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Abstract—Deaf people use systems of communication based
on sign language and finger spelling. Finger spelling is a system
where each letter of the alphabet is represented by a unique
and discrete movement of the hand. RGB and depth images can
be used to characterize hand shapes corresponding to letters
of the alphabet. There exists an advantage of depth sensors, as
Kinect, over color cameras for finger spelling recognition: depth
images provide 3D information of the hand. In this paper, we
propose a model for finger spelling recognition based on depth
information using kernel descriptors, consisting of four stages.
The performance of this approach is evaluated on a dataset
of real images of the American Sign Language finger spelling.
Different experiments were performed using a combination of
both descriptors over depth information. Our approach obtains
92.92% of mean accuracy with 50% of samples for training;
outperforming other state-of-the-art methods.

Keywords-Finger spelling; Depth images; Kernel descriptors;
Bag-of-Words.

I. INTRODUCTION

Sign language and finger spelling systems are used by deaf
people to communicate with each other. In sign language, the
basic units are composed by a finite set of hand configurations,
spatial locations and movements. Their complex spatial gram-
mars are remarkably different from the grammars of spoken
languages [1], [2].

Finger spelling is a system where each letter of the alphabet
is represented by a unique and discrete movement of the hand.
Finger spelling integrates a sign language due to many reasons:
when a concept lacks a specific sign, for proper nouns, for loan
signs (signs borrowed from other languages) or when a sign is
ambiguous [3]. Each sign language has its own finger spelling,
which may be similar to others of different languages.

At present, RGB and depth images can be used to charac-
terize hand shapes corresponding to finger spelling system.
However, there exists an advantage of depth sensors, over
color cameras for finger spelling recognition: the depth maps
provide 3D information of the hand. The best known sensor
that captures this type of information is the KinectTM.

In this paper, we propose a model for finger spelling
recognition using depth images. Motivated by the performance
of kernel based features, due to its simplicity and the ability
to turn any type of pixel attribute into patch-level features, we
decided to use the gradient and Local Binary Pattern (LBP)

kernel descriptors [4]. The experiments are performed using
a public database composed of 60,000 depth images stating
24 symbols classes [5]. The obtained results show that the
accuracy obtained by our method, using both descriptors, is
greater than using each descriptor separately. Moreover, the
accuracy obtained by the proposed method performs better
than the methods proposed in [6], [7], [8], [9]. The results
show that our method is promising.

Contributions: Unlike other methods that are based on
depth information and RGB, this paper proposes an approach
using only depth images. Thus, avoiding the use and storing of
RGB images and the problems of aligning the kinect sensor.
Also, we propose an algorithm to segment the hand based
on depth information. In our experiments, we compare our
proposed model to others models of state-of-the-art showing
that our model has a higher performance relative to the other
models.

A. Related work

Through the years, several techniques have been developed
to achieve an adequate recognition rate of sign language. With
the advance of technology, methods have been proposed in
order to improve the data acquisition, processing or classifi-
cation. In the case of image acquisition, there are three main
approaches[7]: sensor-based, vision-based and hybrid systems
using a combination of these systems. Sensor-based methods
use sensory gloves and motion trackers to detect hand shapes
and body movements. Vision-based methods, that use standard
cameras, image processing, and feature extraction, are used for
capturing and classifying hand shapes and body movements.
Hybrid systems use information from vision-based camera and
other type of sensors like infrared depth sensors.

These methods have some disadvantages, sensor-based
methods, such as data gloves, restrict the natural movement of
hands and are often very expensive. Video-based methods are
less restrictive, but to locate the hands and segmenting them is
a non-trivial task over RGB images. However, depth cameras
have become popular at a commodity price. Segmenting the
hand from the background using depth information makes the
task much easier, as used in [10], [11], [12], [13].

Recently, the computer vision community has shown a
great interest on depth cameras, due to their success in many
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applications, such as pose estimation [14], [15], tracking [16],
object recognition [16], etc. Depth cameras were also used
for hand gesture recognition [6], [17], [18], [8], [7]. Uebersax
et al. [17] present a system for recognizing letter and finger
spelled words. Issacs & Foo [19] proposed an American Sign
Language (ASL) finger spelling recognition system based on
neural networks applied to wavelets features. Bergh & Van
Gool [20] propose a method based on a concatenation of depth
and color-segmented images, using a combination of Haar
wavelets and neural networks for six hand poses recognition
of a single user.

