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Abstract—Due to the subjective nature of the segmentation
process, quantitative evaluation of image segmentation methods
is still a difficult task. Humans perceive image objects in different
ways. Consequently, human segmentations may come in different
levels of refinement, ie, under- and over-segmentations. Popular
segmentation error measures in the literature (Arbelaez and
OCE) are supervised methods (also called empirical discrepancy
methods), in which error is computed by comparing objects in
segmentations with a reference (ground-truth) image produced
by humans. Since reference images can be many, the key issue
for a segmentation error measure is to be consistent in the
presence of both under- and over-segmentation. In general, the
term consistency refers to the ability of the error measure to
be low, when comparing similar segmentations, or high, when
faced with different segmentations, while capturing under- or
over-segmentations. In this paper we propose a new object-based
empirical discrepancy error measure, called Adjustable Object-
based Measure (AOM). We introduce a penalty parameter which
gives the method the ability to be more (or less) responsive in the
presence of over-segmentation. Hence, we extend the notion of
consistency so as to include the application’s need in the process.
Some applications require segmentation to be extremely accurate,
hence under- or over-segmentation should be well penalised.
Others, do not. By changing the penalty parameter, AOM can
deliver more consistent results not only in reference to the under-
or over-segmentation issue alone, but also according to the nature
of the application. We compare our method with Arbelaez (used
as standard measure in the benchmark of Berkeley Segmentation
Image Dataset) and OCE. Our results show that AOM not only
is more consistent in the presence of over-segmentation, but is
also faster to compute. Unlike Arbelaez and OCE, AOM also
satisfies the metric axiom of symmetry.
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I. INTRODUCTION

The importance of image segmentation has long been ac-
knowledged for many image, video and computer vision ap-
plications. In spite of the great effort towards the development
of segmentation algorithms, which resulted in a huge number
of efficient methods, less attention has been paid to answer
the following questions: what is a correct segmentation? How
can we quantitatively evaluate segmentation (and segmentation
methods) given its subjective nature?

Evaluation methods for image segmentation can be catego-
rized as either subjective or objective [1]. Subjective evalu-
ation, conducted by human observers, generally depends on
their own standards for assessing the quality of segmentation
and may yield distinct results according to the order in which
segmentation is observed, which introduces an undesirable
bias factor to the evaluation process. Objective evaluation, in
its turn, can be divided into system-level and direct evaluation
methods. System-based methods are more common in systems
or applications that employ different segmentation methods.
The best segmentation method is the one that produces the
best empirical results for the application. Shin et al [2], for
example, evaluate edge-based methods in an object recognition
system. The major drawback of such approach is that is simply
tells that a segmentation method is more desirable for a certain
application, ie, it is an indirect evaluator.

On the other hand, direct evaluation methods analyse seg-
mentation methods independently. They can be further divided
into Analytical and Empirical evaluation methods. Analytical
methods [3], [4] take certain properties from the segmentation
algorithms, such as complexity, efficiency and/or processing
strategy (parallelism, sequentiality and iterations) to assess
segmentation quality. As such, this approach can only evaluate
the algorithmic and implementation properties of the segmen-
tation methods and are not effective at telling the difference
in performance of segmentation algorithms.

Empirical evaluation methods, in turn, can be categorized
into supervised or unsupervised methods, based on whether
the method requires a ground-truth (or gold standard) reference
image or not. The former are also referred to as empirical dis-
crepancy methods, while the latter are referred to as empirical
goodness methods [3]. Empirical goodness or unsupervised
methods have do not require the costly task of producing a
ground-truth image (normally a manual procedure performed
by a human expert) for comparison with the segmentation,
and employs the original image and the segmented data.
“Goodness” can be quantitatively expressed as a measure of
uniformity within regions, contrast between regions or even
shape of segmented regions. However, without a reference
image, goodness may not be objective [5]. Moreover, for



meaningful results, an appropriate model of “goodness” would
be required and should be embedded in the algorithm itself.

Conversely, empirical discrepancy or supervised methods
explicitly compute the error between the segmented image
and a reference (ground-truth) image. The greatest benefit
of empirical discrepancy over its counterparts is that the
error computed between a segmented image and a reference
ground-truth provides a finer resolution of evaluation, that is,
the magnitude of the error represents the level of agreement
and/or disagreement. Earlier discrepancy methods conducted
evaluation based on the number of mis-segmented pixels [6],
[7], position of mis-segmented pixels [8] and then extended to
consider the number of objects in the image [9], [10].

