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São Cristóvão – SE, Brazil

Email: beatriz@ufs.br

Abstract—Modeling the appearance of a given material is a
complex task with many approaches in the literature. One is to
measure the BRDF of the material, which is time and resource
consuming. One alternative is to use a linear combination of an
existent BRDF-basis to approximate the material’s appearance.
However, the renderization of many BRDF-basis is also consum-
ing, which could be eased by selecting a subset of the materials
and use them as basis. Clustering algorithms can perform this
task, by grouping BRDFs in clusters, where just one BRDF
can represent one entire cluster. We use two classical and one
evolutionary clustering algorithms to reduce the number of terms
in the linear combination and a NNLS procedure to estimate the
contributions of each BRDF-base in the reproduction of a desired
material.

Keywords-BRDF; clustering; appearance modeling; genetic
algorithm; NNLS, linear combination.

I. INTRODUCTION

In Computer Graphics, appearance modeling involves the
simulation of the reflectance properties of different materials.
This is a complex phenomenon to reproduce, since several
unique characteristics define how a material absorbs or reflects
the incident light. In an attempt to define these features
analytically, many reflectance models have been created [1].

A BRDF (Bidirectional Reflectance Distribution Function)
is a function that aims to model the reflectance of dielectric
materials. It has four parameters, corresponding to the direc-
tion of the light that arrives at a point (θi, φi) and the direction
of the light that comes out of that point (θo, φo). A BRDF
calculates the portion of the incident light that is reflected by
the material in the direction defined by (θo, φo) [1], [2].

One approach in the literature is to represent a new BRDF
with another known BRDFs in a linear combination [2], [3],
[4]. This method involves the selection of a set of BRDFs
and an optimization process to find the coefficients in this
combination. To this end, a BRDF-basis must be defined and
a numeric method or an optimization algorithm could be used.

There are some well-known basis of BRDFs in the literature.
One of the most significant and widely used in computer
graphics is the MERL basis (Mitsubishi Electric Research
Laboratories), collected by Matusik et al. [5] and composed of
one hundred isotropic materials. This basis could be used to
approximate another BRDFs. However, an one hundred terms
linear combination is hard to solve and the renderization of

100 BRDFs is time consuming [2], [3]. For this reason, some
representative BRDFs could be chosen to reduce the number
of terms required in the linear combination.

One way to define a set of representative BRDFs is to use
clustering algorithms [2], [4]. This method consists in divide
the BRDFs into groups, whose elements inside each group
(cluster) have similar reflectance appearance. Doing so, instead
of combine 100 materials, only the representative member of
each cluster is used in the linear combination.

This work explores clustering algorithms in the Appearance
Modeling Problem. Aiming this, we used two classical parti-
tional clustering algorithms (k-means and k-medoids) and one
evolutionary clustering algorithm: Genetic Clustering for Un-
known K (GCUK). The representative members of each cluster
were used as terms of a linear combination to approximate
other materials. We validated the solutions using the Davies-
Boldin index and minimized the coefficients of the linear
combination through a numeric optimization (NNLS). These
coefficients indicate how much each representative material
contribute in the approximation of other materials.

The rest of the paper is organized as follows: Section II
contains the related works, followed by a technical background
in the Section III. Section IV describes our approach. The
experiments and results are shown in the Sections V and VI.
Finally, our conclusions and suggestions for future works are
presented in Section VII.

II. RELATED WORK

BRDFs Acquisition: The classical way to measure re-
flectance properties of a material is through an equipment
known as gonioreflectometer [2]. This method reaches high-
precision results, but it is highly time and resource consum-
ing [2], [6], [7]. For this reason, alternative methods have been
developed, using an image-based approach. Matusik et al. used
this approach to collect the BRDFs of 100 isotropic materials,
including plastics, metals and fabrics [5]. They used a small
sphere of each material to capture 330 HDR pictures of half
of the sphere. This process took about 3 hours for each
material [5]. Ghosh et al. managed to speed-up the raw data
acquisition process, reducing it to few minutes [6]. This time
reduction was possible due to an alternative way of measuring
the data [6]. However, the results did not reach the same
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quality, once the main goal was to develop a faster BRDF
measuring.

Reflectance Models: There are several analytical re-
flectance models with distinct characteristic and goals. Montes
and Ureña [7] classified 20 of these reflectance models by its
characteristics. The graphical tree classification of the BRDFs
in the paper is a way to compare and analyze which model
fits better for each application. Another strong point is the
explanation of the characteristics presented (or not) by the
models.

