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Abstract—Customer behavior analysis is an essential issue for
retailers, allowing for optimized store performance, enhanced
customer experience, reduced operational costs, and consequently
higher profitability. Nevertheless, not much attention has been
given to computer vision approaches to automatically extract
relevant information from images that could be of great value
to retailers. In this paper, we present a low-cost deep learning
approach to estimate the number of people in retail stores
in real-time and to detect and visualize hot spots. For this
purpose, only an inexpensive RGB camera, such as a surveillance
camera, is required. To solve the people counting problem, we
employ a supervised learning approach based on a Convolutional
Neural Network (CNN) regression model. We also present a four
channel image representation named RGBP image, composed
of the conventional RGB image and an extra binary image P
representing whether there is a visible person in each pixel
of the image. To extract the latter information, we developed
a foreground/background detection method that considers the
peculiarities of people behavior in retail stores. The P image is
also exploited to detect the hot spots of the store, which can
later be visually analyzed. Several experiments were conducted
to validate, evaluate and compare our approach using a dataset
comprised of videos that were collected from a surveillance
camera placed in a real shoe retail store. Results revealed that our
approach is sufficiently robust to be used in real world situations
and outperforms straightforward CNN approaches.

I. INTRODUCTION

The retail sector comprises a major fraction of the world’s
developed economies. It is well-known that understanding
customer attitudes and behavior is crucial to maximize profit
and increase the competitiveness of retail stores [1]. Besides,
the impact of effective sales staff scheduling is of critical
importance to the profitable operations, since the cost of labor
is generally one of the largest expenses of a retailer [2].
Consequently, managing these aspects efficiently has been the
focus of research for decades.

In particular, customer’s flow analysis [3] and the detection
of hot spots, i.e. physical areas of a store where people flow
is higher [4], are essential in this regard. Nevertheless, it
was usually impractical to acquire and analyze an appropriate
number of data to accomplish such tasks.

In the last years, advances in hardware and machine learning
algorithms based on deep learning allowed researchers to
develop outstanding solutions to many Computer Vision tasks,
such as object detection and localization [5], outperform-
ing previous state-of-the-art machine learning techniques [6].
However, while many solutions for general classification and
localization problems in images using deep models are avail-

able in the literature, not much attention has been given to
more specific problems, such as accurate people counting in
uncrowded environments [7].

In this paper, we present RetailNet: a low-cost deep learning
approach to estimate the number of people in retail stores in
real-time and to detect hot spots. For this purpose, we require
only an inexpensive RGB camera, such as a surveillance
camera. In this challenging situation, the resolution of the
acquired RGB images can be as low as 1 megapixel. Also,
severe occlusion is expected due to furniture and other people
inside the store.

It is also worth mentioning that there is still a large gap
between the theoretical research and real-world applications to
reliably detect humans in various poses and in high interaction
scenes, where the body parts of different humans are spatially
nearby [8]. State-of-the-art deep neural networks, such as
YOLO [5], are not appropriate due to three main reasons:
1) the expected low-resolution images acquired from low-cost
surveillance cameras; 2) the expected recognition rate of less
than 90% for each object, which is still low when many objects
(people) are simultaneously inside the store; and 3) the high
variability of customer poses, including extreme poses such as
being seated, trying on shoes, and occluded by a chair.

We propose to solve the people counting problem through a
supervised learning approach based on a Convolutional Neural
Network (CNN) regression model. The CNN is expected not to
specifically recognize people, but to learn the density of people
in each part of the spatial domain of four channel images
named RGBP (red, green, blue, people) images. The RGBP
images are composed of: the original RGB channels to provide
color information; and an extra binary channel to represent
the presence of people, which is computed by detecting the
foreground. With this aim, we propose a real-time foreground
detection method based on concept drift [9]. Such an algorithm
is adapted to the peculiarities of the problem taking into
consideration, for example, that the background is not fully
characterized by static pixels over time, since salespeople, for
example, may stay motionless for long periods of time. We
also present an approach to detect the hot spots of retail stores,
which exploits the proposed foreground detection method. It
is worth emphasizing that our people counting approach relies
on single static images only.