Despite the potential benefits of empirical discrepancy
methods, we cannot ignore certain issues while comparing
them against reference images. For most images, especially
natural scene ones, we cannot guarantee a unique manually-
segmented reference image. On the contrary, segmentations
of a single image produced by different people are likely to
be different as humans perceive scenes differently or perform
segmentation in different granularities. Therefore, comparisons
based on such references are somehow subjective.

For that reason, the three most import empirical discrep-
ancy evaluation measures, namely Martin[11], OCE[5] and
Arbelaez[12] introduce mechanisms to curb or penalise under-
and over-segmentation. They are all object-based discrepancy
measures and seek to quantify the consistency between seg-
mentations manually performed by different people of the
same image, who perceive the scene at different granularities
or scales.

However, they all exhibit some drawbacks. The Martin
measure [11], for instance, is not appropriate for applications
in which details of real object boundaries are important,
as it does not penalise over-segmentations [5]. As a result,
this measure will consider segmented images with different
degrees of granularities as being similar. The OCE error
measure [5], which is an extension of Martin measure, has
added a penalty factor to over-segmentation. First, it does
not satisfy the symmetry axiom. As a result, OCE requires
a double computation of the error for two segmented images
Is and Ig . The minimum value is then picked as the correct
measure (OCE(Is, Ig) = min(Eg,s, Es,g)). This increases
computation times substantially. Moreover, it is very sensitive
to slight variations in segmentations, over penalising seg-
mented images which look very similar. Arbelaez measure also
does not satisfy the symmetry axiom and no solution for that
is presented. Moreover, it does not penalise over-segmentation.

Contributions: We propose a new object-based empirical
discrepancy error measure, called Adjustable Object-based
Measure (AOM), which computes discrepancies (or similar-
ities) between a reference image and a segmented image at
the object level. Contributions include:
• Ability to adjust the penalty degree to compensate for the

inherent subjectiveness of supervised evaluation methods.
We introduce a parameter α which allows our method to
become tolerant to refinement in a flexible way.

• The error measure satisfies the metric axioms of identity
and symmetry. Exhaustive experimentation supports the
conjecture that it also satisfies the triangle inequality.

• It is 2.716 times faster to compute than Abelaez, which
is currently the most employed empirical discrepancy
method, and 104.781 times faster than OCE.

This paper is organised as follows. Section II describes
the error measures proposed by Martin, Polak and Arbelaez.
Section III describes the proposed AOM error measure. Ex-
perimental results are given in section IV. Conclusions and
future work are finally described in section V.

II. RELATED ERROR MEASURES

Three representative object-based empirical discrepancy er-
ror measures are presented in this section. The measure
proposed by Martin [11] sought to quantify the consistency
between segmentations with differing granularities and con-
sidered a fixed tolerance to refinement scheme. Polak [5]
devised a similar approach (OCE), seeking to overcome the
limitations found in Martin’s measure: the lack of penalty
for over- or under-segmentation. When, for example, an over-
segmented image happens to be a refinement of an under-
segmented image, Martin’s measure would assume the two
to be consistent, therefore, consider both to be similar. Fi-
nally, we describe Arbelaez method [12], which provides
more consistent results when compared with OCE. Currently,
Arbelaez’s is the measure employed in the evaluation of image
segmentation methods by the Computational Vision Group at
Berkeley University 1.

A. Martin error measure

Given two input segmentations S1 and S2, Martin error
measure produces a real-valued output in the range [0, 1],
where zero means no error and 1, maximum error. The main
feature of this measure is its tolerance to refinement, ie, if
one segment in S1 is a subset of another segment in S2, for
example, then a pixel belonging to both segments is located
in an area of refinement. Therefore, the local error should be
zero. In the absence of subset relationship, then the two areas
overlap inconsistently and the local error should be non-zero.

Let pi be a pixel belonging to segments of segmentations S1

and S2. Let \ denote set difference, |x| the cardinality of set
x and R(S, pi) the set of pixels corresponding to the region
in segmentation S which contains pixel pi. Martin defines a
local refinement error as:

E(S1, S2, pi) =
|R(S1, pi)\R(S2, pi)|

|R(S1, pi)|
(1)

It is clearly non symmetric and encodes a measure of
refinement in just one direction: E(S1, S2, Pi) is zero if S1

is a refinement of S2, but not vice versa. This local error
measure is extended to compute an error measure for the
entire image: Global Consistency Error (GCE) and Local
Consistency Error (LCE). The former forces all refinements to

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/



be in the same direction, while the latter allows refinements
in distinct directions, in different parts of the image:

GCE(S1, S2) =
1

n
min{

∑
i

E(S1, S2, pi),
∑
i

E(S2, S1, pi)}

(2)

LCE(S1, S2) =
1

n

∑
i

min{E(S1, S2, pi), E(S2, S1, pi)}

(3)
where n is the number of pixels in the image.

