram, which presents boundaries as circular regions,
while Haidacher et al. [12] proposed to use the mean and
standard deviation to generate a 2D statistical transfer function
with both line and dot representations.

Takahashi et al. [13] proposed the topological volume
skeletonization; they presented a data-centric approach that
extracts topological structure from the volume. More recently,
Lan et al. [14] use the automatic detection of Kindlmann and
Durkin [1] with additional steps that evaluate spatial connec-
tivity to handle boundary overlaps in the data domain. Their
method separates every structure that is not spatially connected
and allows the user to select connected structures so that they
can be separated through a segmentation process. Ponciano
et al. [15] propose a method with a similar goal, where the
volume is classified automatically in different regions in a 2D
histogram, then, using a graph-based approach, histogram re-
gions can be merged or divided, according to user interaction.
Despite the potential to generate useful visualizations, Lan et
al. [14] and Ponciano et al. [15] do not improve the transfer
function generation itself. Therefore, the automatic generation
of transfer functions remains a challenging research topic.

Ljung et al. [16] provided an overview of research on trans-
fer functions for volume rendering. They opted for classifying
the research into six aspects: dimensionality, derived attributes,
aggregated attributes, rendering aspects, automation, and user
interfaces. Although all these aspects are all correlated, in
this work, we focus on automation: our main goal is to
provide a robust automatic procedure to generate an initial
transfer function. There are two main methods to automatically
generate transfer functions: differential geometry-based (or
boundary-based) methods, such as the ones employed in the
aforementioned works [1] [7] [8], and differential topology-
based (or structure-based) methods, such as the ones adopted
in [13], [14], and [15]. Recently, Yu and Yu [17] try to
combine the advantages of both boundary-based and structure-
based methods introducing the use of the standard deviation
of ambient occlusion for transfer function generation. Some
methods try to gain knowledge using machine learning to
better design transfer functions [18], [19], [20].

Here, we strive on the classical boundary-based approach,
searching for a yet simple but more effective method. We
also set as a goal to work with 1D transfer functions; it is
indubitably easier to comprehend for regular users, and it is
also the available tool in software packages [21] [22] [23].

III. BOUNDARY CHARACTERIZATION
A. Semi-automatic transfer function

Kindlmann and Durkin [1] assume the behavior of an ideal
boundary between two different materials as a high variation
of the scalar value, resulting in an abrupt change of material
density, blurred in the data acquisition process. Thus, a math-
ematical model to express the scalar value variation across
a boundary can be achieved by the convolution of the step
function with a Gaussian kernel.

The generic mathematical representation of an ideal bound-
ary between two materials, according to Kindlmann and
Durkin, follows the equation:

L+ erf(=25)
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where v,,,;, and v,,4, are the scalar values of each material,
and erf is the error function.

Because of the boundary blurriness, there is a range of
values that lies between v,,;, and v,,,,. This range can be
seen as a set of isosurfaces between two isovolumes, where
each one of these isosurfaces is a more or less accurate repre-
sentation of the boundary. The isosurface that better represents
the ideal boundary is the one that holds the maximum variation
of the scalar value between the two isovolumes. Therefore,
the exact position of the ideal boundary can be found at the
point where the first derivative is maximum, and the second
derivative is zero. Figure 1 shows an ideal boundary f(z) and
its derivatives. In a volume, these derivatives are evaluated in
the gradient direction.

Kindlmann and Durkin’s method uses the first and the
second derivatives. Equations (2) and (3) show the generic
mathematical expression for f’(x) and f”(z). Note that f'(z)

f(l') = Umin + (vmaz - Umin)
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Fig. 1. The ideal boundary function f(z) and its derivatives.

is a Gaussian function with 4 = 0 and o representing its
standard deviation. Kindlmann and Durkin define the boundary
thickness as 20, since it is enough to capture the value
variation across the boundary.
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Combining Equations (2) and (3), one can express the
distance x to the boundary center in terms of f'(z) and f”(z):
2 1
P L )
f'(x)

The standard deviation o should be constant for each
boundary and can also be expressed in terms of the derivatives:
!/
Vel (=o)
where f'(0) and f”(—o) are both maximum values of the first
and second derivatives, respectively.