Pugeault & Bowden [6] use a KinectTM device to collect
RGB and depth images. This dataset is being used by several
approaches for testing these models [6], [8], [7], [9]. Pugeault
& Bowden [6] also proposed a model that consists in extract-
ing features using Gabor filters and then a Random Forest
predicts the letters from the ASL finger spelling alphabet.
The model proposed by Estrela et al. [9] is based on the bag
of features strategy combined with the Partial Least Squares
(PLS) technique in order to create models of the letters in the
manual alphabet. Otiniano & Cámara [7] proposed a method
based on gradient kernel descriptor using intensity and depth
information. Huynh [21] proposed a novel efficient LBP-based
descriptor, specialized to encode the facial depth information.

B. Organization of the paper
The remainder of this paper is organized as follows. In

Section II, our proposed model is introduced and detailed. The
experiments are presented in Section III, where the results are
discussed. Finally, conclusion and future work are presented
in Section IV.

II. PROPOSED MODEL

This section describes the methodology developed to per-
form finger spelling recognition from depth information. The
proposed model consists of four stages as shown in Figure 1.
In the first stage, the hand area is segmented from background
using the depth information from KinectTM sensor and precise
hand shape is extracted. The second stage consists in extracting
the features from depth images. The gradient and the LBP
kernel descriptors are used on the depth image in this step.
The Gradient kernel descriptor captures image variations, it
consists of three kernels: the normalized linear kernel weighs
the contribution of each pixel using gradient magnitudes, an
orientation kernel computes the similarity of gradient orien-
tations and finally a position Gaussian kernel measures how
close two pixels are spatially. The LBP descriptor is a local
binary kernel descriptor that captures local shape information
by using binary patterns. The third stage consists in capturing
the semantic information. In order to do this, the Bag-of-
Visual-Words (BoVW) model is applied. Finally, in the fourth
stage, these features or histograms are used as input to our
SVM classifier, obtaining the final results.

A. Segmentation
In order to segment the hand area from the background,

the depth values corresponding to the hand need to be de-

tected. Depth values corresponding to the hand are usually
the smallest, this means that they are closer to the sensor
(foreground). To detect these values and therefore obtain the
hand, a clustering algorithm is used over the depth values.
However, it is important to highlight that the detected five
groups can not be too dispersed. Also, a small group will not
always have all the hand values. To overcome these problems,
we propose an algorithm based on [22]. We consider that
groups that are too distant do not belong to the same hand.
Thus, by using a threshold dt, we make certain that only
contiguous groups that possibly belong to the hand are labeled
as foreground. The proposed algorithm can easily perform the
hand segmentation using depth values:

1) Define a threshold dt.
2) Cluster the depth values in n groups (clusters).
3) Sort the n clusters from closest to farthest. Let

d(1,2), d(2,3), ..., d(n−1,n) be the distance between the
center of consecutive clusters.

4) Label the closest cluster as FG (foreground).
5) For i ∈ {2, 3, 4...n}, if d(i−1,i) < dt, the i-th cluster is

labeled as FG. Otherwise finish.

B. Feature Extraction

The feature extraction process is performed by applying
gradient and LBP kernel descriptors.

1) Gradient kernel descriptor: In [23], a kernel descriptor
that extracts the low-level image features is designed. It
consists of three steps: a match kernel using some pixel
attribute, learn compact basis vectors using Kernel Principal
Component Analysis (KPCA) and construct kernel descriptor
by projecting the infinite-dimensional feature vector to the
learned basis vectors. The authors proposed three types of
effective kernel descriptors using gradient, color and shape
pixel attributes. Later, in [4], the gradient kernel descriptor is
applied to depth images. Thereby, in order to capture edge cues
in depth images, we used the gradient match kernel, Kgrad:

Kgrad(P,Q) =
∑
p∈P

∑
q∈Q

m̃(p)m̃(q)ko(θ̃(p), θ̃(q))ks(p, q)

