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Abstract—An usual way to acquire information about moni-
tored objects or areas in earth surface is by using remote sensing
images. These images can be obtained by different types of
sensors (e.g., active and passive) and according to the sensor,
distinct properties can be observed from the specified data.
Typically, these sensors are specialized to encode one or few
properties from the object (e.g. spectral and spatial properties),
which makes necessary the use of diverse and different sensors to
obtain many complementary information as possible. Given the
amount of information collected, it is essential to use a capable
technique to combine accordingly the different characteristics
obtained. The objective of this work, which is in progress, is the
development of a framework able to exploit the diversity of these
different types of features, extracted from different sensors, to
achieve high degrees of accuracy in the creation of thematic maps
for the classification task.
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I. INTRODUCTION

Over the years, there has been a growing demand for
remotely-sensed data. Specific objects of interest are being
monitored with earth observation data, for the most varied
applications. Examples include ecological science (estimating
biomass, biodiversity, land cover changes) [1], geology (recov-
ering physicochemical mineral properties such as composition
and abundance) [2], hydrological science (changes in wet-
land characteristics, water quality and others) [3], agriculture
(classifying crops and for precision agriculture) [4], military
(target detection using spectral information) [5], and many
other applications.

Remote sensing images (RSIs) have been used as a major
source of data, particularly with respect to the creation of
thematic maps. This process is usually modeled as a su-
pervised classification problem where the system needs to
learn the patterns of interest provided by the user and assign
a class to the rest of the image regions. In the last few
decades, the technological evolution of sensors has provided
remote sensing analysts with countless distinct information,
e.g., spatial, spectral, temporal, thermal.

Typically, these sensors are designed to be specialists in ob-
taining one or few properties from the earth surface. Therefore,
it is necessary the utilization of diverse and different sensors
to gather the most complementary information as possible. In
this scenario, it is essential to use a more suitable technique
to combine the different features in a effective way. Mura et

al. [6] confirmed the benefit of the use of data fusion in the
challenges associated with RSI analysis in competitions. They
pointed out that it is difficult to conclude which method has
the best performance, since it depends on the foundation of
the problem and the nature of the data used.

In this work in progress, we are developing a method
capable of receiving several data from different sensors and
combining them for the task of classification in a general
scenario. Our method is based in the framework proposed
by [7]. Our efforts are focused in adapting that framework
in order to handle with an input of one very high spatial
(VHS) resolution image and one hyperspectral (HS) resolution
image. Our intent is to create a late fusion-based approach for
automatic creation of thematics maps by fusioning the most
suitable classifiers.

II. RELATED WORK

Despite the recent advances in feature extraction and rep-
resentation for RSIs, the combination/fusion of these features,
especially when they are extracted by different sensors, re-
quires the development of new techniques.

In this context, Li et al. [8] developed a classification
technique based on active learning to combine spatial and
spectral information. Petitjean et al. Yang et al. [10] presented
a system for evaluating the growth of crops using high
resolution images from satellites and airplanes. An approach
using genetic algorithm to the combination of features/learning
methods based on spatial and spectral data, was proposed by
Santos et al. [11] to create thematics maps. Ouma et al. [12]
and Wang et al. [13] showed approaches that use multi-scale
data to identify land use changes. In Ouma et al. [12], the
authors presented a multi-scale segmentation technique with
a neural network (unsupervised) for analysis of vegetation.
Wang et al.[13] in the other hand, proposed an approach
to change detection in urban areas. That method is based
on the fusion of characteristics from multiple scales through
the average pixel of each scale. The result is a new image
corresponding to the combination of scales.

More recently, Gharbia et al. [14] made an analysis of fusion
techniques images (Intensity-Hue-Saturation (IHS), Brovey
Transform (BT), Principle Component Analysis (PCA)) for
remote sensing tasks, at pixel level, showing that all techniques
have limitations when used individually. They encourage the
use of hybrid systems as a solution.



Mura et al. [6] analyzed the approaches used in the past
nine years of data fusion competition (Data Fusion Contest).
The approaches are separated into three main categories: the
level of information/pixels, where the data are combined in
the way they were extracted; feature level, where the data
are extracted and used as entries for a classification model;
and the decision level, which uses a combination of different
outputs from various sources, to increase the robustness of
final decision (using, e.g., a majority vote). After investigated
the last challenges, Mura et al. confirmed the benefits of
the use of data fusion in the challenges associated with
RSI analysis in competitions. In the majority of cases, the
frameworks proposed in the literature are projected to deal
with a specific scenario or a particular region, using techniques
apart of each domain and object, e.g., roofs are checked with
shape features, tree and vegetation are discriminated using a
vegetation index. However, it is very difficult to conclude what
is the best approach, since it depends on the foundation of
the problem, the nature of the data used and the source of
information utilized.

The method we propose in this work aim at exploiting multi-
sensor data in a more general way. We intend to propose a
framework based on a supervised learning scheme, dealing
with different scenarios, regions and objects, on the creation
of thematic maps (classification task).

III. METHODOLOGY

A. Overview
The proposed framework is projected to receive two images

from the same place with different domains as input: an image
with very high spatial (V HS) resolution and another one with
hyperspectral (HS) resolution.

