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Figure 1. Carving Experiment; top row: steps of physical carving in foam, middle row: the scanned point clouds aligned
to each other, the bottom row: the detected changes.

Abstract—3D shape design tends to be a long and tedious
process, with the design of a detailed 3D part usually requiring
multiple revisions. Fabricating physical prototypes using low
cost 3D fabrication technologies at intermediate stages of the
design process is now a common practice, which helps the
designer discover errors, and to incrementally refine the design.
Most often, implementing the required changes directly in the
computer model, within the 3D modeling software, is more
difficult and time consuming than modifying the physical model
directly using hand cutting, caving and sculpting tools, power
tools, or machine tools. When one of the two models is modified,
the changes need to be transferred to the other model, a
process we refer to as synchronization. Changes made to the
computer model can be transferred to the physical model by
3d printing a new physical model. In this paper, we address the
problem of synchronizing the computer model to changes made
in the physical model by 3D scanning the modified physical
model, automatically detecting the changes, and updating the
computer model. The proposed process comprises algorithms
to: 1) register each 3D scan with a previous 3D scan and/or
with the 3D representation used by the 3D modeling software;
2) detect the changes (subtractive and/or additive); and 3)
perform the changes on the 3D computer model.

Keywords-3D registration, 3D reverse engineering; 3D mod-
eling; tangible interface; human-computer interaction;

I. INTRODUCTION

It usually takes a designer several hours to create a
detailed 3D model using interactive 3D modeling software.
The process may be long and tedious. Learning how to use
a specific 3D modeling software package, with a specific
graphical user interface, requires a significant amount of
time. In addition, the designer needs to develop skills
to manipulate and modify 3D models based on their 2D
projections. As a result, many people leave this craft to
experts.

Also designing a 3D model is an iterative process that
could involve several steps, usually not well integrated with
each other. For example, a designer could start by drawing
2D sketches. Then he could create a rough physical model
using cardboard or some other material. Subsequently he
could create a rough 3D model on the computer. At any
time in the process he could use a rapid prototyping machine,



such as a low cost 3D printer, to fabricate a physical version
of the 3D model. The designer might continue working and
refining his 3D model, going back and forth between these
representations until he achieves his goal, and finishes the
design of his 3D model. The computer representation of the
resulting 3D model varies between different applications. It
could be a polygon mesh, for example in some animations
applications, or it could be a parameterized surface patch
CAD model, as used in mechanical and industrial applica-
tions.

In this paper we only focus on the process of synchro-
nizing the computer model to changes made to the physical
model. We introduce a new method that allows the designer
to move fluidly from the physical model (for example his
3D printed object, or his carved object) to the computer
model. In our proposed process the physical modifications
applied by the designer to the physical model are detected by
3D scanning the physical model and comparing the scan to
the computer model. Then the changes are reflected in the
computer model. The designer can apply further changes
either to the computer model or to the physical model.
Changes made to the computer model can be synchronized
to the physical model by 3D printing a new physical model,
see Figure 2.

For thousands of years, people have used various tools
to modify physical objects. Lots of hand and power tools
exist to perform operations such as cutting, sculpting, and
carving. In this paper we want to exploit this fact. Motivated
in part by the current Makers Movement [1] we argue that
modifying the physical model using tools is much more
intuitive for most designers than making changes to the
computer model using software, and most designers already
have the necessary skills to do so.

In addition, by recording the history of physical modifi-
cations, resulting from the sequence of 3D scans made after
each set of modification, our method allows the user to undo
changes, since he could go back to any previous step in the
process by 3D printing any of the various instances of the
computer model from the saved history.

Figure 2. Virtual-Physical 3D Modeling Cycle

II. RELATED WORK

A. 3D Modeling
Several approaches have been proposed to enhance the 3D

modeling process based on exploring different kinds of com-
puter interfaces. Jankowski [2] summarizes enhancements
proposed for traditional interfaces such as mouse and touch.
Other works are based on virtual reality, tangible physical
interfaces, or a combination of these two methods.

A virtual reality interface puts the user in a virtual or
augmented reality environment, and allows him to use his
hands to draw or modify the 3D models. Some studies use
smart glasses, such as the commercial Meta glasses, for
3D modeling. Keefe [3] uses the CAVE environment to
perform 3D painting. Weichel [4] and Verlinden [5] mix
a virtual reality interface with tangible modeling. Several
studies introduced new types of tangible interfaces for 3D
modeling.

