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Abstract—Coarse resolution remote sensing images, such as
LANDSAT and MODIS are easily found in public open reposito-
ries and, therefore, are widely used in many studies. But their use
for automatic creation of thematic maps is very restrict since most
of the deep-based semantic segmentation (a.k.a dense labelling)
approaches are only suitable for subdecimeter data. In this paper,
we design a straightforward framework in order to evaluate
the effectiveness of deep-based super-resolution in the semantic
segmentation of low-resolution remote sensing images. We carried
out an extensive set of experiments on three remote sensing
datasets with distinct nature/properties. The results show that
super-resolution is effective to improve semantic segmentation
performance on low-resolution aerial imagery. It not only out-
performs unsupervised interpolation but also achieves semantic
segmentation results comparable to high-resolution data.

I. INTRODUCTION

High-end satellites and drones are, nowadays, two of the
main ways of directly acquiring high-resolution (HR) aerial
images [1], which are important to monitor short and long-
term changes and the impact of human activities on the
environment [2]. In reality, however, HR image data is not
always employable or accessible. In order to map a large
area, for instance, drones lack enough autonomy: if using
only one (or a few of them), the time required to map
the whole area would be high, while using many of them
would increase the cost and the number of people involved
in the process. HR satellites provide a more autonomous
way, therefore capable of overcoming the problems presented
by drones, but their images are expensive and often present
low temporal resolution. With all these issues in mind, an
alternative for remote sensing applications is to get their data
from cheap, low-resolution (LR) satellite imagery, which also
usually has a long history of acquisition.

HR aerial images are essential for many remote sensing
applications, as they provide a finer representation of spatial
boundaries [3], more precise textures and can even display
small objects that are barely visible in an LR representation.
However, due to data unavailability or high-cost reasons, the
use of LR images is often adopted in replacement of the HR
ones. LANDSAT data, for example, is publicly available!, with
a long record of images since 1984. If, on the one hand, these
data provide multispectral information, on the other hand,
pattern recognition algorithms can have their performances
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Fig. 1. Semantic segmentation (b) obtained from an LR (a) input image with
a SegNet [5]. The image was up-sampled from its original 60 X 60 dimension
to eight times more (480 x 480) with bicubic interpolation. Note that there
are three cars (yellow class) in the image, but only one of them was correctly
labeled by the network, while the other two could not be found. Also, it is
possible to see that the texture of the buildings (dark blue class) was often
mislabeled to impervious surfaces (white class).

compromised due to the lack of spatial information. As
observed by [4], semantic segmentation is one of the computer
vision applications that are more severely affected by the input
of LR images. This application aims at predicting a class for
each pixel of the image. Thus, if the objects of a class are
way too small or have similar textures, the low-resolution
will eventually cause many cases of mislabeling, dropping
the accuracy of the algorithm. An example of this problem
is shown in Figure 1.

Single image super-resolution (SISR) aims to construct
an HR image from a single LR input and it is used as a
major tool to restore the quality of degraded images. Lately,
deep neural networks have been successfully applied to this
problem with large improvements in accuracy. This makes
SISR a viable choice for enhancing the performance of pattern
recognition algorithms as a pre-processing step by restoring
high-frequency details from LR inputs. A few works [4], [6],
[7] have analyzed the effectiveness of SISR when applied
with different tasks, however, most of them tackle the object
detection problem, which needs less spatial information in
comparison to semantic segmentation. Furthermore, to the
best of our knowledge, only a few of them, such as [7],
explore the application to aerial imagery, although not for
semantic segmentation. Therefore, the contribution of our
paper is the evaluation of the performance of a framework that



unites super-resolution and semantic segmentation in order to
generate high-quality thematic maps from LR remote sensing
imagery. We analyze the situations in which super-resolution
considerably improves the generated thematic maps compared
to the use of a bicubic interpolated LR input, and under which
degradation factors the improvements are more relevant. We
perform this evaluation on three remote sensing datasets with
highly distinct properties.

The remainder of this paper is organized as follows. Sec-
tion II presents the literature review. Section III details our
methodology and the the proposed framework. Section IV and
V describe and discuss the experimental analysis, respectively.
Finally, Section VI concludes the paper.

