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Computação∗, University of São Paulo

São Carlos, SP, Brazil

{viniciusrpb,cristina}@icmc.usp.br

Department of Computer Science †

University of California, Davis

Davis, CA, 95616, USA

hamann@cs.ucdavis.edu

Departamento de Botânica ‡

Federal University of São Carlos

São Carlos, SP, Brazil

thais.garcia.bio@gmail.com,ahvieira@ufscar.br

Abstract—We present a method for segmenting 2D microscopy
images of freshwater green microalgae. Our approach is based
on a specialized level set method, leading to efficient and highly
accurate algae segmentation. The level set formulation of our
problem allows us to generate an algae’s boundary curve as the
result of an evolving level curve, based on computed background
and algae regions in a given image. By characterizing the
distributions of image intensity values in local regions, we are
able to automatically classify image regions into background and
algae regions. We present results obtained with our method.
These results are very promising as they document that we can
achieve highly accurate algae segmentations when comparing
ours against manually segmented images (segmented by an expert
biologist) and with results derived by other approaches covered
in the literature.
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I. INTRODUCTION

Freshwater green microalgae play an important role in

nature and human life. These microorganisms affect water

properties such as colour, odour and taste and interact with

chemical compounds potentially hazardous to human or ani-

mal health. They are highly sensitive to environmental changes

and therefore can signal the deterioration of ecological condi-

tions [1], thus acting as effective indicators of water quality.

The taxonomic classification of green algae species is a

highly relevant problem in biology. Typically, a taxonomist

samples an algae culture for observation under a microscope

and manually classifies the cells observed in the image fol-

lowing a pre-defined set of identification keys. The proce-

dure is highly demanding and time-consuming, as it requires

careful inspection of a diverse image collection and manual

extraction of the relevant information. The overall quality of

the process strongly depends on the taxonomist’s skills and

previous expertise, as extracting, interpreting and selecting the

most suitable features to characterize the distinct families and

species of algae is not straigthforward.

Previous efforts were published concerning the development

of computational systems to support taxonomists in the classi-

fication of algae species. Typically, such systems embed image

processing and pattern recognition algorithms that are used to

capture the relevant physical properties of an image and derive

an appropriate representation for further processing. Nonethe-

less, some systems [2] [3] employ computationally expensive

manual or guided segmentation procedures that render them

unfeasible for handling larger image sets. Moreover, the green

algae data requires automatic segmentation techniques that are

highly accurate on a wide diversity of algae shapes. Thus, we

focus on segmentation techniques that can be applied to the

problem of automatically extracting algae shapes from images,

in order to obtain shape features that could potentially be used

as input to a method performing subsequent steps required for

taxonomic classification.

The main goal of image segmentation is to partition the

digital image into its constitutent and disjoint regions. Algae

segmentation is a particularly challenging problem, since

images are acquired from a microscope and algae cells are

constantly moving during the image acquisition process. Mor-

ever, the digital images obtained are characterized by low

contrast due to non-uniform illumination conditions, leading

to transparency of algae cells and high brightness variability

accross images. The presence of artifacts is also observed, as

dead cell membranes, microbes and particles, which may be

mistakenly interpreted as algae cells.

From the wide diversity of image segmentation me-

thods, techniques which incorporate variational principles have

emerged as powerful tools. In a variational approach, segmen-

tation is performed by minimizing an energy functional for-

mulated under a homogeneity criterion of the image regions.

The main references are the Mumford-Shah model [4] and

the active contours [5] (also called snake model) formulations,

which have been gradually modified to improve segmentation

quality [6] [7] [8] or to incorporate alternative approaches for

computing numerical solutions [9] [10] [11].

Deformable models, in particular, have been succesfully

employed, for example, in the segmentation of organic cells

[12], motion tracking [13] and fluid flow [14]. The key idea

is to define a dynamic curve that evolves over the image

domain towards the desired regions or object boundaries.

Parametric [5] [15] approaches which represent the dynamic

curve explicitly or geometric approaches which represent them

implicitly [6] [16] are possible [17]. From the latter category

the level set method [18] has become highly popular due to



its natural capability of handling topological changes such

as splits and breaks during curve evolution [19], unlike the

parametric approaches.