For example Song [6] uses a special pen to draw an-
notations on physical objects which are interpreted as cut
and edit operations on the computer 3D model; Sheng [7]
uses a deformable physical prop and camera-based motion
tracking to perform virtual 3D sculpting; Shen [8] uses a
physical curve that could be hand shaped to get a rotational
symmetrical 3D model out of that curve; Huang [9] and
Anabuki [10] use physical folding of polygons to shape
the 3D model like an origami; Wibowo [11] uses a 3D
interface for clothing design; Willis [12] builds interactive
fabrication machines that allow hand-controlled 3D printing;
and Reed [13] uses sensors inside clay for 3D modeling.

Since tangible interfaces provide real-time tactile and
visual feedback to the user, allowing him to fine-tune the 3D
shape he is creating using his hands, tangible interfaces are
considered superior to virtual reality interfaces. The major
problems with most existing tangible interfaces are: that they
are not intuitive to use; most are very complex; hard to learn;
require additional device, and finally, sometimes they only
allow for the creation of limited types of 3D models.

The goal of this paper is to provide a natural and easy way,
yet accurate and fast, for the user to create 3D models using
his cutting, sculpting and carving tools, and a process based
on 3D scanning to reflect the changes in to the computer
model.

B. The Use of 3D Scanning
The creation of product prototypes is critical to many

industries. Huang [14] explains that, because of the con-
venience of using physical tools in the tangible modeling of
object, people often choose to create their prototypes in the
workshop rather than on the computer, using materials such
as clay or wood, as they do in the automobile design indus-
try, and then using a 3D scanner and reverse engineering to
create CAD model of their physical prototypes.

3D scanners generate point clouds as samples of the
surface geometry of 3D objects. These point clouds usually



Figure 3. Some 3D registration applications

contain gaps, are not accurate, and, depending on the tech-
nology and price of the 3D scanner, they may be noisy. To be
able to use them for 3D modeling, several processing steps
must be applied to convert them into 3D CAD models, as
described for example by Wang [15]: smoothing/denoising;
reconstructing triangular meshes; segmenting the meshes
into surfaces; reconstructing solid features from the surfaces;
and applying modeling operations to get the final recon-
structed geometric model.

These steps are called 3D reverse engineering, and there
are several commercial applications that help the user in
performing these steps. Because of the complexity of the
required reverse engineering steps, and depending on the
nature of the data, which may be noisy or contain gaps, this
process is usually hard and slow, produces many errors, and
requires manual intervention.

The benefit of our proposed method is that we only need
to reverse engineer the changes, not to repeat the whole
reverse engineering process for the whole model. Also, since
the changes are usually small, in many cases we don’t have
to follow the same complex reverse engineering steps to
reflect them to the virtual model, but much simpler and faster
operations are sufficient.

We believe that recent advances in 3D scanning tech-
nology will eventually allow for real-time capturing of
the smaller physical changes as the user apply them, thus
simplifying and speeding up our method.

C. 3D Registration

The main component of our method is the 3D registration
algorithm. Previous works on matching and aligning 3D
models are described in the survey by Tam [16].

3D registration algorithms have many applications, sum-
marized in Figure 3. The most common case, described
for example by Huang [17], is the problem of creating
complete unified 3D model from multiple partial 3D scans
of the same object, captured from different viewpoints.
Since these 3D scans describe parts of the same rigid
object, the operation is called rigid registration, because only
rigid body transformation are required to align them. As

described by Allen [18], if the object deforms or moves in
between 3D scans, then non-rigid registration needs to be
performed. Sometimes 3D registration is required to match
two different but similar objects. 3D registration is also
used for checking the quality of manufactured products in
industrial applications or building construction, as described
by Tang [19] and Kahn [20], or to detect to topographical
changes using LiDAR data, as described by Qin [21].

In all these applications, the 3D registration could be
rigid or non-rigid, and it could be performed in several
steps. For example, in the case of rigid registration, the
algorithm usually starts by finding a rough initial alignment
for the two models, called coarse registration, followed by
an iterative refinement fine registration step, to determine
the exact alignment.

Coarse registration is usually performed using constraints
such as affine ratio (Aiger [22]), PCA (Liu [23]), RANSAC
(Chen [24]); or by using features such as Spin Images
(Johnson [25]), curvature or moments (Gal [26]), Inte-
gral Descriptors (Pottmann [27]), FFT, DCT Coefficients
(Li [28]), or based on saliency (Digne [29]). Some other
studies used bounded search in 3D space for the best initial
alignment (Yang [30]).