Clearly, GCE is stricter than LCE, as LCE ≤ GCE. These
error measures tolerate under- or over-segmentation (as a
consequence of their intended purpose for comparing human
segmentations), unlike the OCE error measure, which will be
presented below. To compensate for the non compliance to the
symmetry axiom, in practice, both measures are computed and
the one which yields the lowest value is selected.

B. OCE error measure

Polak et al.[5] proposed the Object-level Consistency Er-
ror (OCE) to compare two segmentations. Unlike Martin’s,
OCE penalises both over- and under-segmentation. Let Ig =
A1, A2, · · · , AM be a reference segmented image, where Aj
is the jth segment in Ig . Likewise, Is = B1, B2, · · · , BN is a
segmented image, where Bi is the ith segment in Is. Let |A|
be the cardinality of set A. OCE initially computes a partial
error measure as:

Eg,s(Ig, Is) =

M∑
j=1

[1−
N∑
i−1

|Aj ∩Bi|
|Aj ∪Bi|

×Wji]Wj ,

Wij =
δ(|Aj ∩Bi|)|Bi|∑N
k=1 δ(|Aj ∩Bk|)|Bk|

,

Wj =
|Aj |∑M
l=1 |Al|

(4)

where δ(x) is a function that returns 1, if the input is 0; or
returns 0, otherwise; and δ(x) = 1 − δ(x). OCE can be then
defined as follows:

OCE(Ig, Is) = min(Eg,s, Es,g) (5)

Despite the difference in notation, the terms R(S1, pi) (Eq.
1) and Aj (Eq. 4) are equivalent. However, the key difference
between OEC and Martin’s measures (GCE or LCE) lies on
the denominator of the error formula (Eq. 4) which employs
the union of the two segments (|Aj |

⋃
|Bi|), as opposed to one

of the segments alone (Eq. 1). Eq. 4 is based on the Jaccard
index (Eq. 6) which allows penalisation of both over- and
under-segmentations.

C. Alberlaez error measure

The Jaccard Index has also been used by Arbelaez [12] to
create another object-based error measure. Also known as the
overlap between two regions R and R′, the Jaccard Index can
be defined as:

O(R,R′) =
|R ∩R′|
|R ∪R′|

(6)

Arbelaez then defines the covering of a segmentation S by
a segmentation S′ as:

C(S′ → S) =
1

N

∑
R∈S
|R| · max

R′∈S′
O(R,R′) (7)

where N represents the number of pixels in the image.
The covering of any machine-generated segmentation S by

a set of reference segmentations {Gi} can be computed as the
average of the covering of S with each human segmentation
Gi. Like OCE error measure, Arbelaez measure does not
satisfy the symmetry axiom. As a result Arbelaez suggests
two quality region descriptors: the covering of S by {Gi} and
the covering of {Gi} by S.

III. PROPOSED AOM ERROR MEASURE

Let S = R1, R2, · · · , Rn and S′ = R′1, R
′
2, · · · , R′n′ be two

segmented images composed of n and n′ regions, respectively.
Ri and Rj are the ith and jth regions of S and S′, respectively.
An intersection matrix M of size n× n′ is defined as:

Mij = |Ri ∩R′j |. (8)

The error E between S and S′ is given by

E(S, S′) = 1− 1

N

min(n,n′)∑
k=1

max
k

(M), (9)

where N is the number of pixels in the image and maxk(M)
returns the k-th largest element of M . Recursive function max
is detailed in Algorithm 1.

Algorithm 1 Function max returns the largest intersections of
matrix M
Require: Intersection matrix M and an empty vector L.
Ensure: Largest intersections of matrix M .

1: Function Max(M , L)
2: if Size(L) = min(n, n′) then
3: return L
4: end if
5: l ← FindLargestElement(M )
6: L.PushBack(l)
7: M ← RemoveRowColum(M , l)
8: Max(M , L)
9: End Function Max

Notice that, at each step of the function, both row and
column, where the largest element lies, are removed (line 7
of Alg. 1), reducing the dimension of M . By doing so, we



guarantee that not only the largest intersection per object is
returned by function max, but also that intersections among
small objects are not ignored.