Other approach is the one used by Brady et al. [8] to
find new analytical reflectance models. Instead of trying to
derivate them analytically, they used a genetic algorithm –
genBRDF – capable of generate reflectance models based
on a grammar. The goal is not to replace the human effort
of deriving analytical models, as in many cases the output
formulas have no meaning without a human interpretation of
the terms [8]. Instead, genBRDF could be seen as a support
tool in the development of analytic models [8].

Coefficients Minimization: Ngan et al. [9] used the
MERL basis to fit the parameters of seven analytical re-
flectance models through a least squares optimization [10].
They found that the model proposed by Ashikhmin and
Shirley [11] reached smaller errors than the other models
in many materials. All models were compared using the
same parameters, which is somewhat unfair, as the goals and
degrees of freedom of the models are very different [9]. A
supplemental document [10] presents the formulations used
for each model and the minimized parameters for each one of
the 100 rendered materials with 1 specular lobe.

Bilgili et al. [12] conducted a similar experiment (using
the same basis) with a few different models, including an
original one. Their supplemental document [13] contains the
parameters of the 100 rendered materials with 3 specular lobes
and the peak signal-to-noise ratio (PSNR) – a measure of the
quality – for each material.

Clustering BRDFs: Häußler [4] and Carvalho [2] used k-
means to generate a subset of expressive BRDFs from MERL
basis. The main goal of using clustering in that context is very
similar to ours: if all 100 MERL BRDFs were used as basis,
the BRDF estimation and rendering would result in longer
computation times.

III. TECHNICAL BACKGROUND

A. Appearance Modeling

Materials are generally classified into three distinct cat-
egories: isotropic, anisotropic and retro-reflectors [1], [7].
Isotropic materials do not change their appearance if the
incidence and outgoing rays of light are rotated by the same
angle to the normal vector of a point on the surface [1], [2].
Anisotropic materials, like velvet and brushed metal, have the
opposite behavior of the previous condition. Finally, retro-
reflective materials are those that reflect light more strongly
in the opposite direction of incidence [1].

There are three essential properties for a reflectance model
be physically plausible: be non-negative, i. e., light emission

should be greater than or equal to zero; conserve energy, which
means that the amount of reflected light should be less than or
equal to the incident light; and meet the principle of Helmholtz
reciprocity: changing the angles of incoming and outgoing
light, the result should remain the same [1], [2], [12].

B. Clustering

Clustering is an unsupervised data-mining task that aims
to divide an input dataset into clusters with the following
property: members of the same cluster have high similarity,
whereas the clusters are very separated from each other [14],
[15]. Several algorithms have been developed to perform
clustering, some of which specific for particular sets of data.

Clustering techniques are divided in two categories: hard
clustering, where an element belong to exactly one cluster,
and fuzzy clustering, where elements have a level of relevance
to each cluster [14], [16]. To determine to which cluster
(or clusters) an element belongs, similarity measures (fitness
functions) are used. They calculate how close each element is
to each cluster [14]. Usually, for simplicity, this function is the
Euclidean distance, but there are many others like Manhattan
and Mahalanobis distance. Some of them are listed in [14],
[16].

One problem with classical clustering algorithms is the obli-
gation of choosing into how many clusters the data set must be
divided [15]. One way to overcome this is through a genetic
clustering algorithm, capable of finding the optimal value for
K – the number of clusters [15]. This kind of algorithm is
more appropriate to cluster a BRDF-basis, since we do not
know a priori how many terms the linear combination must
have to represent well others materials.

IV. CLUSTERING ALGORITHMS APPLIED TO APPEARANCE
MODELING

In this work, it was explored three clustering algorithms: k-
means, k-medoids and GCUK [17]. The first two are classical
algorithms, while the last is a genetic one.

A. Datasets

The two datasets used in this work consist of the minimized
parameters by Ngan et al. and Bilgili et al. The eight parame-
ters for the Ashikhmin and Shirley model by Ngan et al. are:
dr, dg, db, sr, sg, sb, F0, n. The first three represent the diffuse
RGB values. The next three are the specular RGB values,
followed by the Fresnel factor and the exponent n.

Twelve parameters were minimized by Bilgili et al. for
the Ashikhmin and Shirley model: kdr, kdg, kdb, ksr, ksg, ksb,
F01, n1, F02, n2, F03, n3. The meaning of these parameters are
similar to the ones of Ngan et al., differing only because there
are three Fresnel factors and exponents.

For both datasets, we only used the Fresnel factors and
exponents for similarity analysis, since our clustering intended
to group materials whose light reflection were similar, despite
of their colors.