The most common algorithm for performing fine 3D
registration is the Iterative Closest Point (ICP) introduced
by Besl [31], which has many variants, as summarized for
example by Rusinkiewicz [32]. In general the algorithm
alternates between establishing point to point correspon-
dences between the two models, and finding the optimal
alignment for those correspondences. The iterative process
continues until the total alignment error falls below a specific
threshold.

In the case of non-rigid registration, some algorithms are
based on segmenting the 3D models; some use skeletons
(Allen [18]) or bones and joints (Chang [33]) for articulated
movements; and others are based on using a common
template (Wand [34]). Yet other methods use registration in
a different domain, such as the spectral domain (Jain [35]).
We should also note that the same features mentioned
above could be used for non-rigid registration. Common



Figure 4. Method Steps: 1- Convert the 3D mesh or CAD model to point cloud. 2- Perform the principal component analysis for the two point clouds.
3- 3D registration. 4- Finding the difference. 5- Reflecting the changes to the 3D mesh or CAD model.

features used for non-rigid registration are the heat diffusion
signature features (Bronstein [36]).

III. THE METHOD

Our method starts with one point cloud corresponding to
the 3D scan of the modified physical model, and either:
1) a point cloud corresponding to a previous scan; 2) a
polygon mesh model; or 3) a CAD model. The steps are
summarized in Figure 4, with the most important one being
the 3D registration step. In this paper we focused on rigid
deformations that only require rigid registration. Our method
is based on the iterative closest point algorithm (ICP) [31],
[32].

We should notice that the point cloud is represented as a
list of points, with each point having three coordinates X, Y
and Z. A 3D polygon mesh is represented as a list of faces,
a list of edges, and a list of vertices. And a CAD model
is represented as a list of parametric NURBs surfaces, with
each surface having a number of control points in the U
and V directions (depending on the U and V degrees of the
surface), a knot vector and a number of boundary curves
(trim curves). So, to perform 3D registration between these
different representations we have two options: 1) to directly
optimize the distances from the points to the faces/surfaces;
or 2) convert the 3D mesh or CAD model to a point cloud,
and perform 3D registration between two point clouds. We
tried the two options. The problem with the first option is
that we need to find the distance between each point in the
point cloud, and each face/surface in the polygon mesh or
the CAD model, which may take very long time. Since we
need to do this for each of ICP step, the overall algorithm
may take a very long time to run, although the process could
be sped up by using space partitioning data structures. The
second option is much faster, but since sampling is involved,
there is data loss which may result in accumulated errors,
which could be problematic in some cases. Choosing the
sampling rate carefully could help minimize the problem.
Since in our experiments we did not observe much difference

in the results, we decided to base our implementation on the
second option, where the polygon mesh or the CAD model
is densely sampled into a point cloud.

A. Step1: Convert the polygon mesh or the CAD model to
point cloud

The algorithm generates a point cloud from a CAD model
or a polygon mesh by random sampling based on surface
area. It starts with a specific sampling rate specified by
the user, and then it performs a random uniform sampling
on the CAD model surfaces, to get a point cloud with
approximately uniform number of samples per unit area.

B. Step2: Perform principal component analysis on the two
point clouds

The iterative closest point algorithm (ICP) could get stuck
in a local minimum if it is started from a bad initial
alignment. Our method determines the initial alignment by
aligning the principal axes of the two models. To find the
principal axes we perform principal component analysis
using the singular value decomposition algorithm (SVD).

In fact we use multiple initial transformations. To generate
more initial alignments we just flip the direction of one
principal axis, calculate the transformation of the flipped
axes, and add the result to the list of initial alignments to try.
Then we start the ICP procedure using each of these initial
alignments, and we choose the one that gives the least error.

C. Step3: 3D registration

After we generate the list of initial alignments, we use
a variant of the iterative closest point (ICP) for fine 3D
registration. Algorithm 1 shows the 3D registration steps.
In summary, we first randomly select points from both point
clouds. Then for each initial alignment in the list, the ICP
loop repeats the following two steps until the total error
drops below a user specified threshold:



Figure 5. 3D printing experiment steps: 1- Draw the model in Autodesk inventor 2- Print the model using 3D printer 3- Using round file to expand the
hole in the physical object 4- Scan the object using 3D scanner 5- 3D registration between the scan point cloud and the CAD model 6- Find and visualize
the difference region (shown in yellow) 7- Reflect the changes by expanding the same region in the CAD model 8- Export the modified CAD model and
import it back to Autodesk Inventor

1) Using a kd-tree structure, find the closest point in the
second point cloud for each point in the first point
cloud.