To validate our method, we collected several videos from
a surveillance camera placed in a real shoe retail store. We
performed experiments to tune the hyper-parameters of the



proposed CNN regression model and compare with other
image representations: RGB images; and RGB images with
blacked background pixels. We also present a case study on
hot spot detection of the watched retail store and discuss the
limitations of our approach.

In summary, the main contribution of this paper is a deep
learning approach for people counting, featuring the following
components:

o A foreground detection method to recognize people in
RGB videos;

e An input image format named RGBP images to simulta-
neously provide color and foreground information;

o A CNN regression model that learns how to count people
from the aforementioned RGBP images, achieving better
accuracy to estimate the number of people in images
when compared to other CNN regression models trained
from conventional RGB or P images (Section VII-B).

II. RELATED WORK

Crowd density estimation and accurate people counting are
closely related problems, although existing methods for the
former are generally not appropriate for the latter. According
to Loy et al. [10], methods for crowd counting can be cate-
gorized into three groups: counting by detection, counting by
clustering and counting by regression.

The counting by detection approach is based on the recogni-
tion of each existing individual in the image. Such an approach
has been used to detect pedestrians using Histograms of Ori-
ented Gradients (HOG) [11] and shapelets [12] for example.
However, this approach is unreliable in crowded scenes where
occlusion and scene clutter are frequent. Alternatively, part-
based detection methods are more robust in such situations, de-
tecting body parts like heads and shoulders [13]. Still, specific
body parts may be hard to detect in low-resolution surveillance
cameras, especially when the parts are far from the sensor,
and still suffer from occlusion. In addition, accurate people
counting relies on the successful detection of each person in
the image, which also makes deep learning approaches for
object detection [5] unfeasible here, since their accuracy is
not sufficient yet.

Clustering-based methods assume that coherent feature tra-
jectories can be grouped together to represent moving entities.
Following this approach, Bayesian clustering was employed
to group local features [14]. Similarly, a parallelized version
of the Kanade-Lucas-Tomasi (KLT) tracker was proposed
to extract and cluster a set of feature trajectories [15]. A
limitation of such methods is the reliance on spatiotemporal
coherence, being inappropriate to count people in single static
images. Also, as in the counting by detection approach, failure
to recognize a single person would impact the resulting people
count.

Regression methods are not prone to the latter problem since
they work by globally estimating the crowd density [10]. It
is the most extensively used approach for crowd counting, in-
cluding studies based on simple linear regression models [16],
Gaussian processes [17], support vector regression [18] and,

more recently, deep learning methods [19]-[21], which are
carefully described in a recent survey [22].

However, as discussed in [22], the above-mentioned meth-
ods are focused on roughly estimating the number of people
in highly dense crowds, for purposes such as outdoor crowd
analysis in sporting events, political rallies and public demon-
strations. Instead, we aim at accurately estimating the people
count in small indoor environments, and particularly in retail
stores. It is worth emphasizing that indoor scenes have their
own peculiarities, making the counting task more challenging
due to: a mix of stationary and moving people, which com-
plicates the foreground detection; and severe occlusion from
other people, furniture and walls.

To the best of our knowledge, this is the first attempt to
employ deep learning to solve the accurate single image people
count problem in indoor environments.

III. OVERVIEW

Our approach addresses two relevant computer vision prob-
lems for customer behavior analysis: accurate real-time people
counting and hot spot detection. As illustrated in Fig. 1, we
consider as input low-resolution RGB images (400 x 225 pix-
els), which can be acquired from cheap surveillance cameras.
Such an image is first quantized and then given as input to a
foreground detection method that was developed to properly
deal with the peculiarities of people behavior in retail stores.

To perform people count, RGB image data and the estimated
foreground information are merged in an image format that we
call RGBP images, which are employed in two distinct phases
of a supervised learning task: training and real-time prediction.
In the training phase, images are first annotated by a trainer
according to the number of people, aided by a tool that was
developed to allow semi-automatic image annotation. Next,
this supervised dataset is used to train a CNN based regression
model that is then expected to accurately estimate the people
count. In the prediction phase, RGB images acquired from the
camera are processed by the foreground detection algorithm.
The resulting RGBP image is given as input to the trained
CNN, which finally estimates the people count in real-time.