(1)
The normalized linear kernel m̃(p)m̃(q) weighs

the contribution of each gradient where m̃(p) =

m(p)/
√∑

p∈P m(p)2 + εg and εg is a small positive
constant to ensure that the denominator is larger than 0
and m(p) is the magnitude of the depth gradient at a pixel
p. Then, ko(θ̃(p), θ̃(q)) = exp(−γo‖θ̃(p) − θ̃(q)‖2) is a
Gaussian kernel over orientations. The authors [23] suggest
to set γo = 5. To estimate the difference between orientations
at pixels p and q, we use the following normalized gradient
vectors in the kernel function ko:

θ̃(p) = [sin(θ(p))cos(θ(p))]

θ̃(q) = [sin(θ(q))cos(θ(q))]

where θ(p) is the orientation of the depth gradient at a pixel
p. In Equation 2, a position Gaussian kernel, with p denoting



Fig. 1. Proposed model for finger spelling recognition.

the 2D position of a pixel in an image patch (normalized to
[0,1]), measures how close two pixels are spatially. The value
suggested for γs is 3.

ks(p, q) = exp(−γs‖p− q‖2) (2)

To summarize, the gradient match kernel Kgrad consists of
three kernels: the normalized linear kernel weighs the contri-
bution of each pixel using gradient magnitudes; the orientation
kernel ko computes the similarity of gradient orientations; and
the position Gaussian kernel ks measures how close two pixels
are spatially.

Match kernels provide a principled way to measure the
similarity of image patches, but evaluating kernels can be
computationally expensive when image patch are large [23].
The corresponding kernel descriptor can be extracted from this
match kernel by projecting the infinite-dimensional feature
vector to a set of finite basis vectors, which are the edge
features that we use in the next steps. For more details, the
approach that extracts the compact low-dimensional features
from match kernels is found in [23].

2) LBP: Local binary patterns: Let I be a depth image
where P and Q are depth image patches from I , both p ∈ P
and q ∈ Q are 2D position of a pixel in their corresponding
depth image patch P and Q [23].

To extract the local binary patterns, a 3 × 3 patch around
pixel p is used. Then, all values greater than p in the patch are
marked with 1 and lower values with 0. The eight resulting
values produce an 8-dimensional vector that represent the local
binary pattern bp.

The Gaussian Kernel defined in Equation 3 is used to
measure the shape similarity between two local binary patterns
bp and bq .

kb(bp, bq) = exp(−γb‖bp − bq‖2) (3)

Using Equations 2 and 3, a local binary kernel descriptor
klbp, is defined in Equation 4. This kernel has been proved to
effectively capture local shape information [23].

Klbp(P,Q) =
∑
p∈P

∑
q∈Q

s̃ps̃qkb(bp, bq)ks(p, q) (4)

where s̃p = sp/
√∑

p∈P s
2
p + εlbp.

sp is computed by calculating the standard deviation of all
the pixel values in a 3 × 3 neighborhood around pixel p. To

make certain that the denominator will always be larger than
zero, a small value is assigned to εlbp. Consequently, s̃ps̃q is a
normalized linear kernel that counterbalance the contribution
of each local binary pattern.

C. Bag-of-Visual-Words

Bag-of-Visual-Words algorithm was first introduced by
Sivic [24] for video retrieval. Due to its efficiency and effec-
tiveness, it became very popular in the fields of image retrieval
and categorization. Image categorization techniques rely either
on unsupervised or supervised learning.

Our model uses the Bag-of-Visual-Words approach in order
to search semantic information. The original method works
with documents and words. Therefore, we consider an image
as a document and the “words” will be the visual entities found
in the image. The Bag-of-Visual-Words approach consists of
three operations: feature description, visual word vocabulary
generation and histogram generation. The feature description
operation was explained in the previous subsection, now we
will explain the remaining two steps, vocabulary and histogram
generation.

1) Vocabulary Generation: A visual word vocabulary
(codebook) is generated from feature vectors, where each
visual word (codeword) represents a group of several similar
features. The codebook defines a space of all entities occurring
in the image.

2) Histogram Generation: A histogram of visual words is
created by counting the occurrence of each codeword. These
occurrences are counted and arranged in a vector. Each vector
represents the features for an image.

D. Classification

Support vector machines (SVMs), introduced as a machine
learning method by Cortes and Vapnik [25], are a useful
classification method. Furthermore, SVMs have been success-
fully applied in many real world problems and in several
areas: text categorization, handwritten digit recognition, object
recognition, etc. The SVMs have been developed as a robust
tool for classification and regression in noisy and complex
domains. SVMs can be used to extract valuable information
from data sets and construct fast classification algorithms for
massive data.