The standard level set approach takes into account only the

edge information of image regions as a criterion to stop curve

evolution. However, it would likely produce poor segmentation

results on the algae images, as the algae cells depict a wide

diversity of shapes and their corresponding pixels present con-

siderable intensity variation. Combining an appropriate region-

based term with a level set approach is likely to provide a

more promising strategy in this scenario [20] [21], because the

level set formulation can incorporate representative statistical

models of the intensity variations observed in algae regions.

The main contribution of this paper is a technique for

segmenting green algae in digital images that combines a level

set formulation with Gaussian distributions first described by

Rousson and Deriche [21] and Zhu et al. [20]. We represent

algae regions and background by means of Gaussian distri-

butions, whose parameters are computed from representative

intensity samples of each region. We also introduce a tech-

nique based on computing image eigenvalues and eigenvectors

to automatically obtain the required samples.

This paper is organized as follows: Section II presents

similar approaches in the literature for segmenting algae and

biological images using deformable models and establishes

the motivation for this work. Section III presents the basic

principles of the level set method and its relevant subsequent

formulations. Section IV introduces the proposed approach

based on level set and Gaussian distributions and the procedure

for sampling representative image regions. Section V presents

experimental results of applying the proposed strategy to a

set of green algae images. Finally, Section VI summarizes

conclusions and alludes to possibilities for future research.

II. RELATED WORK

Several strategies are reported in the literature to identify

or explicitly segment cells, objects or regions of interest in

biological images. Edge-based and deformable models appear

as suitable strategies for handling, e.g., algae, phytoplankton

and diatoms, due to their robustness to noise and efficiency

to handle images formed by regions characterized by high

variation in intensity.

As aforementioned, edge-based segmentation methods seek

for abrupt image discontinuities that characterize region

boundaries. Differential operators such as Sobel, Canny and

Laplacian of Gaussian are often combined with thresholding

approaches and mathematical morphology to link disconnected

edges. The edge-based segmentation method by Promdaen

et al. [22] applies the Sobel operator to the original algae

images, with the resulting images being used as input to a

Canny filter. Edge discontinuites are linked by a mathematical

morphology step applied to the Canny images. Jalba et al. [23]

proposed a hybrid strategy to automatically segment diatoms.

Their solution combines a watershed transform based on ma-

thematical morphology with a new marker selection scheme.

The first method computes connected operators, which are

then employed in the computation and selection of markers

in order to prevent over-segmentation, a known drawback of

watershed-based techniques.

The marine phytoplankton identification system developed

by Cuiping et al. [24] segments algae cells with a region-

growing algorithm. The system first applies a Canny edge

detector to the original images, and then a morphological

operator to detect algae boundaries. A thresholding with

Otsu’s method is applied to obtain a background patch

from which mean intensity values are estimated. The region-

growing method uses intensities from a coarse background as

a stopping criterion, to automatically distribute the seeds in

the image.

Whilst edge-based segmentation methods may detect edges

with discontinuities, thus requiring several post-processing

steps for edge-linking, deformable models are popular due

to their capability of obtaining closed contours of the image

objects. Moreover, such methods are usually robust under

noisy conditions and can incorporate a priori knowledge about

image regions.

Generally, deformable models can be associated with para-

metric or implicit approaches [12]. Parametric models repre-

sent the contours explicitly as parametrized curves, as in the

active contour (AC) model [5] [15]. Using this representation,

the parametric curve evolves from an initial position in the

image domain towards the object boundaries (or the desired

regions) as a result of the action of internal and external forces.

Zhang et al. [25] compared the performances of the Chan-

Vese active contour model [26] and the 4-point approximation

subdivision scheme for segmenting microalgae images. While

the first technique employs a level set curve that evolves

towards algae boundaries, the second relies on an iterative

subdivision scheme which starts from an initial set of defined

points until a polygon is obtained that approximates the algae

shapes. The experiments reported show that the CV model is

more accurate for detecting the algae boundaries, though initial

conditions must be properly set. The iterative scheme, on the

other hand, has lower computational cost and is more robust

to noise. Nonetheless, it is not an edge tracking procedure,

since the resulting polygon is only a rough approximation of

the algae boundary.

Also employing Active Contour-based methods to identify

cells in phytoplankton images, Gelzinis et al. [27] focused on

improving image quality and contrast prior to segmentation.