B. k-means and k-medoids

The main difference between k-means and k-medoids is the
representative member of each cluster: the first uses centroid –
the mean of all elements of the cluster – while the second uses
medoid, the closest element to the centroid of the cluster. Both
algorithms usually use Euclidean distance as fitness function,
so both tend to generate hyper spherical clusters [16]. k-
medoids, however, has a significant benefit over k-means:
the representative member of the cluster is a real element
of the input dataset, not a mean, which, normally, does not
exists [14], [16]. Algorithms 1 and 2 show the pseudo-code of
our implementations of k-means and k-medoids, respectively.

Data: Dataset, K.
Result: Clustering with a validity measure DBindex.
begin

Generate centroids for each cluster randomly;
repeat

Assign each element of the dataset to the nearest
cluster using the fitness function;
Recalculate the centroids;

until no cluster changes;
Generate DBindex of the clustering;

end
Algorithm 1: k-means

Data: Dataset, K.
Result: Clustering with a validity measure DBindex.
begin

Generate medoids for each cluster randomly;
repeat

foreach element of the dataset do
if this element is not a medoid then

Trade one medoid with this element;
Assign each element of the dataset to the
nearest cluster using the fitness function;

end
Calculate the total cost of this configuration;

end
Save the smallest cost;

until the smallest cost does not change;
Generate DBindex of the clustering;

end
Algorithm 2: k-medoids

The main drawback of both k-means and k-medoids is the
obligation of giving the value of K as input. In many datasets,
like the ones used in this work, the number of cluster is not
known a priori. That means that we need a strategy to use
these algorithms. One is to variate the value of K and check
the results. Another approach is to use genetic algorithms [15].

C. Genetic Clustering for Unknown K

GCUK is a genetic algorithm proposed by Bandyopadhyay
and Maulik [17]. It has as main input the dataset, the size

of the population and the number of iterations (generations).
It uses the Davies-Boldin index to measure the fitness of
each individual solution, being capable to select the best
chromosomes and, hence, the best value for K.

GCUK’s input is described in the Table I and algorithm 3
contains the pseudo-code of our implementation of GCUK.

TABLE I
INPUT FOR GCUK

Input Meaning
Dataset Minimized parameters by Ngan et al. or Bilgili et al.
Kmin Minimum number of clusters
Kmax Maximum number of clusters

P Size of the population
Gmax Maximum number of generations
Probc Probability of crossover
Probm Probability of mutation

Data: Dataset, Kmin, Kmax, P, Gmax, Probc, Probm.
Result: Clustering with a validity measure DBindex.
begin

foreach chromosome in the population do
Generate a Ki in the range [Kmin, Kmax];
Choose Ki points from the dataset;
Distribute these points randomly in the
chromosome;

end
for i = 0 to Gmax do

foreach chromosome in the population do
Assign each element of the dataset to the
nearest cluster using the fitness function;
Compute DBindex;
Set fitness as 1/DBindex;

end
for i = 0 to P/2 do

Generate two sons by performing crossover
with Probc in two fathers selected by roulette;
Perform mutation with Probm in both sons;

end
Join the original and descendant population;
Select the best P chromosomes of the new 2P
population by roulette;

end
Generate DBindex of the clustering;

end
Algorithm 3: GCUK

Each chromosome in GCUK is represented by a vector of
Kmax positions. Each position contains a invalid value (#)
or a centroid, represented by F0 and n – Fresnel factor and
exponent, respectively. For simplicity we assume here just
one specular lobe (Ngan et al. basis) but the same idea holds
for more lobes. For instance, let Kmax = 10 and Ki = 4. One
chromosome in this configuration could be:

C0 = # (F0 n) # # (F0 n) (F0 n) # # (F0 n) #



where each (F0 n) is from one different material of the
dataset. Each chromosome represents one possible solution
and the number of clusters is defined by Ki.

To define how good one chromosome is, its DBindex is
calculated. The fitness is defined as 1/DBindex, i. e., the lower
the DBindex, the better the chromosome.

After calculate the fitness of each chromosome in the
original population P, the algorithm generate P sons. The first
step is choose two fathers in the original population and apply
crossover with probability Probc to generate two sons. If the
crossover does not occur, two new fathers are chosen.

The mutation is applied to each value of valid positions v
(F0 and n). A δ ∈ [0, 1] is generate for each v. The mutation
is defined by:

v = v × (1± 2δ), v 6= 0

v = ±2δ, v = 0

Generated P sons, the algorithm select the best P chromo-
somes in the fathers + sons population by roulette. This indi-
viduals survives for the next iteration. After Gmax iterations,
the best chromosome in the final population is the solution.

