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Abstract

This paper presents a novel methodology to perform

matching between image points described by their respec-

tive features. Traditionally, such correspondences are de-

termined by computing the similarity between descriptor

vectors associated to each point which are obtained by in-

variant descriptors. Our methodology first obtains a coarse

global registration among images, which constrains the cor-

respondence space. Then, it analyzes the similarity among

descriptors, thus reducing both the number and the severity

of mismatches. The approach is sufficiently generic to be

used with many feature descriptor methods. We present sev-

eral experimental results that show significant increase in

accuracy, number of successful matches, and execution time.

1 Introduction

Matching or correspondence is the problem of establish-

ing a biunivocal mapping between points of two images that

correspond to the same point in the scene, and is a fundamen-

tal step to solve several other problems in Computer Vision,

such as depth/disparity map estimation, multiple view geom-

etry, scene mapping, egomotion determination, and object

tracking. A typical approach to solve the image matching

problem is to first select a set of points in each image that

exhibit peculiar characteristics in its vicinity (edges, cor-

ners, derivative peaks, etc.); then pair the elements of these

sets together, possibly discarding points for which no good

matching was found.

It is highly desirable to ensure a low probability of gen-

erating false correspondences, as outliers can severely com-

promise other process down the line that rely on accurate

matching results. For this reason, several methods were de-

veloped to assign a distinctive signature, or descriptor, to

each image feature during the selection phase. After the

selection is made, a correspondence step is carried out by

selecting pairs of features whose descriptors are most similar.

However, mismatches still occur, mostly due to the criteria

used for selecting pairs of features that are based on descrip-

tor similarity alone. One unpleasant effect of this criteria is

that mismatches frequently generates correspondences be-

tween seemingly random points of the two images, which

can be disastrous if the results are the input of non-robust

processes.

Ideally, a matching process should be able to generate the

largest set of correct correspondences and their precise loca-

tion on each image at the lowest computational cost possible,

while avoiding the occurrence of incorrect correspondences

(mismatches). This paper presents a methodology that ful-

fills the aforementioned requirements. The key idea is to

analyze the consistency of several geometrical clues before

blindly accepting a candidate match. This approach not only

greatly reduces the occurrence of outliers, but also increases

the number of matching pairs and takes less time to execute

when compared to classical descriptor similarity criteria. It is

also worth noting that our methodology is generally applica-

ble to several types of feature descriptors. Experiments show

that our approach consistently outperforms current matching

criteria.

The rest of this paper is organized as follows: Section 2

gives an overview of the main issues behind feature de-

scriptors and the matching process; Section 3 presents the

proposed methodology, which is evaluated by several ex-

periments whose results are shown in Section 4. Finally,

Section 5 concludes with a discussion of the results and

possible further directions.

2 Feature descriptors and matching

In Computer Vision, it is desirable that image match-

ing be reliably carried out even under substantial geometric



and/or photometric deformations in image characteristics. In

the last decade, several feature descriptors have been pro-

posed that exhibit important qualities: invariance to affine

transformations (translation, scaling, rotation), illumination

changes, and robustness to perspective transformations, such

as changes in the point-of-view. The SIFT algorithm [6, 7]

is considered an important breakthrough since it provides

a simple descriptor — an 128-element vector — that can

be directly compared using the Euclidean distance (a rela-

tively low-cost metric). In the following years other methods

have been proposed, notably PCA-SIFT [5], GLOH [8] and

SURF [1]. These methods provide descriptor vectors that

are either faster to evaluate, more distinctive and/or have

less elements (which reduces the comparison cost) when

compared to SIFT.

The typical matching step for these algorithms can be

described as follows:

• Given the set of the descriptors of all distinct features

found in the two images, Dq = {dq,1, . . . ,dq,Nq
} for

q ∈ {1, 2}, where d∗,∗ are vectors with K elements

and Nq is the number of features detected in image q;

• given a distance function, dist : R
K × R

K → R
+

(possibly, but not necessarily, the Euclidean distance),

where R
+ is the set of non-negative real numbers;

• for each descriptor d1,i, search for a d2,j that mini-

mizes the distance dist(d1,i,d2,j).