Their strategy consists of computing nine distinct images,

each obtained from a specific process, such as Gabor filtering,

Gaussian filtering, Sobel operator application, or other filters.

Those images are binarized and their intensities added to

produce a single average contour image, which is taken as

reference to propagate the dynamic curves for cell segmenta-

tion. Performance of this solution is superior to that obtained

when inputting the original images directly into the AC-based

models.

Parametric approaches face some limitations regarding

curve convergence. First, the curve needs to be positioned

close to the target object, so that the forces can move the



contour towards its boundaries. Furthermore, poor fitting of

the curve and the object boundaries may occasionally happen

when objects have boundaries with substantial concave pattern.

Geometric models are suitable alternatives to parametric

approaches since an implicit representation of the dynamic

curve can naturally handle topological changes such as splits

and breaks in image objects. The level set method (LSM) [18]

has been extensively employed in many image processing and

computer vision problems, and its original formulation has

undergone several modifications [16] [28] [26] [19] in order

to improve curve stability and convergence when computing

the numerical solution.

We are concerned with developing a segmentation strategy

that allows us to automatically extract precise algae boundary

shapes from RGB digital images obtained from a microscope.

This is a first step to enable automatic feature extraction from

such images, in order to devise a system to assist biologists

in the taxonomic classification of such microorganisms. In

handling images of a specific complex of freshwater green

microalgae, identified by the biologists as the Selenestraceae

family, we observed that its algae species show a wide range of

shapes, e.g., from rounded, ellongated or curved single cells,

as illustrated in Figure 1(a), to yet other very distinct shapes

when the algae form colonies of multiple grouped cells, as

depicted in Figure 1(b). This and other peculiar characteristics

of the images that result from the acquisition process render

the automatic segmentation task a very difficult one to handle.

(a) (b)

Fig. 1: Examples of green microalgae images: (a) image

characterized by the presence of noise, artifacts and small

objects; (b) image with the presence of colonies, showing

overlap of multiple algae cells.

Because the level set formulation can incorporate both edge

information and a priori region information to guide the curve

evolution, we departed from the hypothesis that it is possible

to devise a formulation capable of handling both the shape

diversity issue and the known additional problematic characte-

ristics of these images, such as low contrast and high intensity

variation in both the algae and the background regions. As

we know from the biologists that the Selenestraceae family

is particularly problematic even for manual classification, we

take images of its species as test cases for evaluating a proper

solution to the algae segmentation problem.

We devised a novel segmentation strategy based on the level

set formulation originally introduced by Rousson and Deriche

[21], which employs probability distributions to statistically

represent the target image regions, namely the algae cells and

the background for the problem of interest here. Considering

that contour shapes also convey important patterns for the

algae segmentation problem [15] we incorporate an edge

potential term into the energy funcional by Rousson and

Deriche. Details about the standard level set method and some

relevant subsequent derived formulations are described next.

III. LEVEL SET METHOD

Let Ω ⊂ R
m be the image domain and I : Ω → R the

function designed to be a digital image. Consider Γ : [0, 1] ×
[0,∞) → Ω as the parametric curve that divides the domain in

foreground (Ω1) and background (Ω\Ω1) regions. In the level

set method, the dynamic curve is a Lipschitz function φ : Ω →
R, also called level set function, that can be interpreted as the

zero-level of a function in higher dimension, for which:

φ(x, t) =







< 0 if x is on the inside relative to Γ(t)
0 if x is on Γ(t)

> 0 if x is on the outside relative to Γ(t)

Here, φ(x, t) refers to the curve position in the domain Ω
at a given time step t. A point in the spatial domain is

written here and in the following in boldface notation, i.e.,

the notation x represents the point (x1, ..., xm). Using this

compact notation simplifies many of the required equations

and operators discussed in this paper. The level set function φ
evolves through the domain Ω according to a speed function

F , given by the level set equation:

∂φ

∂t
+ F |∇φ| = 0, (1)

knowing that φ(x, 0) = φ0(x) is the initial position of the

curve in Ω. The level set function is usually defined by means

of a signed distance function, such as the Euclidean distance:

φ(x, t) =















−dE(x,Γ(t)) if x is on the inside

relative to Γ(t)
dE(x,Γ(t)) if x is on the outside

relative to Γ(t)

As for F , the usual choices are the mean curvature [16], in

which the speed is defined by the curvature values of curve

points, and the geometric term [15] in which an edge potential

function is used to stop curve evolution at objects boundaries.