II. RELATED WORK

We organize this section into three parts. The two first are
focused on the most relevant works for deep-based super-
resolution and semantic segmentation tasks, respectively. The
last part regards the works which proposed approaches that
employ super-resolution as part of other image analysis prob-
lems, such as detection or scene recognition.

A. Super-resolution methods

The first deep-based super-resolution method (SRCNN) was
proposed by Dong et al. [8], which is a convolutional neural
network (CNN) capable of learning an end-to-end mapping
between low and high-resolution images with only a few
layers. In [9], the authors proposed the method named VDSR,
which was the first one to use residual learning. Lim et al.
[10] optimized the residual modules in existing conventional
networks and proposed two methods, EDSR and MDSR,
which ranked, respectively, first and second places on the
NTIRE2017 Super-Resolution Challenge.

More recently, [11] were the winners of the 8 classic
bicubic-down-sampled track of the NTIRE2018 competition
with their method named D-DBPN, which construct mutually-
connected up and down-sampling stages. WDSR [12] is an-
other method that achieved impressive results in the same
competition, although in tracks in which the up-scaling factor
is 4%, but that also include different types of degradation on
the input images. This makes the super-resolution task more
difficult.

Although less frequently, some papers have addressed the
SISR problem for satellite imagery. Most of them only modify
or apply similar networks to those already well stabilized on
the literature. [13] proposed two methods based on EDSR
[10] for the Sentinel-2 satellite. Another method [14], named
DDRN, used a recursive strategy and ultra-dense-connections,
similar to [11] on the Kaggle Open Source Dataset and Jilin-1
video satellite imagery.

B. Semantic segmentation methods

Like super-resolution, semantic segmentation also had the
state-of-the-art changed by the introduction of deep learning.
Long et al. [15] adapted classification networks, such as

AlexNet, VGG net, and GoogLeNet into FCNs and fine-tuned
their learned representations to the segmentation task.

Ronneberger er al. [16] proposed U-Net, a method that
works with very few training images by relying on a strong
use of data augmentation. Their method resembles an FCN,
with the difference that they use skip connections to link low
and high-level feature maps across resolutions.

As the previous works mainly focused on adapting deep
architectures designed for classification to pixel-wise labeling,
[5] proposed a method (Segnet) that was created to be more
optimized for the semantic segmentation task, while also being
efficient both in terms of memory and computational time.
Segnet stores the max-pooling indices of the feature maps and
uses them in its decoder network to achieve good performance,
instead of storing the encoder network feature maps in full [5].

Semantic segmentation has also been applied on remote
sensing data. Many methods base themselves on already
consolidated networks and propose some modifications or
adaptations. [17], for example, proposed methods based on
fully convolutional networks [15], while [18] and [19] pro-
posed methods based on Segnet [5].

C. Super-resolution for image analysis improvement

Despite the growing interest in super-resolution and se-
mantic segmentation, no in-depth study has yet been made
evaluating the performance of methods for both problems
together. Dai et al. [4] evaluated super-resolution methods
for other vision tasks, which were edge detection, semantic
segmentation, digit recognition, and scene recognition. Their
experiments showed that applying super-resolution to input
images of other vision systems does improve their performance
when the input images are of low-resolution. Although having
a similar purpose to us, it is important to remark that not only
they did not make an evaluation on aerial imagery, but they
also applied methods for both super-resolution and semantic
segmentation that are no longer close to the state-of-the-art.

Haris et al. [6] proposed a more elaborated framework,
named Task-Driven Super-Resolution. This framework unifies
both super-resolution and object detection tasks in one end-to-
end training, which incorporates a tradeoff between detection
and reconstruction losses. For this purpose, they used D-DBPN
[11] for super-resolution and SSD [20] for object detection.
Like in [4], the tests were not conducted on aerial images.

In [7], the authors used super-resolution to assist object
detection performance in aerial imagery. They employed
SSD [20] for detection and VDSR [9] for super-resolution.
Shermeyer & Van Etten [7] verified that there is less gain
at coarser resolutions and justified that this happens because
the algorithm is unable to find enough unique discriminating
features to adequately reconstruct an HR image.

