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Abstract—We present a new algorithm for computing upper
bounds for the maximum positive real root of a univariate
polynomial. The algorithm improves complexity and accuracy
of current methods. These improvements do impact in the
performance of methods for root isolation, which are the first step
(and most expensive, in terms of computational effort) executed
by current methods for computing the real roots of a univariate
polynomial. We also validated our method experimentally.
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I. INTRODUCTION

Computing the real roots of a univariate polynomial p(x) is
a central problem in algebra, with applications in many fields
of science and, in particular, in computer graphics. It appears,
for example, in computation with curves, that are modeled
using polynomials.

The first and most expensive step when computing the roots
is to isolate them. That is, to compute a set of disjoint intervals
containing the roots (exactly one root on each interval and all
roots contained in some interval).

Root bounding is a central problem to real root isolation
algorithms. Namely, the Vincent-Akritas-Strzeboński (VAS)
algorithm and Vincent-Collins-Akritas (VCA) algorithm1. In
particular, VAS computes a lower bound on the positive roots
of a polynomial on each execution of the main loop. It has
been shown that even slight improvements on the quality of
this lower bound (and even investing much computational
effort computing it) impact on the performance of the VAS
algorithm [1], [2].

There are two main variables of root bounding which impact
in the performance of VAS: the accuracy of the bounds and
the efficiency of the root bounding method. In the present work
we address both variables. We show a method which both
improves the accuracy of the current methods and is faster.

Along the paper, we will consider the problem of obtaining
upper bounds for the positive real roots of polynomials. We
will introduce the concept of killing graph and will use it
to show how all the existing approaches can be expressed
as instances of it. Then, we introduce a new root bounding
method, which is actually a way to improve the result obtained

1Currently, VAS is the default root isolation method in many widely used
computer algebra systems, such as Mathematica, SageMath, SymPy and
XCAS. VCA was, for many years, the default method many computer algebra
systems, but now it is only used by Maple

by any other method. Our method works as follows: at the
beginning, an upper bound for the positive roots of the input
polynomial is computed using one existing method (for exam-
ple the First Lambda method). During the execution of this
(already existent) method, our method also creates the killing
graph associated to the solution produced by that method. It
structure allows, after the method have been run, to analyze
the produced output and improve it.

Moreover, the complexity of our method is O(t+ log2(d)),
where t is the number of monomials the input polynomial has
and d is its degree. Since the other methods are either linear
or quadratic in t, our method does not introduce a significant
complexity overhead. To better improve the solution, it can be
executed many times. We show in the paper that, with only
two runs, our method improves all the current algorithms (even
those whose complexity is quadratic in t).

Contributions: We first show all the existing methods as
instances of a general concept. After that, we introduce two
key observations, which allow us to iteratively improve the
results obtained by any of the current methods.

Moreover, we implemented our method and extensively
tested it, on many significant scenarios. We show that our
technique yields a big improvement in the results while not
introducing a significant time penalty.

II. RELATED WORK AND A GENERAL FRAMEWORK

The problem of upper-bounding the biggest positive root
of a univariate polynomial has been studied by many authors.
We will shortly mention the most relevant current methods,
and present them in an unified way. The most important
methods present in the literature are: (I) Cauchy’s leading
coefficient [3] [4] [2] (II) Lagrange [4] [2] (III) Kioustelidis
[5] (IV) Stefanescu [6] (V) first-λ (FL) [3] (VI) local-max
(LM) [3] (VII) first-λ quadratic (FLQ) [1] [2] (VIII) local-
max quadratic (LMQ) [1] [2] Methods (I), (II), (III) and (IV)
are mentioned just for historical interest, methods (V) and (VI)
produce better bounds with the same computational effort.

From now on we will refer to terms with positive coeffi-
cients as positive terms and terms with negative coefficients as
negative terms. We will be considering the problem of giving
an upper bound for the biggest positive root of a polynomial
p(x), whose dominant term is positive. If p had negative
dominant term, we would just need to compute the bound
of −p(x).
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If we have the terms anxn, and aix
i, with n > i, an >

0, ai < 0, we know that at some point x0, the term anx
n

starts to be greater than the term −aixi. Id est: we know that
∃x0 | x > x0 ⇒ anx

n + aix
i > 0. In fact, x0 = n−i

√
ai/an.

We say that the term anx
n kills the term aix

i with cost
n−i
√
−ai/an.

Note that if we have a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

on which (1) every negative term is killed by a higher-degree
positive term and (2) there is no positive term killing more
than one negative term, then the maximum of the associated
costs of these killings is an upper bound for the maximum
positive root of p. Let us make this observation more clear,
through some examples. Consider the polynomial:

p1(x) = x5 − 25x4 + 200x3 − 600x2 + 600x− 120

We know that
• x5 > 25x4 when x > 25 (x5 kills −25x4 with cost 25);
• 200x3 > 600x2 when x > 3 (200x3 kills −600x2 with

cost 3);
• 600x > 120 when x > 0.2 (600x kills −120x4 with cost
0.2).