In order to describe our methodology, we divided the
procedure in three main parts: segmentation, feature extraction
and classification.

In the segmentation phase, given the VHS and HS images of
training set we begin with a segmentation method in the spatial
domain for the purpose of splitting the entire image in small
objects to be analyzed in a region based method afterward,
see Fig. 1.

Fig. 1. Segmented training data in small objects to be analyzed in a region
based method.

In the spectral domain, all the values of the image are used
in a pixel based method, stacking the reflectance values of
each pixel in a vector, see Fig. 2.

Fig. 2. Stacking the reflectance values of each pixel.

At the feature extraction phase, in spatial domain, we have
used image descriptors based on color information and texture
information to extract complementary features of the regions.
In spectral domain, we used different source of features from
dimensionality reduction/projection methods.

In the classification phase, a validation set was split from the
training set and several learning models was fitted, using the
features extracted by each descriptors, resulting in an amount
of classifiers (tuples of descriptor/learning method) which was
used to learn the probability distribution of the training set.

Given the amount of classifiers trained using different
features from spatial and spectral domain, and evaluated in
the validation set, the learned knowledge pass to a process
of selection of tuples, which uses measures of diversity
[15] between classifiers to calculate the degree of correla-
tion/decorrelation between the tuples which could improve the
framework posteriorly.

However, since the selection process was based in [7], we
adapted the framework proposed in [7] to receive images
from different domains and resolutions. For this we applied
a mapping between the spatial and spectral data, using an
interpolation method.

Once the best classifiers are selected, the same method of
segmentation is used in the test set, and the segmented objects
are labeled by the best classifiers as regions (spatial tuple) or
pixel by pixel (spectral tuple) creating a thematic map for each
classifier.

Finally the thematic maps are used as input of a late fusion
technique, that takes the final decision regarding the definition
of the regions classes (Fig. 3).

B. Formalization

Let DVHS and DHS be the VHS and HS domains. Let L be
any set of learning methods and let FV HS and FHS be a set
of feature extraction methods of DVHS and DHS respectively.

Suppose that classifiers are created by combining each
available learning method with each image descriptor of all
domains.

a) Segmentation: Let S be any image segmentation
algorithm and let G be an image, containing |G| regions, where
the class of each region gi ∈ G, (1 < i ≤ |G|, i ∈ N∗) is
known.

Initially, the image G is segmented using S, resulting in
|g(i,r)| ⊆ G subregions, where g(i,r) is a subregion r of gi



Fig. 3. Thematic Maps of the T-best tuples and the Final Thematic Map.

(1 ≤ r ≤ |gi|). See Fig. 1.
The subregions g(i,r) is used to construct both, the training

(T ) and validation (V ) sets, where T ∪ V = G and T ∩ V =
∅. As we consider a supervised learning scenario, the actual
classes for training and validation data subregions are known
a priori.

b) Feature Extraction: The features from the subregions
g(i,r) of T and V are extracted using FV HS and FHS .

In the spatial domain, is used a region based method at the
subregions g(i,r) Fig. 1.

In the spectral domain, is used all the values of a subregion
g(i,r) in a pixel based method, stacking the reflectance values
of each pixel in a vector, see Fig. 2.

c) Classification: At the beginning, all the learning meth-
ods are trained in both domains, using the features extracted
of the set T, creating the classifiers cj ∈ C, (1 < j ≤ |C|,
j ∈ N∗). Thereupon, the outcome of each classifier from DVHS
and DHS, on the validation set V , is computed and stored into
a matrix Mv , where Mv = |V | x |C|.

Since the inputs from DVHS and DHS have different resolu-
tions, a mapping between them is made using a interpolation
method.

In the following, Mv is used as input to select a set
C∗ ⊆ C of classifiers that are good candidates to be combined.
This selection is made using diversity measures between the
classifiers as in [7].

Given a new image I, is applied the segmentation method
S in I, generating regions ik ∈ I , and every trained classifier
from C∗ is used to predict the classes of ik, producing M
thematic maps, one for each c∗j ∈ C∗.

The M thematic maps created are used as input of a late
fusion technique, that takes the final decision regarding the
definition of the class of each region ik.

IV. EXPERIMENTS

In the experiments, we aim at showing the performance
regarding the effectiveness, in terms of evaluation measures,
and efficiency of the selection method used in the proposed
approach.

The method was compared with some other methods as
baselines: Spatial and Spectral are baselines utilizing almost

the same workflow described in methodology, but using only
one domain, spatial or spectral. Spatial+Spectral is a baseline
using the majority vote of Spatial and Spectral baselines. The
Our Approach is our approach described in methodology.

A comparison of all methods, using evaluation measures,
with the confidence intervals, is showed in Fig. 4 and Fig. 5.

Fig. 4. Kappa Index

Fig. 5. Accuracy Index

A. Setup

For the evaluation of our method, was used the dataset
grss dfc 2014 [16] of the Data Fusion Contest 2014, provided
by Telops Inc.(Canada), having two sensors information, Very
High Spatial (VHS) resolution and Hyper Spectral (HS) reso-
lution, used in a urban classification scenario.