An important characteristic of the SVM classifier is to allow
a non-linear classification without requiring explicitly a non-
linear algorithm thanks to kernel theory.



Fig. 2. ASL Finger Spelling Dataset: 24 static signs by five users. It is an example of the variety of the dataset. This array shows one image from each user
and from each letter.

In kernel framework, data points may be mapped into a
higher dimensional feature space, where a separating hyper-
plane can be found. We can avoid to explicitly computing
the mapping using the kernel trick which evaluates similar-
ities between data K(dt, ds) in the input space. Common
kernel functions are: linear, polynomial, Radial Basis Function
(RBF), χ2 distance and triangular.

III. EXPERIMENTS

In order to test our model, we use the ASL Finger Spelling
Dataset [5], which contains 500 samples for each of 24
signs, recorded from 5 different persons (non-native to sign
language), amounting to a total of 60,000 samples. Each
sample has a RGB image and a depth image, but we only use
a depth image, leaving aside the RGB image. Our proposed
model works with static signs, therefore, the sign J and Z are
not used (because these signs have motion). It is important
to highlight that the dataset has a variety of background and
viewing angles as we can see in Figure 2. It is possible to see
the multiple variations in size, background and orientation.

Figure 3 shows the most similar signs a, e, m, n, s and t.
The examples were taken from the same user, however, it is
possible to see the variation in the background and the high
similarity of the signs. All are represented by a closed fist, and
differ only by the thumb position, leading to higher confusion
levels. Consequently, these signs are the most difficult to
differentiate in the classification task, obtaining the lowest
accuracy values which will show later.

In order to test our proposed model, we conducted three
experiments. In the first, a classification of the signs was
performed using depth image features from the gradient de-
scriptor. In the second, a classification was performed using the
depth image features from the LBP descriptor. Finally, in the
third experiment, the signs were classified using the features
extracted from both: gradient and LBP descriptors.

For each of the three experiments, we have some specifica-
tions:

Fig. 3. Most conflictive similar signs in the dataset.

• In the segmentation stage, we use a threshold dt = 100
and cluster the depth values in five groups, these values
were obtained empirically.

• To extract all low level features using gradient and LBP
kernel descriptors, approximately 12x13 patches are used
over dense regular grid with spacing of eight pixels
(images are not of uniform size), each patch has a size
of 16x16.

• In order to produce the visual word vocabulary, the LBG
(Linde-Buzo-Gray) [26] algorithm was used to detect one
hundred clusters by taking a sample of 20% from the total
features.

• Moreover, in the classification stage, we use a RBF
kernel, whose values for g (gamma) and c (cost) are 0.25
and 5, respectively. We also use different percentages of
samples for training and testing. For example, we use
10% of samples for training and the other 90% are used
for testing, and this percentage varies up to 50% for
training. In order to obtain more precise results, each
experiment was performed 20 times and we show the
mean accuracy for each one. The library LIBSVM (a
library for Support Vector Machines)] [27] was used in
our implementation.

First experiment: Gradient kernel descriptor: For this
first experiment, an average accuracy of 85.18% was obtained



TABLE IV
ACCURACIES AND STANDARD DEVIATION OF THE CLASSIFICATION USING

BOTH DESCRIPTORS.

% Training % Testing Accuracy Standard Deviation
10 90 84.2% 0.34
20 80 88.81% 0.17
30 70 90.67% 0.14
40 60 92.11% 0.18
50 50 92.92% 0.16

when 50% of samples are used for training and 50% for
testing. This accuracy is the mean of the values of the main
diagonal of the confusion matrix and represents the signs
correctly classified (true positives). This accuracy decreases
when less samples are used for training. For example, when
10% of samples are used for training we obtain 75.13% of
accuracy. All the results of this classification, with 50% of
samples for training, are found in Table I. In this table, we
can see that the signs t (68%), n (74%), r (76%), s (76%)
and m (77%) are the most difficult to recognize. This happens
because these signs are defined as the most conflictive similar
signs, refer to Figure 3. Nonetheless, a and e signs, which
are also conflictive similar signs, obtained a high accuracy,
89% and 82%, respectively, compared to the other conflictive
signs. On the other hand, signs b and l obtained the highest
accuracies, 95% for both.

