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Abstract—Finding the nearest neighbors of a point is a highly
used operation in many graphics applications. Recently, the
neighborhood grid has been proposed as a new approach for
this task, focused on low-dimensional spaces. In 2D, for instance,
we would organize a set of points in a matrix in such a way that
their x and y coordinates are at the same time sorted along rows
and columns, respectively. Then, the problem of finding closest
points reduces to only examining the nearby elements around a
given element in the matrix. Based on this idea, we propose and
evaluate novel spatial sorting strategies for the bidimensional
case, providing significant performance and precision gains
over previous works. We also experimentally analyze different
scenarios, to establish the robustness of searching for nearest
neighbors. The experiments show that for many dense point
distributions, by using some of the devised algorithms, spatial
sorting beats more complex and current techniques, like k-d trees
and index sorting. Our main contribution is to show that spatial
sorting, albeit a still scarcely researched topic, can be turned into
a competitive approximate technique for the low-dimensional k-
NN problem, still being simple to implement, memory efficient,
robust on common cases, and highly parallelizable.

Keywords-spatial sorting; k-nearest neighbors; parallel algo-
rithms; data structures

I. INTRODUCTION

The nearest neighbor search (NNS) is an essential operation
in many scientific applications. More formally, given a set S
of points in a d-dimensional space and a query point P , we
want to find in S the closest point C to P , according to some
distance metric. The more useful, and more general case, is
to find a given number k of nearest neighbors (k-NN).

Our motivation is to run a massive 2D biological cell
simulation, where cells can have different sizes and perform
division at any time, as shown in Figure 1. Thus, both the NNS
performance and the memory usage are our primary concerns.
We also have the particular situation where the query point P
is always within the search set S, and we need to efficiently
gather its closest neighbors. This process is repeated for each
point within the domain, at each simulation step.

After having reviewed several low-dimensional NNS tech-
niques, we opted to evaluate the neighborhood grid approach,
recently described in [1]. The basic idea has several advantages
regarding our particular simulation problem when compared to
traditional techniques like specialized k-d trees or variations
of uniform grid arrangements.

Fig. 1. Snapshot of a biological cell simulation.

In this paper, we present a significant improvement of the
neighborhood grid applied to the 2D case, proposing new
and more efficient spatial sorting strategies while experimen-
tally measuring their performance and precision in distinct
scenarios. We also discuss how several extensions can be
made, in order to turn it into a competitive Approximate
Nearest Neighbor technique. We show that this new technique
is: general, behaving well for different point distributions;
memory efficient, having very low data structure overhead;
fast, by significantly reducing the number of comparisons
needed to achieve the sorted state; and dynamic, adapting to
a continually changing point set.

II. RELATED WORK

Li and Mukundan [2] presented a review on spatial par-
titioning methods with the focus on 2D crowd simulations,
evaluating four data structures: grid, quadtree, k-d tree, and
Bounding Interval Hierarchy (BIH). In their experiments, the
grid performed better than the other three techniques. Recent
k-d tree implementations make advances in GPU acceleration,
overcoming limitations due to conditional computations and
suboptimal memory accesses. Gieseke et al. [3] describes
a buffered approach, organizing queries by spatial locality.
Kofler et al. [4] use a specialized k-d tree to compute n-body
simulations, built inside the GPU memory in distinct phases.

Fluid simulations using Smoothed Particle Hydrodynamics
(SPH) methods are also dependent on k-NN, being typically
performed on uniform grids. Green [5] presents a parallel
linear sorting technique to group particles according to index
similarity. Further improvements are presented by Ihmsen et
al. [6], analyzing both spatial hashing and index sort. In
another approach, Connor and Kumar [7] sorts the points
along a linear sequence, following a Z-order, and placing them



inside a matrix. After that the k neighbors of a point are found
performing another local sort of O(k log k) complexity.

We note that approximate nearest neighbor search (ANNS)
approaches were developed as an alternative to exact Voronoi
diagrams. Of particular interest is the work of Har-Peled [8],
which proposes a space decomposition that approximates a
Voronoi diagram and has near linear size. Therefore it is
possible to have a trade-off between accuracy and complexity.

Although quite efficient, these solutions still have shortcom-
ings from our point of view, such as high memory overhead
caused by the auxiliary data structures. Furthermore, as the set
of cells from our biological simulation is continually growing,
because new cells are created independently at different loca-
tions, we must update the data structure dynamically. So it
is undesirable to reconstruct it at each time step. As a final
demand, we also sought for an approach that is simple to
parallelize on current GPUs.