Simultaneously, the detected foregrounds representing peo-
ple in the image (P channel of the RGBP images) are added
to a cumulative image. The accumulated data is then color-
coded using a color map, and the resulting heat map may be
exploited to visually recognize where people flow is higher
(hot spots) from the camera viewpoint.

IV. FOREGROUND DETECTION AND RGBP IMAGES

Foreground detection or background subtraction is a well-
studied problem, commonly used as a preprocessing step in
many vision-based tasks. The most straightforward approach
is to first acquire a background image of the scene, i.e. an
image without people in it, and then subtract the new images
from the background. Although acquiring such a background
image is practical in our case, it is not expected that it re-
mains static, since products and furniture are frequently being
moved or reorganized. In addition, shadows and illumination
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Fig. 1. Overview of our approach. An RGB image acquired from a surveillance camera is first quantized. Next, the quantized version is used to initialize or
update the foreground/background, and to extract a binary P image representing people. The P image is merged with the original RGB image to compose an
RGBP image, which is used to train a CNN model. Then, the trained regression model is expected to accurately estimate the people count. Simultaneously,
the P image is also used to update a cumulative image that encodes the hot spots areas and can be visually analyzed as a heat map. The black arrows represent
common steps to all phases. The red, green and blue arrows represent training, prediction and hotspots detection steps, respectively.

changes may impact the segmentation quality. Alternatively,
another common approach is to analyze motion features to
detect static and moving objects (background and foreground,
respectively). Unfortunately, in the context of a retail store,
it is expected that many people remain static, particularly
salespeople and customers browsing or trying on products
such as shoes, for example. We refer the reader to [23] for
a comprehensive presentation of other existing methods.

To properly handle these issues, we propose a hybrid ap-
proach that initializes the background from a few consecutive
images, or from an initial background image if practicable,
and then continuously updates it.

A. Preprocessing

The first steps to detect the foreground of an acquired RGB
image are: downsampling its spatial domain to 400 x 225
pixels, which is the fixed input of the neural network; and
then generating an uniformly quantized version T of the
downsampled image Z, with A color levels, to minimize the
effect of illumination changes and shadows. We achieved
excellent results by empirically setting A = 64 (4 levels per
channel). The spatial resolution of the downsampled images
was empirically chosen by asking a few individuals to count
people in challenging images, at different resolutions. The
selected resolution was the lowest one in which individuals
could still correctly count people. It is also worth mentioning
that 7 is used only for foreground detection, while Z is used for
the CNN training and prediction (jointly with the P channel,
described in Section IV-D) since it holds more information.

B. Background initialization

The background may be initialized using one of two ap-
proaches: considering a single background image, which may
be collected when the store is empty for example; or by
accumulating data from a few images in various histograms,
one for each pixel, as we describe next.

Let #;; be the histogram for pixel (¢, j), where i ranges
from 1 to 225, and j from 1 to 400. The number of bins of each
histogram is set to be the number of levels A of the quantized
images 7. To compute the histograms, we use a circular image
buffer C of maximum size n. Each time a new image Z is
acquired, we first compute a quantized image Z, which is
then added to C. If C is full, Z replaces the oldest image
7, in the buffer. However, before performing this operation,
the histograms are firstly updated: for each ¢ = 1...225 and

j = 1...400, H;;[Zo(i,7)] is decreased by one unit, and
H,;[Z(i,7)] is increased by one unit, where #,;[-] denotes the
frequency of bin - of the histogram #;;. Note that Z(i, 5) and
7,(i, ) are quantized RGB values, which must be coherently
mapped to unique corresponding bins of the histograms.

To initialize the background, we wait until the buffer C
becomes full (holding 7 images), and use the histograms
data to compute the mode for each pixel. Thus, the initial

background image is given by

B(i,j) = mode(H,;), i=1...225 j=1...400. (1)

In our experiments, we generated reliable backgrounds by
sampling one frame per second from the camera, to fill a buffer
of size 7 = 100, which implied that the initial background
would be available after the first 100 seconds. However,
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Fig. 2. Analyzing the effects of buffer size in background initialization: with few images on the buffer, some people is still visible (left and middle). The
background detection improves with more accumulated images, until reaching a high quality background (right).

these parameters depend on each situation, and particularly
on salespeople and customers behavior in the store.