2) Determine the best least-squares rigid body alignment
for the two point clouds, using for example the method
described by Arun [37], and align the two point clouds.

D. Step4: Finding the difference

After the two point clouds are correctly aligned, we update
the kd-trees. For each point in one of the point clouds,
we use the kd-tree to find its closest point in the other
point cloud. Then for each pair of point correspondences we
calculate the Euclidean distance between the two points. If
the distance between the two matching points is higher than
a specific threshold relative to the point cloud diameter, then
we label pair of points as belonging to the changes. Then
we combine these labeled pairs into regions, and color code
these regions to show them to the user.

E. Step5: Reflecting the changes to the CAD model

In this step we have the difference regions which com-
prise pairs of points, with the first point sampled from a
face/surface of the original polygon mesh or CAD model,
and the second point belonging to the point cloud which
resulted from 3D scanning the modified physical model.
Using these pairs we need to modify the original 3D polygon
mesh or 3D CAD model. We need to add, remove and/or
deform faces or surface patches from the computer model.

In the case of a polygon mesh, we follow these steps:
1) Find all faces from the original polygon mesh that

have sample points in the difference region, and re-
move them from the resulting polygon mesh. These

Algorithm 1 3D Registration using ICP
Require: point clouds sampling rate s

Calculate centroids c1 , c2 of input point clouds p1 , p2
p1 = p1− c1
p2 = p2− c2
p1 = RandomSampling(p1, s)
p2 = RandomSampling(p2, s)
Build kd-tree t2 for the second point cloud
Perform PCA, generate a list of initial alignments IAs
for each initial alignment A in IAs do

Apply alignment A on p1
while Step error below threshold do

Calculate correspondences nc using kd-tree t2
Calculate H =

∑nc
i=1 pi1 ∗ pi2 {pi1 and pi2: 3D

points of the correspondence }
Find SVD of H: H = UAV t

Calculate R = V U t

Calculate T = p2−Rp1
Apply alignment p1 =ApplyAlignment(R, T )
Calculate step error

end while
Calculate Total error E
if Total error E < minimum error Emin then

Set minimum error Emin = E
Set minimum transformation RTmin = (R, T )

end if
end for
return RTmin(R, T )



faces represent old surface patches which had been
removed in the physical model if the modification is
subtractive, or covered by the new material, if the
modification is additive.

2) Using the ball pivoting algorithm, as described by
Bernardini [38], we reconstruct a triangular mesh
patch for each difference region, using the second
point of each pair in the difference region. These are
the points coming from the 3D scanning point cloud,
which represent new faces or surface patches to be
added to the computer model.

3) Add the resulting triangular mesh patches to the orig-
inal polygon mesh model.

In the case of CAD models with parametric surface
patches we need to perform 3D reverse engineering of these
regions. Changes to the physical model might result in new
surface patches which need to be added to the model, or in
existing surface patches which need to be modified. In this
paper we focus on the simple case when the changes only
modify existing surface patches. For each surface we calcu-
late the histogram of distances from points to the surface.
If the histogram shows a high peak at a specific distance
(see Figure 6), it means that a large number of points are
displaced by that distance, we need to offset the surface by
that distance in the direction of points displacement.

Figure 6. Distances Histogram (from each point to the surface)

IV. EXPERIMENTS

A. 3D Printing Experiment

The goal of this experiment is to show a real life exam-
ple of our proposed method that shows the advantage of
reflecting the changes made to the physical model onto the
computer model. The experiment shows a common scenario
that would happen to most people who design their 3D
models and 3D print them. Because people design their
models on a virtual world they have no sense or feeling on
how they will look like actually when they are printed, even

with accurate measurements 3D printed parts sometimes
require manual modifications (cutting or filing) to satisfy
their goals, or to fit in their place. And since 3D printing
takes quite a long time, it’s not feasible to print the same
part multiple times. But people prefer to modify the printed
part to make it fit, and if they need to keep the modifications,
they have to do it again on the virtual CAD model. One of
the benefit of our method is that we help them save time by
automatically reflecting these change to the CAD model.