III. SPATIAL SORTING

Although sorting is a classic topic in Computer Science, it
is almost always devoted to a single sequence of elements,
that is, a unidimensional list of comparable items. For clarity,
we will call this linear sorting. For example, we can locate
the k = 2 nearest neighbors for each real number of an array
by performing two operations. First, we just sort the numbers
in ascending order. Then, we can locate the nearest neighbors
for a given array element i by just examining the elements
with indices i−2, i−1, i+1, and i+2, as shown in Figure 2.
Naturally, we need to adjust the search when dealing with
elements near the array ends.
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Fig. 2. Finding nearest neighbors: unsorted sequence (top), sorted array
(middle) and searched elements (bottom). The query point is outlined in red,
the candidates are in blue, and the two nearest neighbors are marked in yellow.

The term spatial sorting is sometimes used to name the
process of ordering d-dimensional points along a space-filling
curve so that the result is still a linear sequence. We may
thus call it linear sorting along a curve. The more common
schemes are using either the Hilbert curve or the Morton order
curve (also known as Z-order) to establish a space traversal,
where points are placed into discrete bins, which are then
ordered when the curve is followed.

A better-suited approach of organizing points can be
achieved by doing a bidimensional ordering on a given set
of points, not restricted to a linear sequence, but arranged
into a regular rectangular grid. If we employ a matrix as
the underlying data structure, we can achieve better locality
after the spatial sorting is performed. This also can enhance
GPU memory access, as a 2D texture read operation can cache
nearby queries coherently in two dimensions.

Surprisingly, there are very few references in the literature
that cover the problem of organizing a matrix of points by
both x and y coordinates simultaneously. In fact, the only
references found are the ones that propose the main idea
of the neighborhood grid [9], [10], [1]. However, it should
be noted that the neighborhood grid approach described in
previous works does not try to achieve a stable sorted state.
Instead, only partial sorting is performed in each simulation
step, mostly because of performance concerns, which leads to
low precision when locating nearest neighbors. In this paper
we explore ways to efficiently keep the matrix always fully
sorted, which significantly improves the accuracy.

Fig. 3. Spatial sorting a matrix of random 2D points: before (left) and after
(right).

Fig. 4. Query point is
shown in red, candidates in
blue, and the two nearest
neighbors in yellow.

We call spatial sorting the estab-
lishment of a stable ordering of 2D
points into a matrix. An example of
spatial sorting is shown in Figure 3,
where x and y integer coordinates
are shown on the bottom left and
top right of each matrix element,
respectively. For easy visualization
the figures show color-coded points,
where the normalized x and y coor-
dinates are mapped to the red and
green color channels, respectively.
Also, to match the Cartesian plane,
we opted to start the row numbering
on the bottom of the matrix. Figure 4 depicts the candidate
test, where nearby elements around the query point are tested
to locate the two nearest neighbors.

We say that the matrix is spatially sorted when each element
has its x coordinate greater or equal than its immediate left
neighbor, and less or equal than its right neighbor. Also, the
same condition holds for the y coordinate. It should be clear
that achieving a sorted state is always possible, as shown in
Figure 3. But it is not readily obvious that, from a given set of
points, there are several possible sorted results, which are by
definition stable. Thus, the problem is not to find the spatially
sorted matrix, but one of the possible sorted states for it.

We have devised a simple algorithm to deterministically
achieve a spatially sorted state, given a random set of n 2D
points. For convenience, suppose n = s×s, s being an integer.
First, place all points into a continuous array of length n. Then,
perform a standard linear sort on this array, comparing only



the y coordinate, and thus creating an increasing sequence
(regarding only y). After that, the array should be viewed as a
row-major matrix, where the first s elements are in row 0. We
now have that all points in row 0 must have y coordinates less
or equal to the y coordinates of all points in row 1, and so on.
Therefore, if now we perform a linear sort on each row, sorting
by x coordinate, we will achieve the final, spatial ordering.
Provided we employ an optimal linear sort, like merge sort,
we have that the first step is O(n log n), whereas the second
step takes s×O(s log s), as we need to sort s rows, each one
with length s. Combining the two steps and replacing s by√
n, we find an overall time complexity of O(n log n).
Note that the problem of sorting s unrelated lists of s real

values has O(n log n) as its established lower bound. We can
build an associated spatial sorting problem by copying each
unsorted list to a matrix row, setting its x coordinates. We
can also define that for the i-th row, all its y coordinates will
be set to i. If the matrix is then spatially sorted using the
algorithm described earlier, the lists will be ordered. Therefore,
O(n log n) is also a lower bound for spatial sorting.

Although the previous algorithm (dubbed SIMPLE) reaches
a sorted state, such arrangement provides consistently low
precision when locating neighbors, as will be evaluated in
Section V-A. This can be visually observed by comparing
the color-coded sorted states reached by different sorting
algorithms, as shown in Figure 5. That is the reason we
explored iterative and more complex algorithms.