Fig. 2 shows an example of a background initialization with
a different number of buffered images (n). In particular, in
Fig. 2c there is still a salesman at the entrance. We deduced
that this happened because there is always a salesman at the
entrance waiting for customers. However, in our experiments,
the model succeeded in learning how to handle such an issue
by learning from training data that include these challenging
examples. In such challenging situations, we believe that the
model considered a specific combination of RGB data and the
absence of foreground pixels in a specific part of the image.

C. Background updates

As already discussed above, it is not reliable to consider
a constant background in time, due to dynamic changes of
objects in the scene. Nevertheless, it is not straightforward
to update regions of the background using recently acquired
images. In particular, salespeople and customers may perform
static behaviors for fairly long periods. Consequently, a poten-
tial confusion with a moving object in the scene must be con-
sidered. Thus, we adopt a more cautious condition to update
the background, inspired by the concept drift approach: we
try to detect relevant background changes over time, avoiding
considering changes caused by illumination and people.

After the background initialization, the circular buffer keeps
being fed at the same sampling rate, and the histograms keep
being updated. Each time a new image updates the histograms,
we independently analyze each histogram. Instead of consid-
ering the mode of each H;; to update the corresponding pixel
value B(i, j), as in Equation (1), we act in a more conservative
way according to:

Bi(i, ) = mode(H};), if max(H};)>7-7
B4, 4),  otherwise,

2

where B~! and B! are the previous and the updated back-
ground, respectively; Hﬁj is the updated histogram of pixel
(i,7); and 7 is a threshold set to 0.8 in our experiments,
which means that B(i,j) is updated only if at least 80% of
the frequencies of histogram #,;; are concentrated in a single
bin. Consequently, erroneous background changes due to static
people, for example, are lessened.

D. Composite RGBP images

The continuously updated background is used to detect
people in RGB images acquired from the camera in real-time,
or from the training set. Given a new image Z, we first generate
7 using the quantization procedure described in Section IV-A,
and then compute the absolute difference from the current
background B:

Za=|T-8, 3)

The resulting absolute difference image Z is then processed to
highlight relevant differences, which we expect to be people.
With this aim, Zy is first converted to grayscale, and then it is
binarized by thresholding as:

plij) = |1 i eaydali.d) >
’ 0, otherwise,

4)

where (5 is a binarization threshold set to 0.1, and gray(-) is a
luminance-preserving grayscale conversion function.

Finally, the resulting binary image P is merged with the
original RGB image Z, to compose a four channel image
that we call RGBP image. Such an image combines both
the original color information (RGB) and higher level people
information (P) represented by pixels with value 1. In the
following section, we employ this image representation to train
a CNN to predict the people count.

V. CONVOLUTIONAL NEURAL NETWORK BASED
REGRESSION FOR PEOPLE COUNTING

We adopt a supervised learning approach to estimate the
people count in images by training a CNN based regression
model. To train such a model, a large training set comprised of
annotated RGB images (acquired from a surveillance camera)
is required. Then, we expect the trained CNN to be capable
of accurately estimating people count in real-time.

A. CNN training and real-time prediction

At the training phase, a large number of RGBP images
showing different numbers of people were used to train a
CNN, generating a highly non-linear regression model. To
compose the training set, RGB images are first acquired from
the surveillance camera and then preprocessed by performing



the foreground detection and generating their RGBP represen-
tation, as described in Section IV.

We emphasize that the accuracy of the model relies on a
diversified training set, comprised of examples of each number
of people that is expected to be found in the store. In our
experiments, we noticed that the CNN was not capable of
extrapolating its prediction to detect people counts higher
than the most crowded training images. However, this partial
limitation was mitigated by the physical limitations of the
store, i.e. the maximum possible number of people inside it.