Eq. (1) must be solved numerically and the level set function

may gradually degrade along successive time steps, due to

numerical instabilities. This problem is handled using the

reinitializing level set equation, described by:

∂φ

∂t
= sign(φ0)(1 − |∇φ|) (2)

in which sign(φ0) is computed as:

sign(φ(x, t)) =







−1 if φ(x, t) < 0
0 if φ(x, t) = 0

+1 if φ(x, t) > 0



Although the level set method is suitable for segmenting

algae, its standard formulation is highly sensitive to the initial

positioning of the curve. Some authors have incorporated

region-based terms into the level set formulation, or have

employed sophisticated optimization schemes [9] [10], in order

to address this problem.

The method introduced by Chan and Vese [26] assumes

that an image consists of statistically homogeneous regions,

and settles the constant case of the Mumford-Shah functional

using the level set formulation, which aims to minimize the

following energy functional:

FCV (c1, c2, φ) = λ1

∫

Ω

(I(x) − c1)
2H(φ(x))dx +

λ2

∫

Ω

(I(x) − c2)
2(1 − H(φ(x)))dx +

ν

∫

Ω

δ(φ(x))|∇φ(x)|dx + ρ

∫

Ω

H(φ(x))dx. (3)

in which ρ, λ1, λ2 and ν are positive parameters acting as

weights for their respective terms. Constants c1 and c2 are

statistical representations (mean intensities) of the foreground

and background regions. δ(z) = d
dz

H(z) is the Dirac function.

Heaviside functions H(φ) allow us to represent geometrical

quantities and properties of the image domain, using

H(z) =

{

1 if z ≥ 0
0 if z < 0

(4)

However, some of the underlying assumptions do not apply

to green algae images, which present considerable intensity

variation even within the algae cells. We propose capturing

such algae patterns by computing Gaussian distributions that

characterize the image regions and incorporating such infor-

mation into the level set method. This strategy, described in

detail in the following section, has been inspired by Rousson

and Deriche’s method [21].

IV. PROPOSED METHOD

Rousson and Deriche (RD) [21] formulated an energy

functional based on the level set method which uses probability

distributions to describe image regions statistically [20] [28].

For that purpose, it is assumed that the intensities at each

point x ∈ Ω are independent and identically distributed by the

same random process and the image regions are statistically

independent.

Let P1(I(x)|θ1) and P2(I(x)|θ2) be the probability dis-

tributions of the foreground and background regions, respec-

tively. Taking the same level set formulation adopted by Chan-

Vese, but employing the probability distributions to model

image regions, Rousson and Deriche proposed minimizing the

following energy functional:

min
φ,{θ1,θ2}

{

FRD(φ, {θ1, θ2}) =

∫

Ω

|∇H(φ)|

−λ

∫

Ω

H(φ(x)) log(P1(I(x)|θ1))dx

−λ

∫

Ω

(1 − H(φ(x))) log(P2(I(x)|θ2))dx

}

. (5)

in which the region parameters {θ1, θ2} are estimated accor-

ding to an optimization scheme further described elsewhere

[21]. Although RD’s method performs well on the green algae

images, its formulation does not incorporate edge information,

which provides important patterns for characterizing distinct

algae shapes.

Motivated by existing strategies [15] [28], we incorporate

an edge potential function into the first term of RD’s energy

functional, in order to reduce the diffusion process on region

boundaries. The underlying rationale is to preserve region

edges as much as possible in order to favor accurate iden-

tification of algae shapes. Finally, the energy functional used

in our proposed method is

min
φ

{

FPM (φ, {θ1, θ2}) =

∫

Ω

g|∇H(φ)|

−λ

∫

Ω

H(φ(x)) log(P1(I(x)|θ1))dx

−λ

∫

Ω

(1 − H(φ(x))) log(P2(I(x)|θ2))dx

}

. (6)

The first term of the functional in Eq. (6) is the length of the

contour Γ and the two remaining terms refer to the cost of

assigning each domain point inside and outside the contour.