III. METHODOLOGY

In this section, we present the proposed framework, which
is composed of two main blocks: a super-resolution network
(D-DBPN [11]) and a semantic segmentation network (Seg-
net [5]). The proposed framework is presented in Figure 2.
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Fig. 2. Overview of the proposed framework. The pipeline is straightforward.
First, an LR image, from which we desire to generate a thematic map, is
processed by the super-resolution network. The output from this first step
is a super-resolved version of the LR input that, ideally, has more details
and helpful features for the following network. The second step consists of
inputting the super-resolved image in the semantic segmentation network. The
final output, therefore, is the thematic map classifying each pixel of the super-
resolved image. As the resolution of this image is higher than the original
input, the final thematic map should be more accurate than one generated by
directly inputting the LR image into the semantic segmentation network.

Although we employed two specific methods for super-
resolution and semantic segmentation, it is important to note
that any other one (deep-based or not) with the same inputs
and outputs could replace them according to the task or
application. The choice for D-DBPN comes from the fact that
this method was able to win the NTIRE2018 challenge on
the high-scale restoration (up to 8 times) track. Being able
to recover better details for such a high factor is especially
important for aerial images, since they can present ground
sample distance (GSD, which is the distance measured on the
ground between two pixels) varying from a few centimeters
(drone images, for example) to many meters (such as in the
LANDSAT-8 satellite).

Regarding the existing methods for semantic segmentation,
we selected Segnet [5] because it not only has been success-
fully used as a base approach for methods focused on aerial
data [18], [19], but it also presents an efficient architecture in
terms of memory and computational time. This is especially
important for satellite imagery, which is usually composed of
huge images that can easily excess hardware limits.

Differently from [6], our framework is not trained in an end-
to-end manner. Thus, the two networks are trained separately,
as detailed in the next two subsections. The main disadvantage
of this approach is that it is not possible to use the semantic
segmentation loss to bias the super-resolution network into
creating an output that is more easily segmented by the other
method. On the other hand, since the training of the semantic
segmentation network is performed apart, any available data
that does not have a corresponding thematic map can be used
to train the super-resolution network. This is especially useful
in the context of aerial imagery, which has less labeled data
available when compared to normal images. This happens
because the labeling of aerial data is usually more difficult
and expensive, as many classes require the knowledge of
a specialist, such as different types of vegetation. Creating
data for the super-resolution network, however, is easier, as
it is only necessary to degrade HR images and use them as
input to the network. This way, we will not limit our super-
resolution training only to labeled images for semantic seg-
mentation. The code for the proposed framework is available
at https://github.com/matheusbarrosp/sr-semseg-pytorch.

A. The super-resolution network

We employed D-DBPN [11] as the super-resolution network
responsible for recovering the details of an LR input image.
This method focuses on projecting the HR features back to the
LR spaces using down-sampling layers. Each up and down-
sampling stage represent different types of degradation and
HR components [6].

In order to train the super-resolution network, we need pairs
of corresponding low and high-resolution images. Two sensors
of different image quality or in different heights can be used to
get those pairs, but it is also possible to automatically generate
the LR images by degrading the HR ones. Therefore, we
follow the same approach used by the track in which D-DBPN
[11] won the NTIRE2018 challenge and that was also used by
[6] and [4], which is a bicubic kernel. Thus, we apply bicubic
interpolation on the HR image with the desired down-scaling
factor (4 and 8 times in our case). More complex degradation
schemes may also be applied, such as in [7].

We use the same default network configuration proposed in
the original paper [11] for D-DBPN. Thus, for 4x enlargement
we use 8 x 8 convolutional layer with four striding and two
padding, while for 8 x enlargement we use 12 x 12 convolu-
tional layer with eight striding and two padding. As the final
network in [11], we set the number of back-projection stages
to 7. We train the model for 300 epochs and randomly extract
a 32 x 32 random patch for input from the low-resolution
image on each iteration. The learning rate is initialized to
le — 4 and is decayed by a factor of 10 at half of the total
epochs. For optimization, we use Adam with 0.9 momentum
and le — 4 weight decay. We refer to [11] for more details
about the network.

B. The semantic segmentation network

The semantic segmentation network is responsible for clas-
sifying each one of the pixels from an input image in one of
the possible classes from the problem it was trained for. A
thematic map is the output of this process.

Segnet [S] has an encoder-decoder architecture that is fol-
lowed by a pixelwise classification layer. The encoder network
consists of the first 13 convolutional layers of the VGG16
network [21] for object classification. In order to train Segnet,
we only use available HR data. On the other hand, during
testing, we input the super-resolved images generated from
the LR ones. The reason is that, sometimes, only a small
amount of data is available for training, but we need to perform
the segmentation on LR images. Thus, the idea is that it is
possible to achieve better segmentation results by inputting a
regenerated version of the LR images, instead of their original
state.