Thus, we have: (1) all negative terms are killed by higher
degree positive terms and (2) there are no positive terms killing
more than one negative term. Observe that max(25, 3, 0.2) is
an upper bound for the maxmimum root of p1(x), since all the
negative terms are killed by some positive term at this point.

Observe also that we could break positive terms in parts, and
use the resulting parts separately to kill lower degree terms.
For instance, if we had the polynomial

p2(x) = 30x5 − 25x4 − 10x3 − 200x2 − 30

we could break up the term 30x5 into four or more parts
and use four of them to kill the four terms. For instance:
p2(x) = 1x5 +2x5 +3x5 +4x5 +18.5x5 +1.5x5

−25x4 −10x3 −200x2 −30
And we know, for example, that • 1x5 > 25x4 when x > 25
• 2x5 > 10x3 when x > 2.23 • 3x5 > 200x2 when x > 4.05
• 4x5 > 30 when x > 1.49. Thus, we have that when
x > max(25, 2.23, 4.05, 1.49), p2(x) > 0. Note that the way
in which we broke the 30x5 does impact in the result we
obtain.

Having stressed these two concepts, we can point out that
any strategy of breaking positive terms and asigning positive
terms (or parts of positive terms) to each one of the negative
terms of a polynomial is an algorithm for computing an upper
bound for the maximum positive root.

Observe that we could imagine a (directed) graph, in which
the nodes are the terms of the polynomial and the edges show
the relation killed by. Our examples would be:

p1(x) = x5 −25x4 +200x3 −600x2 +600x −120
25~~ 3yy 0.2{{

p2(x) = x5 +2x5 +3x5 +4x5 +28.5x5 +1.5x5

−25x4 −10x3 −200x2 −30

25

OO

2.23

OO

4.05

OO

1.49

OO

This graph, whose vertices are the monomials and whose
edges are the assignments, is what we call killing graph. All
the current methods are, essentially, strategies to create the
killing graph. Strategies for deciding which positive term we
should break and in which parts, and how to assign the arrows.
We refer the reader to the bibliography of each particular
method for details. Some of the methods (LMQ and FLQ)
need to make a number of calculations proportional to the
square of the number t of terms in the polynomials and some
others (FL, LM, etc.) are linear in t. Linear methods LM and
FL have been used in algebra systems like Mathematica and
Sage; and have been the default method for root bounding in
such systems.

First observation. Observe that we could have, for a
polynomial p(x), a killing graph on which the nodes are
polynomials e1(x), e2(x), . . . , ei(x), instead of being terms of
p(x). We only require that p(x)−

∑
1≤j≤i ej(x) ≥ 0. And we

could say, in a similar way, that an expression e1(x) kills an
expression e2(x) when asymptotically e1(x)−e2(x) > 0, and
that the associated cost is the biggest real zero of e1(x)−e2(x).

Second observation. Another point that should be stressed
is the following important fact. If we have a killing graph
in which all the positive terms have been used, or if we
have an expressions-based killing graph (like in the previous
observation) in which the sum of all the expressions is exactly
p(x), then it occurs that if the costs associated to the killings
are all equal to some value r, then r is the maximum positive
root of the polynomial p(x).

It is straightforward to see this on an example. Consider
p(x) = e1(x) + e2(x) + · · · + ei(x), we have that if
∀j, ej(x0) = 0, and ej(x) > 0, ∀x > x0, then x0 is the
maximum positive root of

∑
ej

III. OVERVIEW OF THE TECHNIQUE

Based on the second observation, let us perform a quick
analysis of our first example. Recall first the killing graph we
had, and the associated costs.

p1(x) = x5 −25x4 +200x3 −600x2 +600x −120
25~~ 3yy 0.2{{

Observe that we are not going to be able, by any method that
breaks positive terms and assign arrows between positives and
negatives terms, to improve the bound 25. This polynomial
only accepts one unique assignment of arrows. The only
thing that we could do would be to break positive terms,
and we would be killing the term −25x4 with a part of x5

instead of using the whole term, so the current associated
cost 25 to the killing of −25x4 would become even greater,
and our bound would be worst. Thus, we cannot improve the
bound 25 with methods that break positive terms and assign