Also in this experiment we used simple changes (expand-
ing a cylindrical hole in the object) to show that we don’t
have to apply the complex reverse engineering steps in every
case, but with very simple operations we can detect and
reflect some types of changes.

In this experiment the goal is to design a holder for a
cylindrical laser pointer. After printing the part, we discover
that the laser pointer doesn’t fit into the hole. We use a round
file to physically expand the hole until the laser pointer fits in
place. Then we use our method to reflect the physical change
that we made using the round file, onto the original CAD
model. The experiment steps are summarized in Figure 5:

• We measured the laser pointer dimensions.
• We drew the model in Autodesk inventor, dimensioning

the hole to hold the laser pointer, and we exported the
model in ”.step” 3D solid format.

• We 3D printed the model using the ”Velleman K8200”
3D printer. Here we discovered that the laser pointer
didn’t fit into the printed part hole.

• Using a round file to expand the cylindrical hole in the
printed part until the laser pointer fits inside it.

• We scanned the modified object using a ”NextEngine”
3D scanner.

• We performed the proposed 3D registration procedure
to align the scanned point cloud to the CAD model.

• We detected and visualized the difference regions. Here
we notice that the difference regions contained the
actual changed region ”modified physically by hand”,
as well as some noisy regions resulting from the 3D
scanning process.

• We reflected the changes onto the CAD model. Here
for each surface patch we calculated the histogram of
distances from different points to that surface. Then
we checked each histogram to find whether there was
any high peak at a specific distance. In this experiment
we found a high peak of 2.3 mm, as shown in figure
Figure 6, in the cylindrical surface representing the
hole. So, we needed to expand the cylindrical hole
surface by adding 2.3 mm to its radius since the change
direction is pointing to the central axis for all points.

• Finally, we exported the modified CAD model in
”.step” 3D solid format and imported it back to Au-
todesk Inventor.



Figure 7. Carving Experiment Results: first row: scanned point clouds,
second row: point clouds before registration, third row: point clouds after
registration, fourth row: the difference region.

B. Foam Carving Experiment

The goal of this experiment was to test the 3D registra-
tion process, and the process of detecting changes through
a multi-step carving operation. Here we carved a Chess
knight piece in foam, as shown in Figure 1. We started by
following the carving guide. Then, using simple carving and
cutting tools we incrementally carved the foam object, and
after each carving step we used a MakerBot Digitizer 3D
scanner to capture a full 3D scan of the object. To test the
performance of the method on addition operations, we added
a horse handle to the object in the last step. In Figure 7 we
can visualize the registration results for all steps, and the
difference regions, whether they were added or removed.

V. RESULTS AND DISCUSSION

By only using a 3D scanner to capture the shape of the
modified physical object, we allow the user to use his skills
with cutting, sculpting and carving tools to create his 3D
models. At the same time we are allowing the user to get
natural tangible feedback of what he is doing, which in our
opinion is better than using augmented reality interfaces or
other tangible interfaces which are also limited to certain
applications.

The 3D printing experiment shows a possible useful direct
application of our method in the 3D printing field. It also
shows that we could use simple operations to reflect the
changes to the original model in some cases, while we
cannot avoid using reverse engineering operations to find
new surfaces in other cases.

The foam carving experiment shows that our 3D regis-
tration algorithm works well even if initial alignments of
the two models are in opposite direction (see the last two
steps in Figure 7). The method searches for the best initial
alignment by trying different alignment candidates produced
by the PCA analysis.

VI. CONCLUSION

The method described in this paper enables the user to
start with a physical object like a 3D printed object, and
physically modify it, with the system reflecting the mod-
ifications onto the computer 3D model automatically. The
user is not required to manually perform the modification
on the computer 3d model in the modeling software as
well. The proposed algorithm allows for the physical and
the computer model to stay synchronized independently of
whether changes are performed to the physical or to the
computer model.

In terms of future work, to complete the design process
loop, we need to work on transferring changes in the other
direction, from the computer model to the physical model.
We should notice here that despite their advantages and
flexibility, 3D printers and other digital fabrication machines
are far too slow for an interactive and fluid 3D shape design
process. The same could be said about 3D scanners. Also
the materials used for 3D printing normally are very hard to
modify. But with the right selection of the printing materials
and with more advances in 3D printing/scanning our method
will find more applications and become more practical.
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