Second experiment: LBP descriptor: The second exper-
iment has an average accuracy of 86.53% and 76.68% when
50% and 10% of samples are used for training, respectively.
Table II shows the results of this classification using 50%
of samples for training. In this table, as in the previous
experiment, we can see that the signs t (71%), s (74%),
n (76%), r (78%) and m (78%) have the lowest values of
recognition. Signs a and e, which are part of conflictive similar
signs, obtained a high accuracy, 93% and 86%, respectively,
compared to the other conflictive signs. Moreover, signs b and
l obtained the highest accuracies, 96% and 95% respectively.

Third experiment: Both descriptors: The last experi-
ment tests our method using both descriptors over depth
information. The data was obtained by joining the features
(histograms) from gradient and LBP descriptors, which were
used independently in the previous experiments. An average
accuracy of 92.92% and 84.2% is obtained when 50% and
10% of samples are used for training, respectively. Table III
shows the results for each sign using 50% of samples for
training. It is possible to see that we obtain signs with average
accuracies of 98% (b) and 99% (f, w and l). On the contrary,
signs t (82%), n (84%), r (86%) and m (88%) have the lowest
values of recognition. Nevertheless, compared to previous
experiments, the recognition rate of each sign has improved.
These higher recognition rates corroborates the effectiveness
of our proposed model.

In Table IV, we show the average accuracies for each
experiment using different percentages of samples for training.

In order to compare the results, we summarize them in

TABLE V
ACCURACIES AND STANDARD DEVIATION OF THE THREE EXPERIMENTS

AND STATE-OF-THE-ART USING 10% OF SAMPLES FOR TRAINING.

Method Accuracy Standard Deviation
Gradient 75.13% 0.22

LBP 76.68% 0.17
G-LBP 84.2% 0.34

Zhu & Wong [8] 77.39% 0.13
Estrela et al. [9] 71.51% -

TABLE VI
ACCURACIES AND STANDARD DEVIATION OF THE THREE EXPERIMENTS

AND STATE-OF-THE-ART USING 50% OF SAMPLES FOR TRAINING.

Method Accuracy Standard Deviation
Gradient 85.18% 0.16

LBP 86.53% 0.17
G-LBP 92.92% 0.16

Pugeault & Bowden [6] 75.00% -
Otiniano & Cámara [7] 91.26% 0.18

Tables V and VI. Both tables present the average accuracy
and standard deviation for each experiment. We can see that
using both descriptors we obtain the highest average accuracy,
outperforming our isolate methods and also other methods
proposed by Pugeault & Bowden [6], Otiniano & Cámara [7],
Zhu & Wong [8] and Estrela et al. [9]. These last four methods
are found in the state-of-the-art and use the same dataset, the
principal difference between these methods is the number of
samples used for training and the type of image (RGB, depth
or both).

Zhu & Wong [8] and Estrela et al.[9] used approximately
10% of samples for training and RGB and depth images. In
Table V, we present the results of these models and the results
from our model also using 10% of samples for the training
phase.

Pugeault & Bowden [6] and Otiniano & Cámara [7] used
50% of samples for training and they work with RGB and
depth images. The results of these models are compared to
our model in Table VI. We present the accuracies for each
experiment of our model also using 50% of samples for
training.

Finally, we highlight that our method outperforms the results
obtained by the state-of-the-art. Furthermore, our method used
only depth information while the other models presented above
used RGB and depth information.

IV. CONCLUSION

In this paper, we proposed a method for Finger Spelling
Recognition from depth information using kernel descriptors.
The segmentation was performed based on depth maps. The
Bag-of-Visual-Words model was applied in order to search
for semantic information. Finally, the classification task is
performed by a SVM classifier.

The combination of gradient kernel and LBP descriptors
obtained the best results (92.92%) with a low variance.