The penalty parameter α

Suppose S is a ground-truth or reference segmented image
and S′ is a computer-generated segmentation of the same
image. Ideally, for a correct segmentation, a region Ri ∈ S
should have a corresponding similar region R′i ∈ S′. In this
case, the error E would be 0, ie, an intersection area of 100%.
Over-segmentation occurs when the object Ri ∈ S has a
number s (s ≥ 2) of corresponding segments R′ ∈ S′. Our
penalty criterion seeks to find s and also determine the penalty
values for all the k largest intersections in M , as given by
function max (Alg. 1). The penalty is computed as:

pk =

{
1
αs
, if αs ≥ 1

1, otherwise
(10)

where α ∈ [0, 1] is given by the user. The parameter α dictates
the weight of over-segmentation by considering only a percent-
age of s. However, to avoid rewarding over-segmentation, the
penalty is computed only if αs ≥ 1. Finally, we can derive,
from Equation 9, a new error measure with an embedded
penalty factor:

Ep(S, S
′) = 1− 1

N

min(n,n′)∑
k=1

max
k

(M)penalty(k), (11)

where function penalty returns the corresponding over-
segmentation penalty values for all k largest intersections in
M . Implementation details are given in Algorithm 2.

AOM satisfies the following properties:
1) 0 ≤ E(S, S′) ≤ 1.
2) E(S, S′) = 0, if S = S′.
3) E(S, S′) = E(S′, S), since max(M) = max(MT )

We illustrate the use of our error measure by referring
to Figure 1. Figures 1(a) and 1(b) depict a reference
segmented image S and a machine-generated segmentation S′,
respectively. They are both 10 × 10 images, with a total 100
pixels each. The error value is computed as follows:

1) Create matrix M (Mij = |Ri ∩R′j |),

M =

(R′1 R′2 R′3 R′4
R1 80 0 0 0
R2 0 5 5 10

)
2) Compute the largest intersections in M (Algorithm 1).

Since min(n, n′) = 2,

max(M) = [80, 10]

3) Compute the error measure, by applying Equation 9,

E(S, S′) = 1− 80 + 10

100
= 0.1

Algorithm 2 Funtion Penalty for each largest intersection.
Require: Intersection matrix M and penalty parameter α
Ensure: Penalty value for each largest intersection.

1: Function Penalty(M , α)
2: if Columns(M ) > Rows(M ) then
3: return M ← Transpose(M )
4: end if
5: Zeros(L) {Create a vector of zeros}
6: for i = 1 to Rows(M ) do
7: for j = 1 to Columns(M ) do
8: if M(i, j) > 0 then
9: L(i) ← L(i) + α

10: end if
11: end for
12: if L(i) < 1 then
13: L(i) ← 1
14: end if
15: L(i) ← 1/L(i)
16: end for
17: return L
18: End Function Penalty

E(S, S′) = 0.1 means that S and S′ are very similar. How-
ever, object R2 ∈ S was over-segmented [R′2, R

′
3, R

′
4] ∈ S′,

and that is prone to penalty. Another error measure could be
computed as:

1) Find the penalty values for the two largest elements in
M , for α = 0.5 (Algorithm 2).

penalty(M) = [1, 0.666]

2) Compute the error, by applying Equation 11

Ep(S, S
′) = 1− 80 + 6.66

100
Ep(S, S

′) = 0.133

For α = 0.5, the error between S and S′ increases from 0.1
to 0.133, penalising the existing over-segmentation of object
R2 ∈ S, which corresponds to the second largest intersection
in M . Notice that the value changes from 10 to 6.66.

R1

R2

(a)

R′1

R′2 R′3

R′4

(b)

Fig. 1. Illustrating AOM error measure with synthetic images: (a) reference
segmented image S with n = 2; (b) machine-generated segmented image
S′, with n′ = 4 regions. Region sizes, in number of pixels: (a) |R1| = 80,
|R2| = 20; (b) |R′

1| = 80, |R′
2| = 5, |R′

3| = 5, |R′
4| = 10.