Knowing that z = 0 indicates the exact center of a
boundary, one can provide a b(x) function, mapping distance
to opacity. To generate a 1D transfer function that maps
isovalues to opacity, Kindlmann and Durkin [1] use a single o
value for the whole volume and compute the average distance
to the boundary as a function of the scalar value, p(v):

B a?h(v)
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where g(v) and h(v) are, respectively, the first and second
directional derivatives, averaged per scalar value, while gipresh
is a threshold parameter that allows the user to decrease
g(v) manually, thus correcting non-zero first derivatives in
isovolumes, caused by noise.

The final transfer function is then defined by:

p(v) =

a(v) = b(p(v)) ()

which maps the average distance-to-boundary of each data
value v to an opacity value.

Kindlmann and Durkin [1] also show that the 2D histograms
of g(v) X v and h(v) x v hold the same property of indicating a
boundary center as the point with the maximum first derivative
and second derivative equals to zero, in the gradient direction.
Thus, the 2D histogram is a useful way of verifying the pres-
ence of ideal boundaries in a volume, as shown in Figure 2.

|

Fig. 2. The slice of a synthetic volume of a sphere and its first and second
derivative histograms.

B. The downsides of averaging

The peaks in «(v) occur when p(v) = 0. A careful analysis
of the generated transfer function reveals that its peaks occur
when h(v) is closest to zero. This happens because h(v) is
more expressive than g(v) in determining p(v). There are only
two situations that leads to p(v) = 0, either h(v) = 0 or
g(v) = oo. However, while 0 is inside second derivative’s
range of expected values, co is not into first’s.

This fact becomes a problem when h(v) achieves zero even
though v does not correspond to a boundary isovalue, which is
possible because the second derivative is supposed to be zero
at homogeneous regions, as isovolumes. These regions also are
supposed to have first derivative equal to zero, thus indicating
an isovolume. However, very often, this is not the case when
using average values, especially in the presence of boundary
overlaps. This problem may cause boundary displacement
and an unwanted highlight of isovolumes, depending on how
displaced is the detected boundary. Although g¢1,,csp may fix
these issues in case of a small overlap, it may also prevent the
detection of boundaries with short first derivative.

Besides, in practice, the o value is not constant to the
entire volume. Different boundaries may present different
standard deviation values. Also, due to numerical inaccuracies
of derivative evaluations, the computed o value varies even
within a single boundary of synthetic volumes.

To better understand these limitations, let us consider the
synthetic volume shown in Figure 3. This volume consists
of four spheres and presents four boundaries with several
overlaps. The boundary ranges are: [0, 160], [130, 190],
[160, 190] and [160, 255]. Thus, the ideal boundary isovalues
are 80, 160, 175, and 207, respectively. Note the isovolume
with isovalue equal to 160; this value also characterizes the
boundary ranging from 130 to 190.

Figure 3a shows a slice of our synthetic volume and
Figure 3b shows the first derivative histogram. The 1D transfer
function generated according to Kindlmann and Durkin’s
method is shown in Figure 4 along with the first and second



average derivatives per scalar value. Both average curves are
normalized and smoothed. The four boundaries are correctly
revealed by arches in the histogram. However, Kindlmann and
Durkin’s method wrongly detected five boundaries: 82, 165,
176, 189, and 211.

Due to boundary overlaps, g(v) presents the arches distorted
and displaced in Figure 4. For instance, the boundary ranging
from 130 to 190 is completely lost in g(v). The situation is
even worst in the second derivative as h(v) crosses zero at five
values, thus indicating five boundaries as can be confirmed by
the peaks in the transfer function. The fourth peak highlights
the isosurface wrongly detected, as its center value (189) is
closer to an isovolume than to a boundary isovalue. Also, the
use of gipresn 1S NoOt enough to remove the wrong detected
isosurface alone. Since the second and third peaks are also
centered at h(v) = 0 but with smaller g(v), they are the first
ones to disappear when increasing g:presh-
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Fig. 3. Volume slice and first derivative histogram of a synthetic volume of
four spheres.
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Fig. 4. First g(v) and second h(v) average derivatives, and the transfer
function (v), according to Kindlmann and Durkin’ method.