The output is a set of pairs 〈i, j〉 of corresponding features.

Formally, the set M of all pairs can be described by:

M = {〈i, arg min
j

dist(d1,i,d2,j)〉} ∀1 ≤ i ≤ N1. (1)

This approach is obviously error-prone since all features

from the first image will be matched to some feature in the

second image, which will inevitably generate false correspon-

dences. To overcome this undesirable effect, a typical solu-

tion is to accept a match only if the distance from d1,i to the

second best match in D2 is significantly larger. Formally, a

pair 〈i, j〉 is rejected if there exists a pair 〈i, k〉, 1 ≤ k ≤ N2

and k 6= j, for which dist(d1,i,d2,k) < τ dist(d1,i,d2,j)
for a given “distinctiveness” threshold τ ≥ 1, or:

M =
{

〈i, arg min
j

dist(d1,i,d2,j)〉 |

∀k 6= j
[

dist(d1,i,d2,k) ≥ τ dist(d1,i,d2,j)
]

}

. (2)

(Eq. (1) represents the unconstrained case where τ = 1).

However, this solution prevents matchings with repeated

features, such as recurrent patterns or homogeneous textures.

Ideally, matchings should be searched for all rich features,

no matter how many times they appear duplicated in the

images.

A better approach would be to rely on other constraints

while keeping τ = 1, effectively allowing matchings of re-

peated features. This can be achieved by searching a general

geometrical consensus between features of the images before

actually evaluating individual matches. For that matter, most

feature detector algorithms conveniently return not only the

descriptor vector, but also a set of associated geometric data.

In general, a feature F can be described as a tuple with at

least the following data:

F = 〈x, y, s, φ,d〉, (3)

where x and y are the coordinates of the feature centroid,

in pixels; s is a scale factor; φ is the orientation of some

particular characteristic of the feature; and d is the descriptor

vector.

In general, the scale factor s and the orientation angle φ
may have no meaning in the image space, serving only to

compare the geometry between local patches (around the

neighborhood of (x, y)) in the two images. For example,

given a set of {〈i, j〉} “good” matches between two images,

I1 and I2, where I2 is a zoomed view of a particular region

of I1, then all sj/si should maintain a general consistence

about that scaling transformation, i.e., sj/si ∼ constant.

The same should be true for the difference in orientations

(φj −φi) if the second image is a rotated view (along camera

axis) of the first image.

In the general case, we cannot expect the same scaling

factors sj/si nor a constant orientation change φj−φi for all

matched pairs 〈i, j〉 (which limits the applicability of robust

methods that search for extreme values, such as iterative

optimization methods or RANSAC [4]). However, if the

scene is static and the camera movement between shots does

not cause significative perspective transformation from one

image to the other, then we can expect both scaling and

rotation to be bounded. The identification of these limits is

the inspiration of our methodology, which is presented next.

3 Methodology

Our methodology is depicted in Figure 1, and it works as

follows. Given Minit = {〈i, j〉}, the set of matchings gener-

ated by any matching method (e.g., Eq. (2)), we first search

for a global consensus for scaling, rotation, and translation

of the image features and define “acceptable” ranges for

these transformations. We then build a new set of matchings

based only on geometric constraints (as if the distinctiveness

threshold τ was set to 1).

While Eq. (2) can be used to evaluate the initial set of

matched features Minit, this would also cause our algorithm

to be slower than current methods (since the total time re-

quired to run our methodology includes the time spent to

compute Minit). A more time-efficient method to evalu-
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D1,D2

Run the matching with
distinctiveness constraint τ > 1

Minit

Compute scaling and rotation
peaks and limits

smin, smax, φmin, φmax speak, φpeak

Discard matches outside
scaling and rotation limits

Msr

Compute translation limits

∆xmin, ∆xmax, ∆ymin, ∆ymax

Rerun the matching
with geometrical constraints

Mfinal

Figure 1. Overview of our methodology. From

an initial matching set, we first analyze scal-

ing, rotation and translation to evaluate the

geometric constraints, then the matching is

rerun under these constraints.

ate the initial set is discussed next. Further details on the

following steps will be described in Subsections 3.2 and 3.3.