TABLE I
BOUNDS OBTAINED WITH DIFFERENT METHODS, FOR POLYNOMIALS OF DEGREE 100

Poly min(FL, LM) min(FLQ, LMQ) min(FL-1, LM-1) min(FL-2, LM-2) MPR
L 1 × 10+04 1 × 10+04 6178 4458 375
CI 5 5 3.916 3.313 0.9999
CII 4.975 4.975 3.896 3.297 0.9995
W 5050 5050 3135 2273 100
M 1.041 1.041 1.036 1.036 1.036
RC20 3.369 3.369 2.894 2.299 2.198
RC20 1.534 1.35 1.35 1.335 −1.238
RC20 1.553 1.471 1.542 1.512 1.15
RC1000 100.1 100.1 99.23 99.23 99.22
RC1000 1.454 1.181 1.441 1.408 1.028
RC1000 2.115 1.811 1.913 1.811 1.199
MRC20 1.63 1.103 1.199 1.129 0.9977

MRC20 1.185 × 10+06 1.185 × 10+06 7.898 × 10+05 5.924 × 10+05 5.924 × 10+05

MRC20 6.435 × 10+05 6.435 × 10+05 6.435 × 10+05 6.435 × 10+05 6.435 × 10+05

MRC1000 8.093 × 10+299 8.093 × 10+299 8.093 × 10+299 8.093 × 10+299 8.093 × 10+299

MRC1000 1.358 × 10+301 1.358 × 10+301 6.791 × 10+300 6.791 × 10+300 6.791 × 10+300

MRC1000 5.735 × 10+300 5.735 × 10+300 5.735 × 10+300 5.735 × 10+300 5.735 × 10+300

PoR20 8.944 × 10+06 6.026 × 10+06 6.026 × 10+06 4.616 × 10+06 1.029 × 10+06

PoR20 5.043 × 10+06 4.189 × 10+06 4.373 × 10+06 3.517 × 10+06 1.039 × 10+06

PoR20 6.679 × 10+06 6.679 × 10+06 5.949 × 10+06 4.21 × 10+06 1.039 × 10+06

PoR1000 4.443 × 10+301 2.879 × 10+301 3.716 × 10+301 3.097 × 10+301 1.059 × 10+301

PoR1000 9.365 × 10+301 9.365 × 10+301 5.9 × 10+301 4.882 × 10+301 1.053 × 10+301

PoR1000 6.419 × 10+301 6.419 × 10+301 5.787 × 10+301 4.751 × 10+301 1.062 × 10+301

MPR: maximum positive root, L: Laguerre, CI : Chebyshev (first kind), CII : Chebyshev (second kind),
W: Wilkinson, M: Mignotte, RC: Random coefficients, MRC: Monic with random coefficients, PoR: Product of Roots

the killings. It does not matter how clever the method is, 25
is the best we can do. However, the maximum positive root
of this polynomial is 12.64.

Let us go a bit deeper in the analysis. x5 > 25x4 when
x > 25, but 200x3 > 600x2 much earlier: it starts to be
greater at x = 3. Then, we can just break the term 200x3 in
two parts, and use one of these to help the x5 in the killing
of −25x4. The new graph would be:

p1(x) = x5 −25x4 +Ax3 +(200−A)x3 −600x2

c1

+600x −120

zz ##︸ ︷︷ ︸
c2vv

0.2zz

Since our bound is the maximum of all the associated
costs to the killings, in this situation our bound would be
max(c1, c2, 0.2). Thus, the most desirable value for A would
be the value that makes c1 = c2 (if it exists), and the value
that makes the distance |c1 − c2| as smaller as possible,
otherwise.

In this particular case, in which all the exponents are
consecutive, we could state a quadratic expression for c1, and
a linear one for c2, both as functions of A, and obtain a cubic
expression by equating c1(A) = c2(A). In this way, we would
be able to compute the best possible A, and all the associated
killing costs by solving a cubic expression.

But this is a very particular case. What does it mean that
we want c1 = c2? Recalling the second observation, the fact
of c1 = c2 means that c1 and c2 equal the maximum positive
root of x5 − 25x4 + Ax3 + (200 − A)x3 − 600x2 = x5 −
25x4 + 200x3 − 600x2.

The maximum positive root of this last expression is ap-

proximately 13.4418. This value can be computed used the
method of Sagraloff [7]. The complexity of doing this is
(O(t3 log(dτ) log(d)), where t is the number of terms of
the polynomial (4, in this example) , τ is the bitsize of its
maximum coefficient and d is its degree.2 Then, we have
that a bound for the maximum positive root of p1(x) would
be max(13.4418, 13.4418, 0.2). The bound reduced from the
initial 25 to 13.4418. It is important at this point, to stress
again that this improvement was not going to be feasible
trough any of the current methods or trough any other method
based on positive-terms-breakments and killing-assignments.