To reduce these limitations, Kindlmann and Durkin pro-

posed the use of a 2D transfer function «(v,g), assigning
opacity per scalar value and first derivative. Despite the
improvement in the boundary classification, the 2D transfer
function does not prevent boundary displacement caused by
the use of average values, because it does not appropriately
handle overlapping features. Additionally, the use of 2D
transfer functions presents a challenge to the user because its
manipulation is much less intuitive than it is with 1D transfer
functions.

To improve the generation of 1D transfer functions while
preserving the mathematical concepts described by Kindlmann
and Durkin [1], we propose the use of a ¢ value per voxel, a
filter to restrict the data used in the histogram computations,
and a weighted average to enhance the influence of voxels
closer to the boundaries.

IV. OUR PROPOSAL
A. Handling boundary overlaps

The use of Equation (6) to indicate the distance to the bound-
ary has two main limitations when applied to volumes with
different overlapping boundaries. First, the standard deviation
varies throughout the volume. Considering a single o value to
the entire volume brings inaccuracy to the computed “distance
to the boundary”. Second, the use of average directional
derivatives, per scalar value, causes boundaries to be missed
or displaced; a condition that is aggravated for volumes where
a single scalar value represents both a boundary and an
isovolume. This problem suggests the use of spatial transfer
functions, which can be effective but hard to be fine-tuned
by the user. In this section, we present our proposal to
filter voxels for boundary detection while still generating 1D
transfer functions.

Our first goal is to consider different o values throughout
the volume. We want to compute a o value for each voxel but
still based only on local computations. To achieve that, we
also evaluate the third directional derivative f””(z), which is
mathematically expressed as:

fW(ZC) _ (SC2 - (72)(vmam - Umin) 67% (8)
o521
Figure 1 also illustrates the behavior of f”/(x) along an
ideal boundary (dashed line). Note that an ideal boundary
region can be easily detected by negative values of this
third derivative. Combining Equations (2), (3) and (8), we
can express z directly, as a function of the three directional
derivatives:
! 1
@ o
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Similarly, we can evaluate o per voxel:

—f'(z)?
o =
f(@) f"(z) — f"(2)?
Note that, as the first derivative assumes positive values, and
the third derivative assumes negative values, in the boundary

(10)



region, the radicand value in this expression will always be
positive, as expected.

Based on Equations (9) and (10), we can classify each
voxel related to its distance to the boundary and then avoid
processing voxels in isovolume regions. All the derivatives are
calculated by central differences at each voxel.

B. 1D transfer function generation

Our goal is to identify the best representative isovalue for
each boundary in the volume. We also want to associate a
weight value to each isovalue as an indication of boundary
strength. The final transfer function will be given by Gaussian
functions whose mean values are the detected isovalues, with
amplitudes given by the associated strength values. The user
can then control the overall opacity and boundary thickness by
modifying the standard deviation of these Gaussian functions.

As the goal is to generate a 1D transfer function, associating
opacity per scalar value, averaging is indispensable. To reduce
the side effects of boundary overlaps, we only process voxels
close to boundaries. For each voxel, we compute x and
o according to Equations (9) and (10). We then compute
a normalized distance to the boundary expressed by z/c,
discarding voxels where |x/0| > 1. Moreover, to enhance the
contribution of voxels closer to ideal boundaries, we compute
a weighted average, setting the weight proportional to the
normalized distance, following a Gaussian distribution. We
apply a Gaussian function, G, to the normalized distance,
computing the contribution of this voxel per scalar value:
d(v) = G(z/o), where v = f(z). The amplitude of this
Gaussian function is set to 1, its mean value is ug = 0 and its
standard deviation is o = 1/3; thus, its image varies from 0
to 1. Note also that choosing o = 1/3 would make negligible
the contribution of voxels where |z| > o. The §(v) values
are then averaged per v, resulting in what we call boundary-
ness curve: 0(v) x v. This curve is finally smoothed to deal
with noisy data. The local maxima of the boundary-ness curve
indicate the representative isovalues, and its maximum values
the associated weights.

Figure 5 illustrates the boundary-ness curve and the associ-
ated 1D transfer function achieved by applying our proposal
to the synthetic model of Figure 3: The generated transfer
function captures all four boundaries. The detected isovalues
are 81, 156, 175 and 210, presenting some displacements
(should be 80, 160, 175 and 207, respectively), but still
providing a reliable approximation of all boundaries.