We validate our experiments through two different evalua-
tion measures: Accuracy and Kappa index. For the statistical
test of significance, we use paired Student’s t-test (confidence
of 95%), using 10 samples for each experiment, since in a
statistical way that will still provide the desired confidence
for our experiments [17].

Some important parameters are used in the methodology.
For the segmentation, in the training and test sets, we used
the IFT-Watershed with spatial radius 5 and volume threshold
equal to 100.

For the feature extraction, in spatial domain, we used 4
image descriptors: three of them based in color informa-
tion, Border/Interior Pixel Classification (BIC) [18], Color



Coherence Vector (CCV) [19] and Global Color Histogram
(GCH)[20], and one based in texture information, Unser [21].
In spectral domain, is utilized four different source of features:
the raw data of HS image (84 Bands), the first 3 and 4 principal
components of Principal Component Analysis (PCA) [22], and
the Fisher Linear Discriminant (FLD) [23] components.

In the processing phase, a validation set is split from training
set and trained in a Stratified ShuffleSplit cross validation
scheme, using a group of 6 weak learners: Gaussian Naive
Bayes, 3-Nearest Neighbors, 5-Nearest Neighbors, 10-Nearest
Neighbors, Decision Tree, and a Support Vector Machine with
linear kernel, using the features extracted by each descriptors,
resulting in the total of 48 tuples (descriptor/classifier, 24 from
each domain).

We have used the implementation of those learning methods
available in the Scikit-Learn Python library [24]. All learning
methods were used with default parameters which means
we did not optimize them whatsoever. The management of
HS data are made using the Spectral Python (SPy) Library,
including the extraction of features from spectral domain.

B. Results and Discussion

We performed the above-mentioned experiments and got
some interesting results. The comparison shows that except the
Spatial+Spectral, there is no statistical significant difference
among our approach and other baselines when the number of
classifiers is less than 15. It is also visible the impact of the
fusion of features from the VHS and HS domain, achieving
better results in both measures analyzed.

Another interesting point, observed in our experiments, is
the drawback of the majority vote fusion when just a single
domain is used, decreasing the results obtained in some cases.

The results also show that the Spatial+Spectral obtained
the best results in our experiments, presenting stability, dealing
with the drawback of majority vote fusion, but not statistical
significance among the proposed method in the most of cases.

V. CONCLUSION

In this paper, we introduced a method to deal with a generic
scenario of classification in remote sensing, using a scheme
of selection of features and classifiers from different domains,
and fusioning the predict results in a final thematic map. We
used the dataset grss dfc 2014 [16] of the Data Fusion Contest
2014, for the evaluation of the framework, using a statistical
test, and we obtained a significant improvement in relation of
two of three baselines proposed. For the future work, we want
to extend this framework exploring the use of more descriptors,
classifiers, and other fusions methods.
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multiple classification methods for hyperspectral data interpretation,” J-
STARS, vol. 6, no. 3, pp. 1450–1459, 2013.

[12] Y. O. Ouma, S. Josaphat, and R. Tateishi, “Multiscale remote sensing
data segmentation and post-segmentation change detection based on
logical modeling: Theoretical exposition and experimental results for
forestland cover change analysis,” Computers & geosciences, vol. 34,
no. 7, pp. 715–737, 2008.

[13] W.-j. Wang, Z.-m. Zhao, and H.-q. Zhu, “Object-oriented change detec-
tion method based on multi-scale and multi-feature fusion,” in JURSE,
2009 Joint. IEEE, 2009, pp. 1–5.

[14] R. Gharbia, A. T. Azar, A. E. Baz, and A. E. Hassanien, “Image fusion
techniques in remote sensing,” arXiv preprint arXiv:1403.5473, 2014.

[15] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,” JMLR,
vol. 51, no. 2, pp. 181–207, 2003.

[16] “2014 ieee grss data fusion contest. online. : http://www.grss-
ieee.org/community/technical-committees/data-fusion/.”

[17] R. Jain, “The art of computer systems performance analysis,” 1981.
[18] R. O. Stehling, M. A. Nascimento, and A. X. Falcão, “A compact

and efficient image retrieval approach based on border/interior pixel
classification,” in CIKM. ACM, 2002, pp. 102–109.

[19] G. Pass, R. Zabih, and J. Miller, “Comparing images using color
coherence vectors,” in ACM Multimedia. ACM, 1997, pp. 65–73.

[20] M. J. Swain and D. H. Ballard, “Color indexing,” IJCV, vol. 7, no. 1,
pp. 11–32, 1991.

[21] M. Unser, “Sum and difference histograms for texture classification,”
TPAMI, no. 1, pp. 118–125, 1986.

[22] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.
[23] R. A. Fisher, “The use of multiple measurements in taxonomic prob-

lems,” AE, vol. 7, no. 2, pp. 179–188, 1936.
[24] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” JMLR,

vol. 12, pp. 2825–2830, 2011.


	Introduction
	Related work
	Methodology
	Overview
	Formalization

	Experiments
	Setup
	Results and Discussion

	Conclusion
	References