The configuration of the Segnet in this work follows the
same that was proposed in the original paper [5]. We train
the model for 500 epochs with inputs of size 480 x 480 (as
explained later in Section V). The learning rate is initialized
to le — 4. We use Adam optimizer with 0.9 momentum and
5e — 4 weight decay. We also refer to [5] for more specific
details related to the network.



IV. EXPERIMENTAL SETUP

The objective of the experiments is to evaluate how well can
super-resolution be used to improve semantic segmentation
by using LR images as input. We simulate this situation by
evaluating the proposed framework effectiveness with images
in different levels of resolution degradation. Subsection IV-A
presents the datasets we applied in the experiments. In sub-
section IV-B, we describe implementation details of the ex-
perimental protocol.

A. Datasets

In order to evaluate our framework, we selected three
distinct remote sensing datasets. The first one is an agricultural
dataset composed of scenes containing coffee and non-coffee
areas. The second one is the Vaihingen dataset, provided by the
International Society for Photogrammetry and Remote Sensing
(ISPRS) Commission for the 2D Semantic Labeling Contest,
which contains urban scenes with six different pixel classes.
The third one is the 2014 IEEE GRSS Data Fusion Contest
dataset, that also contains urban scenes and seven thematic
classes.

1) Coffee Dataset: this dataset contains images from three
different Brazilian cities from the state of Minas Gerais:
Monte Santo, Guaranésia and Guaxupé. They are com-
posed of green, red, and near-infrared bands with over
6000 x 10000 pixels each. Although having only 2
classes (coffee and non-coffee), this is a challenging
dataset, as noted by [22], since it contains high intraclass
variance, scenes with distinct plant ages and images with
spectral distortions caused by shadows.

2) Vaihingen Dataset: this dataset contains 33 high-
resolution images and six different thematic labels:
impervious surfaces, building, low vegetation, tree, car,
clutter/background. Similarly to the coffee dataset, the
images are composed of near-infrared, red and green
bands. From all the images, only 16 of them have
ground-truth available for the semantic segmentation
task. As mentioned in Section III, our framework
pipeline allows us to train the super-resolution network
with the non-labeled images, while only using the 16
labeled ones for the semantic segmentation task.

3) Thetford Dataset: this dataset contains one image (di-
vided into two RGB sub-images) from an urban area
near Thetford Mines (Quebec, Canada) and seven the-
matic labels: trees, vegetation, road, bare soil, red roof,
gray roof, and concrete roof, along with the unclassified
pixels.

The selected datasets fit well for our purpose since they
present different characteristics that can be explored by the
networks. The coffee dataset, for example, requires a lot of
texture information to be able to distinguish coffee crops
from non-coffee areas, while the urban datasets contain small
objects (such as cars) that need to be visible enough for the
network to classify their pixels correctly.

For the coffee dataset, we employed a protocol in which
we train the networks on the images of two cities and test

them on the remaining city. Thus, we trained the models
on Montesanto and Guaxupé and tested on Guaranésia. By
separating the images of a whole distinct city for test, we
simulate a real-world scenario in which we have HR images
taken from different cities, but need to apply the semantic
segmentation on LR data from a new location. This case could
not be reproduced with fidelity by simply selecting for test
random crops of all the available data.

Labeled ground truth is provided for only one part of
the Vaihingen dataset, since the remaining scenes were not
released and require submission to the benchmark test or-
ganizers to be evaluated. Therefore, we trained and tested
our framework using only the publicly available images. We
applied the same division of the data as in [22]: areas 11, 15,
28, 30 and 34 are used as test, while the remaining areas are
used as training and validation.

For the Thetford dataset, we use the same parts of the image
selected by the contest for training and test. The original
dataset contains seven classes, but one of them (bare soil,
yellow label) is only present in the training part of the full data.
As this sub-image is also used to train D-DBPN, it would not
be fair to compare the performance with bicubic interpolation,
since we would be super-resolving the same data used to train.
Thus, we do not considerate the bare soil class in our results.