C. Rendering filters

A boundary isovalue can also represent isovolumes or can
overlap the data range of other boundaries. Since we propose
to work with 1D transfer functions, we need to employ filters
to avoid rendering non-boundary regions. We propose a filter
that follows the criterion to consider voxels for average com-
putations. We only consider opacity for voxels where |z| < o,
that is, we discard voxels that are not in a boundary region.
This filter avoids the wrong rendering of isovolumes and
overlapping boundaries and is sufficient for clear visualization
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Fig. 5. The boundary-ness curve (gray) and the transfer function (red) of
the synthetic model.

of the four detected isosurfaces for the synthetic model, as
illustrated in Figure 6.

Fig. 6. Volume rendering of the synthetic model with four boundaries, using
our proposed transfer function.

Besides the boundary filter, we need an additional filter to
avoid rendering noisy isovolumes. In noisy data, the scalar
values in isovolume regions vary significantly, making the
condition |z| < o not sufficient to prevent their rendering.
For such cases, we also employ a global filter based on
gradient threshold, f'(x) > ginresn, avoiding the rendering
of noisy isovolumes. In general, we observed that setting
Gihresh = 0.10 gmayx 1S a good starting value, where ¢.q40
represents the maximum first derivative in the volume.

V. RESULTS

We ran a set of computational tests to show and discuss how
our proposal performs on different datasets '. For each dataset,
we compare the results achieved by our method with the
results obtained with our implementation of Kindlmann and
Durkin’s [1] method. For their method, we did our best to
adjust an appropriate gipresn Value manually.

The first test was done considering The Tooth dataset, a
256x256x161 CT Scan volume. The first derivative histogram
of this model shows a noisy data with well defined overlapping
arches (Figure 7a). Our proposal automatically identifies the
five boundaries, generating an adequate 1D transfer function,
as shown in Figure 7b. Note that the isovalues 75 and 165 are

IThe models were obtained from http://schorsch.efi.th-nuernberg.de/
data/volume/.



coincident to isovolumes. Nevertheless, the voxels in these
isovolumes did not disrupt the identification of the bound-
aries. Our implementation of Kindlmann and Durkin’s method
generated the transfer function with displaced isovalues, as
showed in Figure 7c. As discussed, such displacements happen
because the boundary overlaps biased the average values.

0 20 40 60 80 100 120 140 160 180 200 220 240
(b) Transfer function generated by the proposed method

10 a(v) W)
084

046—5
04
02
00
024
-043
0.6
0.8
B A s A N A LA A A A A AR AR A
0 20 40 60 80 100 120 140 160 180 200 220 240
(c) Transfer function generated by Kindlmann and
Durkin’s method

Fig. 7.
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Achieved results for The Tooth dataset.

Figure 8 illustrates the achieved rendered image using the
transfer function generated by our method. The rendering
filters prevented the isovolumes from being visualized.

Our method considers only voxels close to the boundary,
discarding others from overlapping arches. Also, the weighted
average eliminates any wrong voxel classification since voxels
closer to boundaries have more influence on the average
values. The third derivative plays an essential role in this
filtering. Our per-voxel evaluation of x and o values are less
sensitive for being disrupted by overlapping arches.

Visually comparing, one can verify that, for this model,
other proposed interactive techniques, using two-dimensional
transfer function [4], topology-based procedure [13] , or LH
histograms [11], do not reveal any other boundary besides the
ones detected by our method.

Fig. 8. The Tooth dataset rendering.

To provide a better understanding of the proposed approach,
Figure 9 shows the first derivative histogram again but now
built only with voxels not discarded in the average computa-
tions. Note that voxels near the arch bases are discarded. Note
also that voxels in the isovolumes regions are discarded too;
however, due to noise, a lot of isovolume voxels remain. The
applied color scale shows the average values of normalized
distances. Note how effective is the classification of boundary
proximity based on these normalized distances. The weighted
average minimizes the influence of the remaining isovolume
voxels.

1.0

0.0

Fig. 9. Filtered histogram of the Tooth dataset. The color scale indicates
normalized distance to the boundary.