Also note that this concept can be applied more than once.
In fact, what we do essentially is the following. We start with
expressions. Each expression has associated cost and degree.
We pick the expression with the biggest cost and the closest
expression to it in terms of difference of degree. If there are
more than one expression with the minimum distance, we
pick the one with higher degree. After having picked both
expressions, we compute a tight upper bound for the maximum
positive root of the fewnomial obtained by adding them.3 We
join togheter the two picked expressions, and the associated
costs of the resulting expression is the bound of the fewnomial.
Note that if we started with a term-based killing graph, the
second iteration could need to compute again the maximum
positive root of a fournomial or of a 6-nomial. The third
iteration could need to compute the maximum positive root
of a 8-nomial and so on.

The strategy we are proposing to pick the second expression

2We will neglect the value of τ in the present work because we will
not use the bit-complexity paradigm; this assumption yields a complexity
of O(t3 log2(d)) for this method.

3For this purpose, we can use the Sagraloff’s method, or the method
proposed by Alonso Garcı́a and Galligo [8].



is arbitrary. In fact, choosing expressions that are close in
terms of degree may not be the best possible choice. It has
been done this way because in general, when coefficients do
not differ by many orders of magnitude, a part of an expression
with much lower degree is not going to help significatively. For
example: if we had contributed (in previous example) to the
killing of −25x4 with a part of the term +600x (which is
killing the term −120 with a cost much lower than the cost of
killing−600x2 so it could seems to be the right choice at a first
glance), the obtained new associated costs to the killings of
−25x4 and −120 by the terms x5 and 600x would have been
24.97. Our improvement would have been almost insignificant.
We would have improved from 25 to 24.97. Choosing this way
we improved from 25 to 13.45.

IV. IMPLEMENTATION, COMPLEXITY AND EXPERIMENTS

As mentioned, our method improves the results produced
by other methods. We implemented and used it to improve
the bounds of the best linear methods (LM and FL, which we
also implemented).

Our implementation receives as input a set of expressions,
each one having associated a degree and a cost. It picks the
expression with the maximum cost and the expression with
minimum distance to it (in terms of difference of degree),
choosing the one with higher degree in case of draw.

After having picked the two expressions e1(x) and e2(x),
our implementation needs to compute a bound α for the
maximum positive root of E(x) = e1(x) + e2(x). This can
be done using Sagraloff’s method [7]. Note that, since E(x)
has exactly four monomials, t3 is constant. This implies an
astonishing complexity bound for the root isolation. However,
we will use this fact only for the complexity analysis, because
we use Mathematica [9] in our implementation to accurately
isolate the biggest root of the polynomial.

After that, we remove from the input set the expressions
e1(x) and e2(x), and we add the expression E(x), with cost α.
Our method returns the new set of expressions and associated
costs. In this way, performing N iterations just consists in
calling N times our method. The bound, of course, is the
bigger associated cost in the set of expressions.

At this point, we can perform a complexity analysis. The
first step is to run one of the LM or FL methods, which
have cost O(t), where t is the number of terms of the input
polynomial. Then, we process the killing graph of the original
assignment. Since this graph has O(t) nodes and edges, the
complexity of this step is O(t). Finally, we run N times the
cost-reduction step, which reduces to one root isolation using
Sagraloff’s method. The complexity of these N runs of the
cost-reduction step is O(N log2(d)). Fixing N = 2, it turns
out that the complexity of our method is O(t+ log2(d)).

We have compared the results obtained with our method
and with all the methods listed in section II, we executed one
and two iterations of our improvement technique, above the
linear methods FL and LM. The results are shown in table I.

The polynomial classes we used for the tests are commonly
used in the bibliography [1], [3], [4], [2]. They are • Laguerre

polynomials, • Chebyshev polynomials (first and second kind),
• Wilkinson polynomials, • Mignotte polynomials, • polyno-
mials with random coefficients of bitsize 20 and 1000, • monic
polynomials with random coefficients of bitsize 20 and 1000,
• polynomials which are product of random roots of bitsizes
20 and 1000

V. RESULTS AND DISCUSSION

The obtained results exposed that the proposed method
produces bounds of better quality, even when compared against
more computationally-expensive methods. With only one iter-
ation, our method improves the LMQ and FLQ bounds in
almost all cases and, with two iterations, it gets even better.
The few cases in which our method does not produce the best
bound, it produces a bound very close to the best one. Akritas
suggested [3] that taking min(LM,FL) is going to produce
the best bound in almost all cases. Here, based on our results,
we can extend that statement by saying that taking the best of
LM and FL and iterating once or twice our method is going to
produce a bound with even better quality than the one expected
when using FQL or LMQ (which are, of course, better than
LM and FL; but, unlike our method, much more expensive).

VI. CONCLUSION

In this paper, we introduced a method to improve the quality
of the bound for the maximum positive root of a polynomial
computed by existing methods. Our technique showed to
produce high quality bounds, and the complexity is linear (up
to logarithmic factors). We obtained this result as a first step
in trying to find possible optimizations for current real root
isolation algorithms (VCA, VAS).
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