B. Implementation Details

We evaluate our method under two scaling factors of degra-
dation: 4x and 8x. Our objective is to compare how much
the super-resolution network can help in each case. Intuitively
speaking, low amounts of degradation (x2, for example)
should not present enough difference from the LR image to
compensate the need of a super-resolution network, while
high amounts of degradation (such as more than 8x) should
make it almost impossible to recover enough information when
creating the super-resolved image.

The evaluation for super-resolution is different from se-
mantic segmentation. We evaluate the quality of regenerated
images in terms of Peak Signal-to-Noise Ratio (PSNR), which
is the default metric for most of the super-resolution methods.
Since two of the datasets we selected are not RGB, we evaluate
the PSNR over all the three channels of the inputs (instead of
only the Y channel of YCbCr). For the semantic segmentation,
we selected four metrics: overall accuracy (acc), normalized
accuracy (norm.acc), mean intersection over union (/oU) and
Cohen’s kappa coefficient (K appa). These are the final values
we use to evaluate how much the super-resolution interfered
on the result, as the PSNR is just a measure of how well an
image was regenerated.

We applied a similar experimental protocol for each one of
the datasets. First of all, we divide the training and testing
HR images in crops of size 480 x 480, from which we create
the low-resolution inputs of size 120 x 120 and 60 x 60 for,
respectively, 4x and 8x up-scaling factors. The choice for this
dimension comes from the fact that the original Segnet paper
[5] uses inputs of size 360 x 480. Furthermore, we separate
20% of the training data for validation. Due to the lack of



abundant training data in the Thetford dataset, we cropped the
training images with 50% overlap, while also excluding the
crops with more than 66% of the pixels labeled as unclassified.
This left us with 53 images for training and 142 for test.
The weights of D-DBPN are initialized with the pre-trained
model provided by the original Github repository of the paper
[11]. Similarly, Segnet is fine-tuned with the VGG16 trained
weights.

Following the pipeline explained in Section III, we start
off by training the super-resolution network, D-DBPN, for
the desired up-scaling factor using the pair of original HR
data and the generated LR images. Regardless of this step,
we also need to train the semantic segmentation network with
the available HR data and the thematic maps. During these
two stages, we make sure the images used as test on the
semantic segmentation task will not be included in the training
set of the super-resolution network. We only want to apply
super-resolution on the images that none of the networks saw
during training, or else we would be creating a bias towards
the reconstruction of the LR image.

After training both networks separately, the final evaluation
is performed on the output of the semantic segmentation
network for two versions of each image from the test set:
the super-resolved images generated after the first step from
the pipeline and the LR inputs, which are up-sampled back to
their original size by using bicubic interpolation.

V. RESULTS AND DISCUSSION

We conducted an extensive series of experiments in order to
answer the following research questions: (1) How effective is
deep-based super-resolution to different levels of degradation
for remote sensing semantic segmentation tasks? (2) How
deep-based super-resolution compares to classical unsuper-
vised interpolation? (3) Is deep-based super-resolution able
to reconstruct small object and, consequently, contribute to
semantic segmentation improvement?

A. Effectiveness to different levels of degradation

Table I shows the performance of the proposed framework
for different levels of resolution degradation in the task of
semantic segmentation.

TABLE I
SEMANTIC SEGMENTATION PERFORMANCE OF THE PROPOSED
FRAMEWORK FOR DIFFERENT DEGRADATION FACTORS AND GROUND

TRUTH (gt)
Dataset Deg. Acc Norm. acc IoU Kappa
8% 0.7715 0.7434 0.6046  0.4995
Coffee 4x 0.7965 0.7672 0.6379  0.5516
gt 0.8187 0.8062 0.6784  0.6128
8x 0.7447 0.5931 0.4762  0.6621
Vaihingen = 4x 0.7912 0.6369 0.5256  0.7234
gt 0.8479 0.6833 0.5909  0.7984
8% 0.5444 0.6000 0.2916  0.4065
Thetford 4x 0.7178 0.6665 0.4268  0.5897
gt 0.8452 0.8184 0.6463  0.7636

As expected, the results show, for all datasets, that image
resolution has a high impact on semantic targeting results.
In general, the lower the resolution, the worse the result.
However, the impact of the degradation rate impacts differently
for each dataset.