V. EXPERIMENTS

We chose the analytical model proposed by Ashikhmin and
Shirley [11] to be used in our experiments. It presents many
desirable features like: it is widely known, accounts for the
Fresnel effect and has a half angle parametrization. Also,
this model had its parameters minimized by Ngan et al. [10]
and Bilgili et al. [13], reaching smaller errors than most of
the models evaluated in both works. We adopted here the
formulation used by Ngan et al. [10] for the specular term,
presented in Equation 1.

ρs(L, V, F0, n) =
(n+ 1)× (N ·H)n × f(F0, V,H)

8π × (V ·H)×max((N · L), (N · V ))
.

(1)
This formulation uses Schlick’s approximation for the Fres-

nel term [18], where F0 represents the reflectance of the
material at normal incidence:

f(F0, V,H) = F0 + (1− F0)× (1− (V ·H))5. (2)

As diffuse term, we used the Lambertian BRDF constant:

ρd(L, V ) =
1

π
. (3)

The choice of K: To overcome the drawback of choosing
a fixed value for K as input of k-means and k-medoids, we
have done an experiment based on the work of Carvalho [2]
and Häußler [4] where K assumed the values 5, 10, 20, 30,
40, 50, 60 and 70. Here, we only varied K among 2, 5, 10, 15
and 20, since the errors found by Carvalho stood practically
the same for higher values of K [2].

Executions: We executed k-means and k-medoids one
thousand times for each value of K (K ∈ {2, 5, 10, 15, 20})
for both basis. For GCUK algorithm we defined the size of
population P = 50, the number of generations Gmax = 100 and
the crossover and mutation rates 90% and 1%, respectively.
We performed two thousand executions for each basis: half
with Kmin = 2 and Kmax = 50 and the other thousand with
Kmin = 5 and Kmax = 50.

Linear Combination: We performed a non negative least
squares (NNLS) optimization to solve the linear combination
given as:

a1M1 + a2M2 + ...+ aKMK = B. (4)

where ai are the coefficients we want to optimize, Mi are the
representative materials obtained in the clustering process and
B is the material we want to approximate. The number of
terms K vary accordingly with the quantity of clusters found
by clustering the basis. Mi and B values follows the BRDF
representation R:

R = dc × ρd(L, V ) +

m∑
j=1

(sc × ρs(L, V, Fj , nj)). (5)

where m is the number of specular lobes and c is the color
channel (c ∈ {r, g, b}).

The values dc, sc, Fj and nj are taken from Ngan et al. and
Bilgili et al. basis. The diffuse and specular terms are, respec-
tively, Lambertian constant (Equation 3) and the Ashkihmin
and Shirley model (Equation 1).

VI. RESULTS AND DISCUSSION

A. Numerical Clustering Results

Figures 1 and 2 show box-plots of all DBindex values for
each thousand execution of k-means, k-medoids and GCUK
for Ngan et al. and Bilgili et al. basis, respectively.

We can observe in Figures 1 and 2 that DBindex is generally
lower when small values of K are used in k-means and k-
medoids. Strictly analyzing these values, one could assume
that the best value for K is 2, since a lower DBindex implies,
theoretically, a better clustering. However, some points must
be considered:

1) A linear combination with just 2 terms may not have the
needed degrees of freedom to approximate any material
we want.

2) The difference of DBindex median from K = 2 to K = 5
is no bigger than 0.5 for k-means and less than 1.25 for
k-medoids.

3) A small value of DBindex do not necessarily implies in
a good clustering.

4) The minimum DBindex of each value of K in both
algorithms and basis are very close in most cases.

For GCUK algorithm, DBindex values are lower than those
for k-means and k-medoids. Even if we consider that all
solutions of GCUK have only 2 clusters as output this result
of GCUK is much better. The number of clusters found by
GCUK is shown in Table II.



Fig. 1. Box-plot of DBindex values for Ngan et al. basis

Fig. 2. Box-plot of DBindex values for Bilgili et al. basis

Based on the these results, we could assume that the ideal
number of clusters vary between 2 and 12. However, with just
two terms the linear combination may not have the freedom
needed to represent a large variety of materials. For this reason,
we opted for 5 as an ideal number of clusters.