TABLE I
CONFUSION MATRIX OF THE CLASSIFICATION OF 24 SIGNS USING GRADIENT KERNEL DESCRIPTOR.

a b c d e f g h i k l m n o p q r s t u v w x y
a 0.89 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.01 0.00
b 0.01 0.95 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
c 0.01 0.00 0.92 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
d 0.00 0.00 0.00 0.87 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.00
e 0.02 0.00 0.02 0.01 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00
f 0.00 0.02 0.01 0.01 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
g 0.01 0.00 0.00 0.00 0.00 0.00 0.86 0.09 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.94 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
k 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.00 0.84 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.00 0.01 0.00
l 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

m 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.07 0.01 0.00 0.00 0.01 0.05 0.04 0.00 0.00 0.00 0.00 0.00
n 0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.07 0.74 0.02 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.02 0.00
o 0.01 0.00 0.02 0.01 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.78 0.01 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00
p 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.88 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
q 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r 0.01 0.01 0.00 0.06 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.76 0.00 0.01 0.05 0.03 0.00 0.01 0.00
s 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.03 0.03 0.00 0.00 0.00 0.76 0.04 0.00 0.00 0.00 0.01 0.00
t 0.06 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.08 0.02 0.00 0.00 0.00 0.05 0.68 0.00 0.00 0.00 0.02 0.00
u 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.82 0.03 0.02 0.01 0.00
v 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.03 0.83 0.04 0.00 0.00
w 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.04 0.91 0.00 0.00
x 0.01 0.00 0.01 0.03 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.78 0.00
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.94

TABLE II
CONFUSION MATRIX OF THE CLASSIFICATION OF 24 SIGNS USING LBP DESCRIPTOR.

a b c d e f g h i k l m n o p q r s t u v w x y
a 0.93 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00
b 0.01 0.96 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c 0.01 0.00 0.93 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
d 0.00 0.00 0.01 0.89 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.00
e 0.02 0.00 0.02 0.01 0.86 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
f 0.00 0.02 0.01 0.01 0.01 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
g 0.01 0.00 0.00 0.00 0.00 0.00 0.91 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.94 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
k 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.84 0.01 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.01 0.02 0.00 0.01 0.00
l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

m 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.78 0.07 0.01 0.00 0.00 0.01 0.04 0.03 0.00 0.00 0.00 0.00 0.00
n 0.01 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.07 0.76 0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.01 0.00
o 0.00 0.00 0.02 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.82 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
p 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.88 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
q 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.09 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.01 0.01 0.05 0.01 0.00 0.01 0.01
s 0.03 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.03 0.02 0.00 0.00 0.00 0.74 0.07 0.00 0.00 0.00 0.00 0.01
t 0.06 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.07 0.02 0.00 0.00 0.00 0.02 0.71 0.00 0.00 0.00 0.02 0.00
u 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.84 0.02 0.00 0.01 0.00
v 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.85 0.04 0.00 0.00
w 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05 0.91 0.00 0.00
x 0.01 0.00 0.01 0.04 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.02 0.00 0.03 0.01 0.01 0.00 0.02 0.01 0.00 0.00 0.78 0.01
y 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92



TABLE III
CONFUSION MATRIX OF THE CLASSIFICATION OF 24 SIGN USING BOTH DESCRIPTORS WITH 50% FOR TRAINING.

a b c d e f g h i k l m n o p q r s t u v w x y
a 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
b 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 0.01 0.00 0.01 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
f 0.00 0.01 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
k 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00
l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.04 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00
n 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.84 0.01 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00
o 0.00 0.00 0.01 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.90 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.94 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.01 0.04 0.02 0.00 0.00 0.00
s 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.00 0.00 0.88 0.03 0.00 0.00 0.00 0.00 0.00
t 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.06 0.01 0.00 0.00 0.00 0.03 0.82 0.00 0.00 0.00 0.01 0.00
u 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.91 0.02 0.00 0.00 0.00
v 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.92 0.02 0.00 0.00
w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.98 0.00 0.00
x 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.90 0.00
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97

Although conflictive similar signs like, m, n, r and t, are the
most difficult to recognize, our proposed model achieved over
82% accuracy, thus validating the robustness of the descriptors.
Furthermore, for other conflictive similar signs, a and e, our
model achieved accuracies of 96% and 94% respectively.

Unlike other descriptors, the kernel descriptors used in our
model have the advantage that can be directly applied to depth
images without having to compute the cloud of points, conse-
quently, reducing the computation time. The extracted features
effectively captured image variations and shape information.

As future work, we pretend to test other descriptors in depth
and intensity images. We also intend to extend our method to
recognize dynamic signs.
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