Besides, it is also necessary to annotate the large training set
of images by visually counting the number of people shown
in each image. As this is an extremely laborious task, we
developed a simple semi-automatic visual tool to facilitate the
process. First, we consider that the training set is composed
of images collected from continuous video. When playing a
video, we expect the number of people to smoothly increase
or decrease. Thus, the developed tool first statically shows
the first frame of the video, and wait until the user annotates
it by typing the correct number of people. Then, the video
starts playing and the user is required to just press one of two
buttons: increase by one unit the number of people, when a
new person arrives in the store; or decrease by one unit, when
a person leaves the store. By using this tool, the training time
is the same as the videos duration.

Finally, in the classification stage, RGB images acquired
from the camera are similarly preprocessed, and the resulting
RGBP image is given as input to the trained CNN, which
predicts, in real-time, the number of people in the image.

B. Architecture

The class of Convolutional Neural Networks for image
classification or regression includes models that receive as
input any kind of data structured as n-dimensional images;
perform convolutions on such data in a few convolutional
layers, possibly using max-pooling and dropout; flatten the
resulting feature maps into an uni-dimensional array before
feeding a few dense layers; and finally reach an output layer
with an activation function. Since we are dealing with a
regression problem, we employ a linear activation function
in the last layer.

In Section VII-A, we report results of experiments con-
ducted to find the best performing architecture among several
hyper-parameters values combinations. All investigated net-
works receive as input an RGBP image with fixed dimensions
of 400 by 225 pixels. The input data is filtered by 3 or 4
convolutional layers (C'), where each one may apply 8 or 16
filters (F) of size 3 x 3 or 5 x 5 (K). Each convolutional
layer is always followed by a 2 x 2 max pooling layer to
downsample the feature maps. Then, the last feature maps are
flattened into an unidimensional array that is given as input
to 1 or 2 dense layers (L), with 16 or 32 hidden units (U)
each. In all convolutional and dense layers, we use the rectified
linear (ReLU) as activation function. Finally, the output layer is
composed of a single neuron with linear activation. In practice,
we round the CNN prediction to the nearest integer, since the
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Fig. 3. CNN regression model architecture: the RGBD image is given as
input to convolutional blocks composed of 2D convolutional layers (each one
applying K filters of size F' x F, and 2 X 2 max pooling layers). Then,
flattened features are given to dense layers that precede a linear output layer
with a single neuron. The output of the network is the predicted people count,
represented as a real number.

people count is expected to be an integer. The basic structure
of the experimented CNNs is shown in Fig. 3.

VI. HEAT MAP GENERATION FOR HOT SPOT DETECTION

Hot spots are characterized as high-traffic areas within
retail stores. We exploit the binary images P, described in
Equation (4), in order to detect such places. Since P represents
people (foreground), it is feasible to use data from P over the
time to identify hot spots, by evaluating the frequency in which
each area of the store is occupied by a person. This can be
accomplished by evaluating the cumulative image M7’ given
by
1,
7P 5)

t=1

MT =



where P? is the binary image P computed at time ¢, and T is
the last time step analyzed. Thus, regions of MT with higher
pixel values represent the estimated hot spots.

To visually analyze data in M7, we first perform the usual
histogram equalization procedure on M7, and then color-code
it using a conventional color map, as illustrated in Fig. 7, in
which case the Jet color map was applied.

VII. EXPERIMENTS

To carry out our experiments, we collected several RGB
videos from a 1-megapixel surveillance camera placed in a real
shoe retail store, which is publicly available'. To maximize
the diversity of people flow, the videos were collected at 7
different time periods, including distinct times of the day and
days of the week. The training set was initially comprised of
153 minutes of video. Next, semi-automatic annotation was
performed using the tool described in Section V-A. Due to
the high similarity of consecutive frames, we then discarded
four out of every five consecutive images. The final training
set was comprised of 37,678 annotated RGB images, including
images of the store empty, and images with 1 to 30 people,
as depicted in Fig. 4.

A. CNN validation and hyper-parameters optimization

The proposed class of CNNs for regression represents a
large number of neural networks that are defined by a few
hyper-parameters values. Instead of empirically setting values
as many previous works, we optimize hyper-parameters by
searching over a sample of the search space, as already
described in Section V-B. In other words, we performed a grid
search, experimenting with various combinations of hyper-
parameters values.