The minimization problem defined by Eq. (6) is solved by

deriving and solving the Euler-Lagrange equations using a

gradient descent scheme in relation to φ:

∂φ

∂t
= div

(

g
∇φ

|∇φ|

)

+ λ log(P2/P1) (7)

in which g is a positive boundary potential, usually chosen to

be a decreasing function of the image gradient. Generally, g
is computed as:

g(|∇I|) =
1

1 + β|∇I|2
(8)

in which β is a positive constant that controls the gradient

influence of the first term in Eq. (6). The dynamic curve

evolves according to the log-likelihood test defined by the

second term in Eq. (7).

We chose multivariate Gaussians to describe the image

regions. The distribution parameters θ1 = {µ1,Σ1} and

θ2 = {µ2,Σ2} are the mean and the covariance matrix of the

algae and the background regions, respectively. The associated

Gaussian distributions are computed as:



Pi(I(x)|{µi,Σi}) =
1

√

(2π)m|Σi|
exp

(

−
1

2
(I(x) − µi)

T Σ−1

i (I(x) − µi)
)

(9)

in which the values of the parameters θ1 and θ2 are estimated

once before the curve evolution, and kept fixed during the op-

timization process of Eq. (6). Parameter estimation consists of

sampling pixel intensities of both image regions, as described

next.

A. Automatic Sampling

The extended method requires sampling intensities of the

foreground and the background regions in order to estimate the

parameters of the probability distributions modeling the target

regions. The quality of the probability distributions estimated

depends on an effective sampling procedure. We introduce an

automatic sampling strategy that relies on computing a binary

mask from the eigenvalues of the covariance matrix of the

original RGB image.

The sampling technique has a local aspect since it computes

the covariance matrix of the color channels in relation to each

domain point. Thus, it is possible to represent the local image

structure and identify subtle details in the image patterns [29].

First, we compute the local mean value relative to each

image domain point:

µL(x) =
1

|Ω|

∫

Ω

I(x − y)dy. (10)

A(x) = I(x) − µL(x). (11)

The following step requires us to compute a local covariance

matrix, given by:

C(x) = A(x)T A(x). (12)

Finally, we compute the eigenvalues and eigenvectors of the

covariance matrix C(x) relative to each domain point:

V −1C(x)V = D, (13)

in which V is the matrix of eigenvectors and D is a di-

agonal matrix of the eigenvalues of C(x), given by v =
{D1,1, ...,Dm,m}. Considering that eigenvalues are computed

for each pixel, they can be represented as m images, each one

depicting the algae image properties from multiple perspec-

tives. An inspection of the eigenvalue images substantiated our

choice to pick the third eigenvalue image (green channel) as

representative, as it better captures the image characteristics.

The mask which defines the pixels as associated with either

algae or background regions is obtained by thresholding the

selected eigenvalue image using its mean intensity value.

In the resulting binary image the algae-related pixels are

white whereas the background pixels have low intensities. For

performance reasons we decided to sample only 10% of the

background pixels.

Figure 2 illustrates the sampling steps, from the initial

stage of obtaining the eigenvalue images to the probability

distribution parameter estimation stage. Figure 2(a) shows

the original green algae image. Figures 2(b), 2(c) and 2(d)

depict the images constructed from the first, second and third

eigenvalues of each image domain point. Figure 2(e) shows

the binary image obtained after thresholding using the chosen

eigenvalue image. Figure 2(f) illustrates the obtained patches

for sampling intensities from the target regions of interest, the

algae (shown in red) and the background (in green).

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Examples illustrating the image sampling procedure:

(a) original RGB image; (b-c-d) eigenvalue images obtained

for each RGB channel; (e) generated binary mask; (f) mask

used for sampling, in which the red patch is related to algae

pixels and the green patch with the background.

In summary, our proposed algorithm consists of these major

steps:

1) Compute the eigenvalue image as previously described

and sample pixel intensities from both the algae and the

background regions.

2) Estimate the Gaussian probability distributions parame-

ters θ1 = {µ1,Σ1} and θ2 = {µ2,Σ2}, given the algae

and background region samples, respectively.

3) Compute the multivariate Gaussian distributions P1 and

P2 for those regions, according to Eq. (9).

4) Initialize φ0 ≈ φ(x, 0) using Eq. (2).