3.1 Initial matching

Evaluation of a matching set according to Eq. (2) has

asymptotic time complexity of O(KN1N2), where K is the

descriptor vector length and N1 and N2 are the number of

features found in each input image respectively. While re-

ducing the asymptotic cost profile is not a trivial task, we

can actually reduce the computational cost by taking only

a subset of descriptors of D1 to evaluate Minit. Although

the resulting matching set is probably smaller than that eval-

uated in Eq. (2), this does not compromise the rest of the

methodology, since Minit is used only to compute the limits

for the rematching step.

We define Z as a random subset of D1, where the number

of elements of Z is defined as

|Z| =

⌊

|D1|

z

⌋

(4)

scale
ratio

5% of

peak value

peak value

speaksmin smax

Figure 2. Evaluation of the acceptable range

for the scale ratio. The same procedure ap-
plies to the evaluation of the rotation accept-

able range.

for a given subsampling factor z ≥ 1. Then we redefine

Minit by adapting the definition presented in Eq. (2):

Minit =
{

〈i, arg min
j

dist(d1,i,d2,j)〉 |

∀k 6= j
[

dist(d1,i,d2,k) ≥ τ dist(d1,i,d2,j)
]

}

∀d1,i ∈ Z. (5)

While the asymptotic time complexity is still the same (since

O(K N1

z
N2) = O(KN1N2)), the actual time required to

compute Minit as in Eq. (5) will be significantly reduced for

a large z when compared to the original proposition shown in

Eq. (2). The optimal determination of z will not be addressed

here. We will empirically determine the subsampling ratio

for our experiments in Section 4.

3.2 Geometric constraints evaluation

The objective of this step is to define acceptable ranges

for all geometric transformations considered in this work:

scaling, rotation, and translation. The first two transforma-

tions — scaling and rotation — can be directly estimated

from the scaling factors s and orientations φ computed by

the feature detector (Eq. (3)). However, feature translations

in image coordinates can only be consistently estimated after

determining the other transformations. Thus, the evaluation

of geometric constraints is performed in two steps: (i) scale

and rotation and (ii) translation.

3.2.1 Scale and rotation constraints evaluation

For scale and rotation constraints evaluation, we first analyze

the scaling ratios and rotation angles that occur between

matched features. We then define an acceptable range for

these transformations and discard all pairs that fall outside

these constraints.



For scaling ratios we proceed as follows: Given the set of

all scaling ratios, represented by S and defined as:

S ,
{

s2,j/s1,i

}

∀〈i, j〉 ∈ Minit, (6)

we first estimate the Probability Density Function (PDF) of

S using Parzen windows [9] with a Gaussian kernel. For the

bandwidth value we use the automated method discussed in

[2]. From the estimated PDF we pick the following values

(see Figure 2):

• the mode of scale ratio (the value at the PDF’s peak),

speak;

• the largest scale ratio below speak for which the likeli-

hood equals 5% of the mode, smin; and

• the smallest scale ratio above speak for which the likeli-

hood equals 5% of the mode, smax.

The same procedure is applied to find the rotation angle’s

(difference of orientations) peak and limits. Given the set of

all rotation angles, R, defined as:

R ,
{

φ2,j − φ1,i

}

∀〈i, j〉 ∈ Minit, (7)

we estimate the PDF of R, again using Parzen windows.

However, since angles form a cyclic space, the estimated

PDF must be confined to a (2π rad)-wide window centered

on the likelihood peak φpeak, i.e., the PDF is defined over the

domain (φpeak − π rad, φpeak + π rad]. The acceptable range

limits φmin and φmax are defined from this PDF exactly as

smin and smax.

Finally, we build the set Msr ⊆ Minit containing only

matching pairs whose scaling and rotation transformations

fall within the limits previously defined:

Msr ,
{

〈i, j〉 ∈ Minit |

(smin ≤ s2,j/s1,i ≤ smax) ∧

∧ (φmin ≤ φ2,j − φ1,i ≤ φmax)
}

, (8)

where φ2,j − φ1,i is normalized to the interval (φpeak −
π rad, φpeak + π rad].