Each combination is evaluated through a cross-validation
procedure by randomly splitting the dataset examples into
training and test sets, considering 75% of the examples for
training and 25% for testing. Here, we carefully split training
and test sets to avoid similar images from short periods of
time to be part of the same subset. With this aim, training
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Fig. 4. Number of training images per number of people: images with up to
30 people were collected. Note that fewer examples displaying more than 21
people were acquired, since this was not a common situation.

TABLE I
CONFIGURATION AND ACCURACY OF THE TOP 8 CNN CONFIGURATIONS
SORTED BY £. THE BEST RESULT IS SHOWN IN BOLD.

¢ F L U K | &(@{n% MAE | weights
3 8 2 16 5 10.78% 1.238 | 145,641
3 16 1 16 3 10.99% 1.236 | 324,753
3 16 2 16 3 11.35% 1.285 | 325,025
3 16 2 32 5 11.58% 1.237 | 580,817
4 8 2 32 3 11.60% 1.232 73,825
3 16 1 16 5 11.76% 1.263 | 297,105
3 8 1 32 3 11.90% 1.264 | 321,017
3 16 2 16 5 11.96% 1.286 | 297,377

and test sets were comprised of images sampled from distinct
video recordings. The validation accuracy was evaluated after
an early stopping trigger to avoid overfitting. As we are dealing
with a regression problem, whose target values are integers,
we consider the following error measure to evaluate each
combination of hyper-parameters values:

c_ 1 Z |t; — round(y;)| 7 ©)

n t;
i=1 v

where ¢; is the ground truth (annotated) people count and y; is
the people count estimated by the CNN, of the ¢-th image; and
round(-) is the function that rounds a number to the nearest
integer. When ¢; = 0, we set the denominator to 1.

We adopted the Adam optimization algorithm [24] of the
Keras library [25], with an initial learning rate of 0.001. As
£ is not differentiable, we employ the mean absolute error
(MAE) as a loss function to train the network. The top 8
best performing configurations according to £ are shown in
Table I, achieving £ = 10.78% for the best configuration, and
similar results for the others. Besides, the MAE was roughly
1.2 people for all top configurations, which we consider to
be an unimportant error for customer’s flow analysis. Such
results validate and confirm that our approach allows real-time
accurate monitoring of people flow in retail stores.

Additionally, we better analyze the performance of the best
CNN: we calculate the number of images that resulted in each
absolute error given by

A(t,y) = |t — round(y)]|,

where t is the ground truth people count and y is the predicted
people count. Note that A is always a non-negative integer.

As depicted in Fig. 5, the majority of images achieved a
maximum absolute error of 1 person. In particular, the people
count of 41.8% of the test set images was correctly predicted
by the best CNN, and less than 8% of the tested images
resulted in an absolute error above 2 people. Considering
that an error of up to 2 people is negligible for long term
people flow analysis, we conclude that our regression model
can indeed be employed in real-world retail stores.

To corroborate this conclusion, we evaluated a video com-
posed of 250 consecutive seconds showing a situation where
the store was crowded, with an average of 18 people. As
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Fig. 5. Percentage of test images per absolute error: most images achieved
a correct people count (41.8%) or an inaccurate people count of only one
person (37.6%).

depicted in Fig. 6, the CNN achieved high accuracy: almost
all predictions attained less than 10% error. By exploiting the
temporal coherence of the problem, we believe that even better
results could be achieved.

B. Comparison with alternative image representations

In the previous section, we simultaneously validate our ap-
proach and compared various CNN configurations. The other
relevant component of our approach, which is the foreground
detection and its use in the RGBP representation, is compared
here with other commonly used image representations.

Similarly to the previous section experiments, we set up here
cross-validation experiments that considered three different
image representations as input to the best performing CNN
configuration (Table I). The following representations were
evaluated: RGB-only images; P-only images; and RGB-blacked
images, which are the original RGB images with blacked
background pixels, as given by P. In addition to comparing the
results of these different image representations, some relevant
questions can also be answered: 1) is the CNN recognizing
people in RGB images? 2) is foreground detection a relevant
step to improve people count accuracy? 3) Is the CNN capable
of learning to count people from the P image? 4) is the
background color information relevant?