5) Use a finite difference approach [30] to compute the

numerical solution of Eq. (7) in relation to the level set

function φ. We assume that Ω ⊂ R
2 and x = (x, y),

so the level set function and the digital images are

discretized as bidimensional [M,N ] matrices, in which



φ(x) ≈ φi,j for i = 1, ...,M and j = 1, ..., N . The

level set curve evolution stops once it reachs the algae

boundaries.

6) Once φ converges, we generate the binary image by

thresholding the final level set as φ(x) < 0.

7) In the binary image we keep the regions whose perime-

ters exceed 50 (measured in units defined by the uniform

spacing of the underlying implicitly defined image grid)

and perform a dilation morphological operation using a

disk structuring element with radius of size 2 to smooth

the algae boundaries.

In Section V we present results obtained when applying our

proposed method on a particular set of green algae images.

V. EXPERIMENTAL RESULTS

We have evaluated the performance and the effectiveness

of the proposed method for segmenting green algae. A set

composed by 44 images of green algae depicting different

species of the Selenestraceae families complex was used for

the tests. These images have a resolution of 600 × 800 and

are quantized in 8 bits per color channel. The parameters in

Equations (7) and (8) were set to λ = 0.2 and β = 0.0005 by

means of visual observation of the results. We performed some

experiments using several combinations of parameters values

and chose those which produced the best accuracy rates.

The goal of the first experiment was to verify the method’s

dependence on initial conditions, i.e., how the initial level set

curve positioning affects the final segmentation result. The

sequences in Figures 3(c-e-g-i) and 3(d-f-h-j) show two test

cases, each one considering a distinct initial position of the

level set curve. Figures 3(c-d) show the initial position of the

level set φ. Figures 3(e-f) show the intermediate states of φ,

and Figures 3(g-h) illustrate the final positions of φ after 1, 620
iterations. Figures 3(i-j) present the binary image representing

the algae segmentation. As the proposed method does not

optimize the parameter distributions during the minimizing

process of the energy function of Eq. (6), it is less sensitive

to initial conditions when compared with RD’s model.

In the second part of the experiments, we have evaluated our

method by comparing the accuracy of the obtained segmen-

tations with those manually segmented by biologists, refered

to as ground-truth (GT) images. To that end, we have used

the binary image obtained by thresholding the final contour

φ, in which algae regions and cells are associated with the

white pixels and the background pixels have intensity zero.

The accuracy (Acc) is defined as:

Acc =
TP + TN

TP + TN + FP + FN
, (14)

in which TP (true positive) refers to the pixels labeled as

belonging to algae regions in both segmentation and GT. FP
(false positive) are the pixels labeled as belonging to algae

regions in the segmentation, but as non-algae pixels in GT.

TN (true negative) are the pixels labeled as non-algae in both

segmentation and in the GT. FN (false negative) refers to

the pixels labeled as non-algae in the segmentation, but are

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3: Level set evolution from two distinct initial positions:

(a) original RGB image; (b) segmentation after thresholding

final φ; (c-d) initial φ(x, 0); (e-f) intermediary state of φ; (g-h)

after convergence of φ.

actually pixels belonging to algae regions in the GT image. We

measure the average accuracy for an image set by averaging

the accuracy values computed for each image.

For the given image set, Table I presents the average

accuracy rates and the standard deviation (std) obtained by

the proposed method, by the conventional level set method and

by Rousson and Deriche’s approach. In the conventional level

set method, we employed the speed term proposed by [15] in

Eq. (1) and after each time iteration, the level set curve was

reinitialized according to Eq. (2). In turn, we derived Rousson

and Deriche’s method by minimizing the energy functional

in Eq. (5) in relation to φ and the distribution parameters

{θ1, θ2}. In both methods, we initialized the level set curve

in the same position and discretized the associated energy

functionals by the Finite Difference method. Parameters of



each method have been adjusted after visual observation of

the results and considering the higher accuracy rates in the

obtained segmentations. The proposed method achieved higher

accuracy rates, emphasizing that the modification introduced

into RD’s formulation is effective for segmenting green algae

images. Analysing the standard deviation (std) rates, the pro-

posed method is also more consistent, obtaining satisfactory

segmentations in the majority of test cases. Moreover, results

show that the segmented algae shapes are highly similar to

those obtained manually by biologists.