The second dataset that was considered is The Visible
Male 128 x 256 x 256 CT Scan. Figure 10a shows the
corresponding gradient histogram. Note that it is a noisy data.
Our method detected two main boundaries: one representing
the skin and another representing the skull. The proposed
technique also automatically detected two other with high
densities depicting the teeth (see Figure 10b). After manually
fine-tuning the g¢1,cspn value, we were able to make Kindlmann
and Durkin’s method of slightly revealing one tooth boundary
(see Figure 10c). The teeth are hard to detect because they are
small structures in the data volume, being represented by a
small number of hits in the histogram, not easily observed. The
ability to automatically revealing such small structures makes
our method especially promising for detecting anomalies in
medical exams.

Nevertheless, the skull boundary, essential in the dataset,



was detected displaced by the Kindlmann and Durkin’s
method, which can be noted in Figure 11. Our detected
boundary reveals a more complete skull structure (Figure 11a),
while theirs reveals an incomplete one (Figure 11b). Using
a 2D transfer function, Kniss et al. [4] were only capable
of revealing a complete structure employing a non-intuitive
sheared triangular classification widget.

One concern with the proposed method is that the third
derivative tends to be more sensitive to noise. This experiment
indicates that our proposal performs well also on noisy data.
However, an in-depth analysis of how such sensitive may affect
the results is still needed.
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(b) Our method
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(c) Our implementation of Kindlmann and Durkin’s
method

Fig. 10.

1D transfer function of The Visible Male dataset.

As an additional test, we considered a 512 x 512 x 59 dataset
of the coronal human upper body. This dataset is also a noisy
volume. Our method detected five boundaries as indicated
by our boundary-ness curve in Figure 12, while Kindlmann
and Durkin’s method detected only two main boundaries. The
third main boundary, not captured by their method, represents
the muscles, as visualized in Figures 13a. The other two not
detected represents smaller structures.

Even for the two main boundaries, the proposed method

(a) Our method

(b) Our implementation of Kindlmann and Durkin’s method

Fig. 11. The Visible Male dataset rendering from the generated 1D transfer
functions.
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Fig. 12. Generated transfer functions for the dataset of the coronal human

upper body. Note that there are five detected boundaries; only the two main
boundaries are turned on in the figure.

performed better. Figure 13b and 13c shows the corresponding
images obtained using ours and Kindlmann and Durkin’s
method, respectively. Note that the spine appears incomplete
using their generated transfer function.

VI. CONCLUSION

In this paper, we presented a simple but yet powerful method
to generate 1D transfer functions automatically. We redirect
Kindlmann and Durkin’s [1] concepts of boundary character-
ization and presented an improved approach to detect bound-
aries in volume data. The main improvements over Kindlmann
and Durkin’s method are:

o The filter to discard voxels not close to the boundary in
the average computation.



(a) Ours 1

(b) Ours 2 (c) K. and D.’s

Fig. 13.  Visualization for the dataset of the coronal human upper body: (a)
visualization of the muscles only revealed by our proposal; (b) the two main
boundaries as detected by our method; and (c) the two main boundaries as
detected by Kindlmann and Durkin’s method. Note that in our method, the
spine appears complete.

o The computation of a ¢ value per voxel, improving
the accuracy of calculating distances to the boundary.
This computation is supported by the use of the third
directional derivative.

o The use of a weighted average, enhancing the contribu-
tion of voxels closer to the boundary.

o The idea of identifying isovalues first, with their cor-
responding strengths. The transfer functions are then
obtained by a sequence of Gaussian functions, where
the mean values are the detected isovalues, and the
amplitudes are the associated strength values.

We have also proposed a rendering filter, essential to isolate
the boundaries from the overlapping arches since we are
employing a 1D transfer function. Achieved results have
demonstrated the robustness and effectiveness of our method
on revealing the overall structure of a volume data in a clean
image.

A natural extension of this work is its integration with
interactive procedures to explore volume data, especially
those working with multi-dimensional transfer functions. Our
boundary detection procedure could be used to assist on
automatic extraction of isovolumes; our rendering filter could
be combined with interfaces to edit multi-dimensional transfer
functions. Additionally, as mentioned, an in-depth sensitive-
to-noise analysis of the proposed method is needed, mainly
because of the use of the third derivative in the computation.
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