IV. EXPERIMENTS

We compare the proposed measure, AOM, with OCE and
Arbelaez error measures. Martin’s measure is not considered,
as it has been outperformed by OCE measure, as shown by
Polak [5]. The first experiment aims to show how the proposed
measure behaves in the presence of over-segmentation. By
using a set of synthetic over-segmented images, an expected
theoretical error output is deduced. Performance of Arbelaez
and OCE are also provided. The second experiment evaluates
AOM performance and behaviour, as the penalty parameter
changes. A set of over-segmentations originated from a nat-
ural scene image is employed. The third experiment shows
the AOM performance for similar segmentations and the
advantages over OCE and Arbelaez. Finally, we provide the
computational times for the three error measures.

All three error measures have been written in C++ language.
For the sake of fairness, the coding of all measures has been a
direct translation of the formulas proposed by the authors, as
described in this paper, with no optimization or sophisticated
data structures. The code is available for download 2. All
reference or ground-truth segmented images have been taken
from the Berkeley Database Segmentation Dataset (BDSD300)
[11].

A. Over-segmentation Behavior

To show the behaviour of our metric while increasing over-
segmentation, we created a set of synthetic images which
correspond to a series of recursive segmentations. These
images are illustrated in Figure 2. Given S0 (Fig. 2.a) as a
ground-truth single-region segmented image, we recursively
computed six successive segmentations (Fig. 2.b to 2.g), in
which each new region has half of the area of region that has
been split. From this setup, an expected theoretical error can
be expressed as:

E(Si) =

n−1∑
k=0

1

2k+1
(12)

where n is the number of objects in each Si segmented image
of Figure 2.

The plot of Figure 3 shows the error measures for different
number of segmentations, for all three metrics. As expected,
the error for segmentations S0 and S1 is 0.5 for all metrics,
as S1 has two identical regions. However, the three measures
behave differently as the number of segmentations increases
(S2 - S6). Since Arbelaez does not satisfy the axiom of
symmetry, it has been depicted by two curves. (OCE also
does not satisfy the same axiom, but the minimum of two
possible values is selected). Although OCE penalises over-
segmentation, it is not consistent with the increasing over-
segmentation from S2 to S6. The error values returned from
S2 to S6 are very similar, yielding almost a flat line. The same
behaviour applies to Arbelaez measure. On the other hand,
AOM reflects the penalty on over-segmentation more clearly,

2https://goo.gl/PkeeOP

(a) S0 (b) S1 (c) S2 (d) S3

(e) S4 (f) S5 (g) S6

Fig. 2. Synthetic images: (a) ground-truth segmentation; (b-g) six recursively
created segmentations.

Fig. 3. Behavior of error measures on over-segmentation: AOM (magenta);
OCE (red); Arbelaez (red and green) and theoretical error (blue). The proposed
measure is closer to the expected theoretical error. For this synthetic set of
segmentations, one of Arbelaez measures overlaps OCE, hence the same color
representation.

producing results closer to the expected theoretical values. In
this experiment, the average value α = 0.5 has been employed.
As the value of α increases, the AOM curve gets even closer
to the expected theoretical error. If the penalty parameter is
switched off (α = 0), over-segmentation is ignored, and AOM
curve overlaps Arbelaez green curve, ie, error = 0.5.

B. Varying the penalty parameter

We evaluate AOM performance and behaviour, as the
penalty parameter varies in the range [0, 1]. A natural scene
image (Fig 4.a) and its human over-segmented counterpart
with 208 regions (Fig 4.f) have been used. We removed object
by object from Fig. 4.f, yielding decreasing over-segmented
images with 193, 87, 45, 5, 4, 3 and 2 regions. Figures 4.b
to .c show the images for 2, 3, 4 and 5 regions, respectively.
Using the 2-region segmentation (background and snake) as
a reference image, we then compute the error against all 7
remaining over-segmented images for values of α in the range



[0, 1], with 0.1 increment. Figure 5 depicts all 7 curves, where
the blue curve at the bottom corresponds to the error for 2-
region × 3-region images and the black curve on the top,
the error for 2-region × 208-region images. A barely visible
yellow curve, overlapped by a black curve on the top, is also
part of the plot.

Consistent error measures across all segmentations, along
the entire range of α values, are captured by all 7 curves.
The error remains low for two very similar segmented images
(Figures 4.b and 4.c), even for large penalty values. On the
other hand, when segmented images differ considerably (the
top four curves, representing the error for 2-region image
against 45-, 87-, 193 and 208-region images) the error is high,
and remains constantly and equally high, for penalty values ≥
0.3. However, for lower penalties, the measure is still capable
of telling the difference among those segmentation.