B. Coefficients Optimization with NNLS

We chose four different materials from Ngan et al. basis
to be represented by a linear combination (Equation 4) of
our basis: Blue Rubber, Fabric Beige, Hematite and Orange

TABLE II
MEAN OF VALUES OF K FOUNDED BY GCUK ALGORITHM

Basis K range Mean of K Maximum K Minimum K
Ngan [2, 50] 2.646 5 2
Ngan [5, 50] 2.863 12 2
Bilgili [2, 50] 2.210597826 6 2*
Bilgili [5, 50] 2.904827586 12 2*

BBall. Their parameters are shown in Table VIII, while the
parameters of our basis are in the Table VII. This basis was
generated by GCUK algorithm with K ∈ [5, 50] and has
DBindex = 0.831692.

Tables III to VI present the coefficients estimated with
NNLS for the chosen materials. They indicate how much each
material in our basis contribute to approximate each material.
Materials that did not contribute in any channel were omitted.

TABLE III
CONTRIBUTIONS OF EACH MATERIAL FOR BLUE RUBBER

Material Red Green Blue
M4 0.000201 0.000233 0.000194
M5 1.342572 1.740014 2.518673

TABLE IV
CONTRIBUTIONS OF EACH MATERIAL FOR FABRIC BEIGE

Material Red Green Blue
M5 1.392117 1.037895 0.921093

TABLE V
CONTRIBUTIONS OF EACH MATERIAL FOR HEMATITE

Material Red Green Blue
M2 1.286881 1.950771 1.816894
M4 0.000011 0.000025 0.000010

TABLE VI
CONTRIBUTIONS OF EACH MATERIAL FOR ORANGE BBALL

Material Red Green Blue
M1 0.090207 0.084581 0.000610
M2 0 0 0.027084
M4 0.076629 0.075486 0.117023
M5 2.593467 0.229267 0

We can observe that Fabric Beige could be approximate with
just one basis material, while Orange BBall had contributions
of four materials. This scenario shows the importance of
having a basis with more than 2 materials.

C. Visual Clustering Results

We can observe in Figure 3 how the basis in the Table VII
was clustered by GCUK algorithm. The highlighted materials
are the ones closest to their cluster centroid.

Materials were grouped by their specular lobes, and not by
their colors. However, in cluster 4 many elements with differ-
ent specular properties were clustered together. Additionally,
clusters 1 and 2 have only one element, while cluster 4 has
70. We justify this by the use of Euclidean Distance as fitness
function, which may not be the best approach to our problem.
To adopt a similarity measure capable of modeling reflectance
properties, instead of one based on a geometric distance, could
improve the clustering process.



VII. CONCLUSION

In this paper, we show the application of clustering algo-
rithms in the Appearance Modeling problem. We divided a
BRDF-basis into clusters using classical clustering algorithms
and one genetic algorithm, aiming to reduce the numbers of
terms needed in a linear combination of BRDFs.

We found that 5 is a good value for K, since in all three
algorithms, the DBindex for this value is low. Other point to
consider is that a linear combination with 5 different materials
have a good degree of freedom, being capable to represent well
a variety of other materials.

This way, as future work, we suggest trying different fitness
functions and validity measures in the clustering algorithms
and using a genetic algorithm like PSO for minimization of the
linear combination. Also, a renderization of the combination
of our BRDF-basis could help measuring its expressiveness.
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TABLE VII
GCUK-BASIS WITH 5 MATERIALS

Attributes M1 M2 M3 M4 M5

dr 0.30800 0.0401 0.0356 0.075900 0.000072
dg 0.24700 0.0269 0.0308 0.040700 0.000086
db 0.15000 0.0143 0.0249 0.028600 0.000196
sr 0.01550 0.0549 0.0490 1.040000 0.032500
sg 0.00952 0.0315 0.0361 0.609000 0.026600
sb 0.00885 0.0235 0.0178 0.266000 0.018000
F0 0.99900 0.9990 0.9990 0.080732 0.999000
n 78200 66300 39800 19842.66211 22.643148

TABLE VIII
COEFFICIENTS OF THE CHOSEN MATERIALS

Attributes Blue Rubber Fabric Beige Hematite Orange BBall
dr 0.035800 0.199000 0.036800 0.323000
dg 0.064900 0.112000 0.032000 0.045700
db 0.092700 0.066400 0.022200 0.003970
sr 0.341000 0.197000 0.059900 0.039800
sg 0.281000 0.136000 0.052100 0.022900
sb 0.187000 0.082200 0.036200 0.015500
F0 0.053200 0.973000 0.999000 0.140000
n 20 0.5 78200 42600
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