3.2.2 Translation constraints evaluation

As explained before, translation is analyzed on the trans-

formed (scaled and rotated) feature coordinates. For each

pair 〈i, j〉 ∈ Msr, we define the transformed displacement

vector ~vi,j as:

~vi,j ,

[

∆xi,j

∆yi,j

]

,

[

x2,j

y2,j

]

− speak R

[

x1,i

y1,i

]

, (9)

where R is the peak angle φpeak rotation matrix:

R ,

[

cos φpeak − sinφpeak

sinφpeak cos φpeak

]

. (10)

Translation limits are defined as follows: Given a bidi-

mensional histogram over x and y axes of vectors ~vi,j , the

rectangle that covers the connected island of all histogram

bins around the histogram peak defines the acceptable ranges

for both axes: ∆xmin, ∆xmax, ∆ymin, and ∆ymax.

3.3 Rematching

From the constraints evaluated during the previous step,

we now build the final set of matching pairs Mfinal:

Mfinal ,
{

〈i, arg min
j

dist(d1,i,d2,j)〉 |

(smin ≤ s2,j/s1,i ≤ smax) ∧

∧ (φmin ≤ φ2,j − φ1,i ≤ φmax) ∧

∧ (∆xmin ≤ ∆xi,j ≤ ∆xmax) ∧

∧ (∆ymin ≤ ∆yi,j ≤ ∆ymax)
}

, (11)

again with φ2,j − φ1,i normalized to the interval (φpeak −
π rad, φpeak + π rad]. Notice that, as opposed to Eqs. (2)

and (5), no distinctiveness constraint is used.

4 Experiments and results

Both the classical and the proposed methods were im-

plemented in Matlab/C++. The test platform consists of an

Intel R© 2GHz CoreTM2 Duo processor with 4GB of RAM,

running a 64-bit GNU/Linux Ubuntu box (kernel v2.6.28).

Images were taken using a Canon PowerShot SX10 IS digital

camera with 10.0 megapixels and subsampled to 1/4 of the

original dimensions, resulting in images of 912× 684 pixels.

Some images of a planar, feature-rich scene, shown in

Figure 3, were used as the base for the experiments. We eval-

uate the proposed methodology by analyzing the correspon-

dences from the base image (Figure 3(a)) to the others, thus

covering three important transformations: change of point-

of-view (Figure 3(b)), camera approximation (Figure 3(c)),

and camera rotation (Figure 3(d)). Feature sets D1 and D2

are evaluated using the SIFT algorithm [6, 7].

Although the methodology is not limited to planar scene

patches, this setup allows for a direct qualitative evaluation

of the results based on image homography. Here we refer

to the homography as a function H : R
2 → R

2 which maps

bidimensional coordinates (x, y) from the first image to the

coordinate space of the second image:

[

x′

y′

]

= H

([

x
y

])

. (12)

The homography between two images is recovered using

Bouguet’s Camera Calibration Toolbox for Matlab [3] based

on the checkerboard calibration patterns present in all im-

ages.



(a) (b) (c) (d)

Figure 3. Set of images used in the experiments: (a) base image, (b) image after change of point-of-

view, (c) image after camera approximation, and (d) image after camera rotation.

Under ideal conditions, given any matching pair 〈i, j〉, the

feature coordinates in the second image, (x2,j , y2,j), should

match the transformed coordinates of the corresponding fea-

ture in the first image, (x1,i, y1,i). In practice, noise from

several sources affect this equality: mismatched pairings,

calibration uncertainties, determination of feature coordi-

nates, and so on. Thus, we define the error vector ~ǫi,j as

the difference between observed (from feature detector and

matcher) and predicted (from homography) coordinates:

~ǫi,j ,

[

x2,j

y2,j

]

− H

([

x1,i

y1,i

])

. (13)

From the set of the error vectors evaluated from a match-

ing set M, we analyze two global error measurements: the

Root Mean Square Error, RMSE(M), defined as

RMSE(M) =
1

|M|

√

∑

〈i,j〉∈M

‖~ǫi,j‖2, (14)

and the Mean Absolute Error, MAE(M), defined as

MAE(M) =
1

|M|

∑

〈i,j〉∈M

‖~ǫi,j‖. (15)

Smaller values obtained for RMSE(M) and MAE(M) indi-

cate better results. RMSE is particularly sensitive to outliers

(i.e., a single big value of ‖~ǫi,j‖) than MAE.