Concerning coffee, the segmentation quality loss is rela-
tively low for all metrics, ranging, for example, from mean
0.80 to 0.74 in the case of normalized accuracy from the
original HR image to the same image with 8x resolution
degradation factor. It may indicate that for cropping the use of
deep-based super-resolution could improve results. In the case
of the urban datasets, the impact of the loss of resolution was
greater than for coffee crops. Regarding the Thetford dataset,
in particular, the normalized accuracy was reduced from 0.81
to 0.60 for 8x degradation. For the Vaihingen dataset, the
normalized accuracy was reduced from 0.68 to 0.59. The main
explanation for the effect is that the Coffee dataset has only
two classes and, in general, the coffee crops are relatively
large areas. They also depend more on the texture than in
the shape. In the case of the urban scenes, the accuracy was
reduced mainly due to classes such as trees and cars that are
composed of small regions which are difficult to recover given
the strong loss of information.

Even though the urban datasets were more affected by the
degradation than the coffee dataset, the difference for Thetford
was way higher than for Vaihingen. This can be explained by
the high amount of data that is available for the Vaihingen
dataset, especially to train D-DBPN. As mentioned before,
some images from the dataset were not labeled for semantic
segmentation, but were used to train the super-resolution
network. The consequence for this is that the quality of the
reconstructed images is much higher compared to Thetford
(which contains a small quantity of training data), thus helping
more the semantic segmentation task. This indicates that deep-
based super-resolution can increase the semantic segmentation
results relatively close to a native HR data given enough
training.

B. Comparison to bicubic interpolation

Table II presents results for semantic segmentation by using
bicubic interpolation and super-resolution with D-DBPN. It
also reports the reconstruction rate with PSNR.

Regarding the reconstruction, as expected, the PSNR is
higher when applying D-DBPN as an up-scaling method
instead of a simple bicubic interpolation. This means that the
super-resolved output contains more visually appealing, high-
frequency details than an interpolated image.

As Table II shows, the use of super-resolution improved
the results of all the metrics for all datasets and degradation
factors. This is especially true for higher degradation factors
(8x), since the loss of information is more considerable
and, thus, deep-based super-resolution can learn to recover
the details much better than a simple interpolation. As the
semantic segmentation metrics are better with higher PSNR
values, we can also verify that this metric correlates well with
how better a reconstructed image can be segmented.



TABLE II
COMPARISON BETWEEN THE PERFORMANCE OF BICUBIC
INTERPOLATION AND SUPER-RESOLUTION BY D-DBPN.

Dataset Deg. Method PSNR Norm. Kappa IoU
(dB) acc
Ax Bicubic 242429 0.5396  0.0962  0.3654
Coffee D-DBPN 257454 0.7672  0.5516  0.6379
8x Bicubic 20.7929 0.5003  0.0007  0.3134
D-DBPN  21.2265 0.7434  0.4995  0.6046
Ax Bicubic 28.7458 0.5741  0.6417  0.4526
_ D-DBPN  31.1974 0.6369  0.7234  0.5256
Vaihingen —
8x Bicubic 253886 0.4747  0.5281  0.3449
D-DBPN 274540 0.5931  0.6621  0.4762
Ax Bicubic 26.8292 0.5776  0.4271  0.2906
D-DBPN  31.0294 0.6665 0.5897  0.4268
Thetford
8x Bicubic 233354 04660 0.1672  0.1408
D-DBPN 263173 0.6000 0.4065  0.2916

The big difference in the semantic segmentation metrics
shows that super-resolution allowed the network to predict
with more precision the classes of each dataset when compared
to interpolated LR inputs. This is another clear evidence
of the capability of super-resolution to recover important
visual details for a semantic segmentation algorithm. The most
impressive improvement can be noted in the coffee dataset
results. Using bicubic interpolation, the normalized accuracy
is close do 50%, the Kappa values are close to zero and the
IoU is way smaller than employing D-DBPN. This happened
because the loss of texture information was so severe, that
Segnet was incapable of detecting most of the coffee areas,
thus classifying almost 100% of the images as non-coffee.
Employing super-resolution, on the other hand, allowed the
coffee areas to be segmented with much more precision.

Another important improvement can be noted for the Thet-
ford dataset. Being able to increase the performance with deep-
based super-resolution even when it contains a small amount
of training data (a bad scenario for a deep learning algorithm),
shows that this approach is more reliable than interpolation.