TABLE I: Average accuracy rates and standard deviation (std)
Segmentation techniques accuracy std

1. Proposed Method 0.962 0.009

2. Conventional level set [18] [15] 0.938 0.0116

3. Rousson and Deriche’s [21] 0.951 0.0209

Figure 4 illustrates a test case comparing the segmentation

resulting from the proposed model with the ground-truth.

Figure 4(a) shows the original RGB image, while Figures 4(b),

4(c) and 4(d) depict the curve evolution in its initial, interme-

diate and final positions (after 1, 520 time iterations). Figure

4(e) presents the binary image of the resulting segmentation

and Figure 4(f) shows the GT image. The algae cells were

succesfully identified, as their overall shapes in the colony

were preserved. It is worth noting that the level set function

was placed away from the algae colony and correctly evolved

to the desired boundaries, confirming that the proposed model

is relatively insensitive to changes of initial conditions.

Figure 5 presents a difficult segmentation case where the

algae cells have distinctly varying intensities. The original

image is illustrated in Figure 5(a) and the subsequent Figures

5(b), 5(c) and 5(d) show the level set evolution from an initial

to the final position, after 1, 510 iterations. Figures 5(e) and

5(f) respectively, show the obtained segmentation and the GT

image. The level set surrounded correctly the algae cells due

to the appropriate representation of image regions as Gaussian

distributions, which captures the intensity patterns according

to the sampling procedure. This test case achieved accuracy

equal to 0.959.

In general, it was observed that the multivariate Gaussians

are effective statistical representations of the image regions.

Such models can capture the patterns and details of each

region, and the sampling procedure ensures that distinguishing

distributions are computed between them, yielding to a faster

evolution of the dynamic curve towards the desired image

regions. Unlike Rousson and Deriche’s model, the distribution

parameters in our model are computed a priori and remain

fixed along the level set function optimization, leading to faster

convergence and less sensitivity to initial conditions.

The proposed method also has limitations. One is that it

detects small particles which have intensity patterns similar

to those of the green algae. This problem is handled by

selecting only the larger regions obtained after convergence

of the dynamic curve and the binarization procedure, so that

regions associated with unwanted particles are discarded.

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Segmentation of algae colony with accuracy of 0.965:

(a) original RGB image; (b) initial φ(x, 0); (c) intermediary

state of φ; (d) final level set function after 1, 520 iterations;

(e) segmentation after thresholding φ; (f) ground-truth image.

Also, the method’s energy functional is non-convex due to

the optimization space of Heaviside functions, meaning that

infinite solutions are valid representations of a given optimal

Ω1. The practical implication is that the method is weakly

sensitive to initial conditions and local optimal solutions are

obtained by computing numerical solutions to the Euler-

Lagrange equations associated with gradient descent schemes.

VI. CONCLUSIONS

We have introduced a technique for segmenting green

algae images based on a level set approach combined with

Bayesian principles. The image regions, i.e., the algae cells

and the background, are described by multivariate Gaussian

distributions computed prior to the curve evolution process.

The key idea is to capture the intensity variation that may

arise in algae cells for an accurate segmentation.

The proposed method incorporates edge and region informa-

tion, since it is based on Rousson and Deriche’s functional and

incorporates an edge potential function to preserve boundaries

during the segmentation. Therefore, the dynamic curve evolves

from an initial position towards the algae cells, considering a

priori region properties, such as intensity variation and texture,

and edge information for shape preservation.

Experimental results have shown that the proposed method

achieves high segmentation accuracy when compared with

ground-truth segmentations provided by the biologists. More-

over, it also produced better segmentation accuracy rates than



(a) (b)

(c) (d)

(e) (f)

Fig. 5: Segmentation case with accuracy of 0.959: (a) original

RGB image; (b) initial φ(x, 0); (c) intermediary state of φ; (d)

final level set function after 1, 510 iterations; (e) segmentation

after thresholding final φ; (f) ground-truth image.

the conventional level set method and the original approach

by Rousson and Deriche.

Future work would be concerned with applying our method

to other biological image processing problems with similar

characteristics. Exploring alternative energy minimization ap-

proaches might also be a good direction for further research.
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