To compare the results obtained from current methods

(Eq. (2)), referenced here as Mcurr, with those obtained

from our method (Eq. (11)), our experiments estimate the

following performance factors:

• the number of pairs of each matching set, |Mcurr| vs.

|Mfinal|;

• the error measurements, RMSE and MAE, for both

Mcurr and Mfinal; and

• the time required to run each matching method.
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Figure 4. Results obtained with various val-

ues for the subsampling factor z for camera

rotation, showing results after 30 runs: me-

dian (black line), minimum and maximum (er-

ror bars). Red (horizontal) line is the result
obtained with classical method. (a) execu-

tion time, (b) RMSE, (c) MAE, and (d) number

of matches (|Mfinal|). Observe the decrease
of execution time as z increases, the insta-

bility of RMSE and MAE for large values of

z, and the gradual decrease of the number of

matches approximately from z ≥ 30.

The experiments are divided in two steps. In Subsec-

tion 4.1 we perform some tests to select a reasonable value

for the subsampling factor, z; and in Subsection 4.2 we per-

form a deep analysis of the results obtained with the selected

subsampling factor.



Test case POV-change Camera approximation Camera rotation

Method Pairs RMSE [px] MAE [px] Pairs RMSE [px] MAE [px] Pairs RMSE [px] MAE [px]

Classical method 2,887 90.50 22.70 1,571 129.54 41.60 3,242 73.65 16.81

Proposed method 3,255 14.10 8.40 1,968 9.33 6.18 4,245 11.24 7.16

Comparison (%) 113% 15.6% 37.0% 125% 7.2% 14.9% 131% 15.3% 42.6%

Table 1. Matching count and error measures comparison between classical (with τ = 1.5) and pro-

posed methods. Notice the consistent increase of number of matches and significant decrease of

both RMSE and MAE error measurements.

4.1 Selection of the subsampling factor

A typical profile obtained for various values of z is shown

in Figure 4. For each value of z we ran the algorithm 30

times, each one with a different selection of the random sub-

set Z ⊆ D1 (Eq. (4)). In Figure 4(a), it can be seen that

the time required to execute the algorithm steadily decreases

when z increases. The only case where the proposed algo-

rithm takes more time than the classical method is when

z = 1, i.e., when there is no subsampling at all. Median

of error measures (RMSE and MAE, shown in Figures 4(b)

and 4(c), respectively) remain approximately the same for all

tested values of z; however, for large subsamplings (z ≥ 90)

a poor selection of Z can compromise the quality of results,

which is clearly seen by the increase of the maximum values

of MAE. As for the number of matches (Figure 4(d)), in

general it is possible to outperform the classical method (red

line) for values of z ≤ 60; however, quality starts to decrease

approximately from z ≥ 30.

From these results, we have chosen z = 20 for the re-

maining experiments. This subsampling factor is a good

compromise between time cost reduction and number of

matches maximization.

4.2 Quality and performance analysis of
the proposed method

For the adopted subsampling factor z = 20, results for

both the number of correspondences (|Mcurr| vs. |Mfinal|)
and the error measurements (RMSE and MAE) are shown

in Table 1. All results show a consistent increase in the

number of correspondences (about 13%–31% more matches)

and an expressive decrease in both RMSE and MAE error

measurements (to less than 1/6 for RMSE and to less than

1/2 for MAE).

Table 2 shows the time required to compute the matches.