25
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54 —e— ground truth
—e— predicted
0 : : : :
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time (s)

Fig. 6. Ground truth and predicted people count over 250 seconds of a
challenging situation with many people: most predicted people count is inside
the gray polygon, which represents a 10% relative error tolerance region.
Images were evaluated by the CNN every 5 seconds.

TABLE II
COMPARISON OF OUR APPROACH WITH OTHER IMAGE REPRESENTATIONS.
THE BEST RESULTS ARE SHOWN IN BOLD.

image representation

error | RGB-only RGB-blacked  P-only  RGBP (ours)
& 37.68% 17.45% 14.80% 10.78%
MAE 1.831 1.735 1.676 1.232

Such questions are answered by analyzing Table II, which
reveals that the RGBP image outperforms the other image
representations. The worst results were achieved by learning
from RGB-only data, which indicates that raw color data is
not the most appropriate kind of information to recognize
people. Following, the RGB-blacked representation achieved
significantly better results, which is strong evidence that fore-
ground detection is indeed a relevant step. The third question
is positively answered by observing the better results of the
P-only image. Finally, the best results achieved by our RGBP
images imply that: combining both color and foreground
information is relevant to improve accuracy and outperforms
all other approaches; and background color information is
relevant, answering the fourth question (otherwise, the results
for RGB-blacked would be comparable).

C. Case study on hot spots visualization

In this section, we present a case study conducted to validate
our approach for hot spots generation and visualization. Using
the same camera setup of the previous experiments, we applied
the proposed algorithms to accumulate data of one hour
of recording. The widespread Jet color map was chosen to
generate images at different moments in time, as shown in
Fig. 7, where the red and blue regions of the image indicate
the hot and cold spots of the store, respectively.

One can see that heat maps gradually change over time. By
visually analyzing the last heat map (Fig. 7d), it is possible to
extract some interesting information about people flow:

1) the peak of people flow is the entrance of the store, as

expected;

2) due to many people remaining at the counter for a
long time, that place was considered a hot spot. This
information may be exploited by a retailer to position
products in that area;

3) there is a hot spot around the chairs used to try shoes;

4) there is not much movement in the central area of the
store, suggesting a repositioning of that furniture.

5) the corridors at the right of the image are also not much
visited by customers.

It is worth emphasizing that a longer-term analysis would

result in more reliable conclusions. Nevertheless, the presented
case study was sufficient to validate our approach.

D. Limitations

The main limitations of our approach are related to the
CNN training phase. According to the results presented in
Section VII-B, it is not expected that a trained model can be



a

(a) store (b) 5 minutes of recording

(c) 30 minutes of recording

(d) 60 minutes of recording

Fig. 7. Hot spot detection example: several color-coded visualizations of the equalized cumulative images, where red and blue regions represent hot and cold

spots, respectively. In (a), a picture of the store for reference.

applied in different places or viewpoints of the same place. Put
differently, training is customized to each place and viewpoint.
In particular, the surveillance camera must stand still to avoid
viewpoint changes. Fortunately, the proposed annotation tool
greatly increases the efficiency of each customized training.
The second limitation is related to the high non-linearity of
the trained models, which do not support extrapolation. Thus, a
well-balanced training set, composed of an appropriate number
of examples from each expected number of people, tends to
result in better accuracy.

VIII. CONCLUSION

We presented a low-cost deep learning approach to estimate
the number of people in retail stores and detect hot spots
in real-time, using only an inexpensive surveillance camera.
Several experiments were conducted to validate, evaluate and
compare our approach. Results revealed that our approach
is sufficiently robust to be used in real world situations,
outperforming more conventional approaches.

As future work, we intend to investigate adaptations to
detect and exclude salespeople from the people count, in
such a way that retailers could better analyze customer-only
flow. We also plan to experiment with deep networks that
consider the temporal coherence of the problem, since people
count gradually changes over time. Another future research
topic would be incorporating, into the network architecture,
layers capable of automatically detecting the foreground in an
integrated manner.
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