C. Robustness to small object segmentation

In order to verify the effectiveness of the proposed frame-
work in the segmentation of small objects, we analyzed the
results obtained by class for datasets Vaihingen and Thetford.
It can be seen in Figures 3 and 4, respectively. Visual segmen-
tation results are shown in Figures 5 and 6.

For the Vaihingen dataset, one can note in Figure 3 that
super-resolution greatly improved the segmentation of the
car class: for 8x degradation, bicubic up-sampled inputs
could predict correctly only 19% of the car pixels, while
super-resolved inputs increased this value to 58% (only 11%
less than high-resolution inputs). This confirms that super-
resolution is capable of turning visible (for a machine) objects
that are too small in an LR representation. The results also
present a great improvement for the building class, which was
highly mislabeled as impervious surfaces by the LR represen-

tation, but that was better segmented on super-resolved inputs,
increasing the value from 31% to 68% for 8x degradation.
In this dataset, super-resolution lost to interpolation only on
the tree class (5% on x8 degradation). However, looking at
the low values of accuracy and IoU presented in Table II,
the reason for this is that the network simply classified a
higher amount of pixels as tree, what increases the chances
of predicting this class, but causes many cases of mislabeling
for the other labels. This is true especially for low vegetation,
which was mislabeled as tree only 9.2% of the time on super-
resolved inputs, but 16% on bicubic up-sampled images. We
point out that even though this dataset contains six classes,
we excluded from the heatmaps the clutter/background (red
label) results. The reason for this is that the class represents
less than 1% of the dataset (being highly mislabeled even with
high-resolution inputs), since it is designated to unclassified
or rejected objects on the scene, and is also not considered in
some similar works, such as the ones proposed in [22], [23].

For the Thetford dataset, applying semantic segmentation
on high-resolution data resulted in accurate predictions, which
can be confirmed by the high diagonal numbers in Figure 4.
Super-resolution and bicubic interpolation, on the other hand,
mislabeled trees by vegetation in almost all cases. However,
high super-resolution improvements can be seen especially on
the road and grey roof classes. While interpolation mislabeled
roads in 97% of the cases, super-resolution decreased this error
to 50% on 8x up-scaling. For grey roofs, super-resolution
improved the precision from 4% to 28%. Like in the Vaihin-
gen Dataset, bicubic interpolation performing better on some
classes can be explained by the higher amount of pixels labeled
as them, which decreases the precision on different labels and
is reflected in the small numbers from Table II.

VI. CONCLUSION

In this paper, we presented a framework that generates more
accurate semantic segmentation thematic maps for LR remote
sensing inputs with the employment of super-resolution. We
evaluated its performance on three highly different aerial
datasets and under two degradation factors, comparing the
results with LR bicubic up-sampled inputs and native HR data.

Super-resolution was confirmed to be a viable strategy
to recover important texture and object details for semantic
segmentation. With enough training data, the recovered texture
information greatly helps the semantic segmentation not to
mislabel similar classes. Small objects, such as the cars in
the Vaihingen dataset, which are not detected in LR repre-
sentations, can become visible with the employment of super-
resolution.

For either quantitative or qualitative evaluation, super-
resolved inputs surpassed the LR bicubic up-sampled ones
in all cases. This improvement was more significant on 8x
down-sampling factors, since the amount of information loss
in the LR representation is vast enough to negatively affect the
generation of thematic maps, but also small enough to allow
the reconstruction by the super-resolution network. Also, deep-
based super-resolution allows the performance of the semantic
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Fig. 3. Accuracy heatmaps (confusion matrix) for semantic segmentation on the Vaihingen dataset with 8 x up-scaling.
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Fig. 4. Accuracy heatmaps (confusion matrix) for semantic segmentation on the Thetford dataset with 8x up-scaling.

segmentation to get close to HR images under proper training
conditions.

For future work, the employment of an end-to-end frame-
work which trains both networks at the same time, and while
sharing their losses (similarly to the task-driven approach
proposed in [6]), can bring more improvements to the semantic
segmentation task, but with the drawback of not being able
to train the super-resolution network with unlabeled data for
semantic segmentation by normal means. Also, there is space
to study how different visual benchmarks can help to enhance
the semantic segmentation performance more than PSNR, such
as adversarial losses from GANSs.
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