Results demonstrate that our method is about 10 times faster

than the classical method. The most expensive step is the

initial matching, accounting for approximately 37%–51% of

the total time of our test cases. This step would be much

more expensive if the optimization proposed in Eq. (5) was

Time [s]

Test case POV- Camera Camera

Method / step -change approximation rotation

Classical method 7.86 13.49 11.20

Proposed method 0.86 1.06 0.98

Pre-matching 0.32 0.54 0.46

Filtering 0.28 0.23 0.21

Rematching 0.27 0.29 0.31

Comparison (%) 11.0% 7.8% 8.7%

Table 2. Time comparison between classical

(with τ = 1.5) and proposed methods. The

times spent for each step are also shown.

Notice that the proposed method runs ap-

proximately 10 times faster than the classical

method.

not used.

The improvement in the quality of the results can be also

visually assessed, as shown in Figures 5, 6 and 7. For each

of these figures, we plot 5% of the matches (first row of

images) and the 50 worst matches, i.e., those corresponding

to the 50 highest values for ‖~ǫi,j‖ (second row). We used

only 5% of the matches for the first row in order to avoid

visual cluttering caused by the plot of thousands of matches.

While some severe outliers can be seen in Figures 5(a), 6(a)

and 7(a), no significant outliers can be seen in Figures 5(b),

6(b) and 7(b). Also, the 50 worst matches are clearly mis-

matches in Figures 5(c), 6(c) and 7(c), while the respective

worst matches of Figures 5(d), 6(d) and 7(d) still follow the

general geometric matching pattern. Even so, it is worth not-

ing that these worst matches appear consistently far from the

calibration patterns, which may indicate a poor homography

model in these regions due to camera lens distortion.

Figure 8 shows the distribution of the error vectors ~ǫi,j

for all test cases. All experiments show that our method

confines error vectors to much narrower bounds, about one

order of magnitude when compared to the values obtained

from the classical method (notice the scale change for all

plots).
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Figure 5. Matches for point-of-view change

(from Figure 3(a) to Figure 3(b)): 5% of the

matches for (a) classical method with τ = 1.5,

(b) proposed method; 50 worst matches for

(c) classical method, (d) proposed method.
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Figure 6. Matches for camera approximation

(from Figure 3(a) to Figure 3(c)): 5% of the

matches for (a) current method with τ = 1.5,
(b) proposed method; 50 worst matches for

(c) current method, (d) proposed method.
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Figure 7. Matches for camera rotation (from
Figure 3(a) to Figure 3(d)): 5% of the matches

for (a) current method with τ = 1.5, (b) pro-

posed method; 50 worst matches for (c) cur-

rent method, (d) proposed method.

5 Conclusions and future work

We have presented a novel methodology for feature

matching in a pair of images that provides more accurate

results at considerably smaller computational cost. Com-

pared to current methods based on similarity between de-

scriptor vectors alone, our approach is able to significantly

reduce the occurrence of mismatches, as evidenced by the

considerable decrease in both RMSE and MAE error mea-

surements. Since RMSE is very sensitive to outliers, the

expressive decrease in its magnitude, when compared to typ-

ical approaches in the literature, is a clear indication that

occurrence of feature mismatch is much less frequent in the

proposed method. Also, as we have shown, the increase

in the number of successful matches suggests that classical

techniques are likely to discard correct matches due to the

use of a distinctiveness threshold. This undesirable effect

is not present in the proposed method, since no distinctive-

ness threshold is used. Finally, we have also shown that our

method presents a tenfold increase in performance, while

correctly determining all viable matches.

Our method expects that all geometric transformations of

features (rotation, scale, and translation) are bounded to a

single interval, an assumption that is not true in the general

case where the scene is not static or if the images exhibit

large point-of-view changes of the camera between shots. In

these cases, it is possible to improve the proposed method

by accepting more than one set of geometric transformation
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Figure 8. Homography errors (~ǫi,j) for point-of-view change (first column), for camera approximation

(second column), and for camera rotation (third column). First row: current method with τ = 1.5;

second row: proposed method. Notice the difference of one order of magnitude in the scales of the

axis of plots on the first (current method) and second (proposed method) rows.

intervals, effectively segmenting the images in regions for

which geometric transformations are locally consistent. This

generalization is being currently addressed by the authors, as

part of ongoing researches in scene geometry reconstruction

and SLAM.
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