(a) Original (b) 2 objects (c) 3 objects

(d) 4 objects (e) 5 objects (f) 208 objects

Fig. 4. Penalty parameter evaluation: (a) original image; (b-e) segmentations
with increasing levels of refinement; (f) original human segmentation.

Fig. 5. Segmentation errors for the 2-region segmented image (Fig. 4.b)
used as ground-truth, for different penalty values. From bottom to top: 3-,
4-, 5-, 45-, 87-, 193- and 208-region segmented images. Curves for 193- and
208-region segmentations are overlapped.

C. Similar segmentations

Given its subjective nature, human segmentation of natural
images tend to be very diverse mitigating the analysis of
metrics for over-segmented images. However, error measures
must also be consistent while evaluating similar images. In this
experiment, we examine AOM under this perspective. Figure
6 shows two similar human-segmented images, arbitrarily se-
lected. Intuitively, the error between them should be near zero,
as there is no apparent over-segmentation. Results obtained
for AOM (with penalty switched off, α = 0), Arbelaez and
OCE were 0.0134, 0.0231 and 0.407, respectively. Notice that
OCE excessively penalises over-segmentation, producing non-
consistent error values. However, for applications in which
minor errors should not be tolerated, we can adjust AOM
penalty factor to reflect this behaviour. For α = 0.5, for
example, AOM = 0.369.

(a) S1 (b) S2

Fig. 6. Two human-segmented images with subtle differences.

A more comprehensive example for the evaluation of similar
human-segmented images is given below. Figure 7 illustrates
an original image and 5 similar segmentations (S1, · · ·S5)
produced by 5 different people. Error is computed by com-
paring each segmentation with the 4 remaining ones, yielding
a symmetric matrix of errors. Results for AOM, Arbelaez and
OCE are plotted as histograms, as shown in Figure 8. Both
Arbelaez and AOM (with α = 0) exhibit consistent results,
with error values close to zero. According to OCE, images
are not so similar, with errors up to 0.3. The larger variance
in Arbelaez, compared with AOM measure, is credited to the
non-conformity of the former to the symmetry axiom.

(a) Original (b) S1 (c) S2

(d) S3 (e) S4 (f) S5

Fig. 7. Intra-class similarities: (a) original image; (b-f) 5 similar human-
segmented images produced by 5 different people



(a) AOM (b) Arbelaez (c) OCE

Fig. 8. Histograms of the 3 error measures for the 5 segmentations of Fig.
7.

Processing times

To compare the processing times for all three error mea-
sures, we randomly selected 2 segmentations of 15 images
from Berkeley dataset. The mean processing times are shown
in Table I. OAM is 2.777 times faster than Arbelaez and
115.906 times faster than OCE.

TABLE I
MEAN PROCESSING TIME OF THE THREE ERROR MEASURES IN SECONDS.

AOM Arbelaez OCE
0.164 0.456 19.03

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose a new object-based empirical
discrepancy error measure, named AOM, which provides a
parameter for controlling the granularity segmentation level.
For fairness, while comparing the proposed method with
existing techniques, the parameter has been switched off and
the experiments have shown that our method outperforms both
OCE and Arbelaez error measures. We have shown, in this
case, that AOM produces more consistent values not only for
similar images, but also for images with over-segmentations.
This statements holds for both synthetic and natural scenes
segmentations.

It has also been shown that, by altering the parameter α,
AOM consistently penalises over-segmentation. Hence, by pro-
viding means of controlling the desirable degree of refinement
in segmentation, this new error measure can be employed in
a broader range of applications, especially those in which the
importance of over-segmentation should be sometimes ignored
or highly considered.

One limitation of AOM is that it cannot be used to compare
images with different dimensions. It could be argued that the
introduction of a parameter renders the proposed method a
generalisation problem. We believe, however, it is a pro rather
than a con. As we have shown in the experiments, AOM
outperforms Arbelaez and OCE for α = 0. Therefore, in
most cases the penalty parameter could simply be switched
off. However, for applications with different tolerances to

refinement, α could be changed and AOM would still reflect
the expected error. This is not possible with Arbelaez or OCE.

As future work, we intend to demonstrate the triangle
inequality axiom for the proposed measure, as well as showing
its suitability for the analysis of segmentations with different
scales, and how the value of the α parameter changes in
relation to the image scale. We also intend to evaluate AOM
performance on clustering separability.
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