Fig. 5. Final sorted states for the same uniform point distribution, using
distinct algorithms: SIMPLE (left), SOE (center), and SSI (right).

A general approach to reach a spatially sorted state is built
on repeated linear sorts on the matrix, for several steps, as
shown in Algorithm 1. For each step, we have two passes: a
traditional linear sort is done on each row, and then another
pass, where a linear sort is performed on each column of the
matrix. After each step, the matrix will get more organized
until a stable spatially sorted state is reached.

Algorithm 1 General approach to spatial sorting
sorted← false
while ¬sorted do

for each row r do
run a linear sort on r, comparing x

for each column c do
run a linear sort on c, comparing y

if matrix is sorted then
sorted← true

A. Sorting strategies

Passos et al. [9] proposed a variation of the general ap-
proach, using as basis the odd-even linear sort algorithm.
Instead of running the complete odd-even linear sort for each
column and row, just one partial step was run. That is, for each
row, a first pass would be done comparing (and swapping, if
needed) adjacent pairs of values starting at odd matrix indices,
and then a second pass comparing adjacent pairs starting at
even indices. Then, two passes would be run for the columns.
Therefore, a single step of the spatial odd-even sort would have
four passes, as shown in Figure 6, where the (0, 0) element is
marked with a red dot.

Fig. 6. Four passes for a single step of spatial odd-even sort, from [9].

Such odd-even step is then repeated until a stable configura-
tion is achieved. The spatial odd-even sort (here named SOE)
is simple to code and easily parallelizable, as the comparisons
and exchanges within one pass can be all performed in parallel.
However, this algorithm is also slow and memory-intensive,
taking many steps to converge. In fact, the linear odd-even
sort algorithm has quadratic time complexity.

It is easy to establish the time complexity for SOE. Given
n = s × s, one step will perform four passes on the matrix
values. Each pass will need at most s/2 comparisons on each
row or column, where a complete pass will perform O(s2)
comparisons. A single step is still O(s2), and the number of
steps will depend on the sortedness of the initial matrix. For
the worst case, imagine that the point P with largest x and y
values is at the bottom-left element. While sorting, the points
with the larger coordinates move to the top and to the right,
so the final element of P will be in the top-right corner. As
a point moves at most one row or column at each step, it
will take s steps for P to reach its final destination. Thus, the
worst-case time complexity for SOE is O(s3) or O(n1.5).

The linear odd-even sort is adaptive, that is, each step takes
advantage of the previous partial ordering of data. Therefore,
several runs of the spatial odd-even step will gradually sort the
matrix. Such order is not achieved locally, like the recursion
step of a linear merge sort, for example, but globally. As
expected, just using efficient but non-adaptive linear sorting
algorithms (like quicksort or bitonic sort) for repeatedly or-
dering the rows and columns alternately would still take too
many comparisons, as observed in our experiments.

A better approach has to be adaptive, keeping the partial
ordering from the last step and improving upon it as new steps
are run. Also, we found that getting into a partially sorted state
fast and then running another spatial sorting algorithm would
converge much faster. Therefore, we employed a combination
of linear algorithms that are known to be adaptive: insertion
sort and Shell sort.



Linear insertion sort is known to have worst-case quadratic
time complexity, but it is optimal when the input is already
sorted, taking only m − 1 comparisons in an array of size
m. This is especially relevant as the matrix gets progressively
organized because some rows and columns will get fully sorted
before others, thus not changing on further steps.

Linear Shell sort has time complexity that depends on the
particular gap size employed. As it is based on linear insertion
sort, it is also adaptive. But Shell sort has another desirable
property: it has several passes, one for each gap size. When it
runs with larger gaps, it is possible to jump elements over
several positions within the linear sequence being ordered,
which makes the data get more quickly into the sorted state.
In fact, the last pass of Shell sort is always run with gap size
1, which means it is exactly the same as standard insertion
sort. As the array is mostly ordered, this final pass is typically
very efficient and ensures the final sequence is fully sorted.

Because linear Shell sort has several passes, we derived
a spatial version, interleaving for each gap size g a parallel
pass on each row, followed by another parallel pass on each
column. A standard linear Shell sort pass of gap g is performed
in each row or column. We observed best results when using
just one step of the spatial Shell sort to create a “rough”
ordering, which is then refined through iterative alternating
linear insertion sort steps, as indicated by Algorithm 2.

Algorithm 2 Spatial Shell + insertion sort (SSI)
for each gap in sequence G do

for each row r do
run a gapped insertion sort on r, comparing x

for each column c do
run a gapped insertion sort on c, comparing y

sorted← false
while ¬sorted do

for each row r do
run an insertion sort on r, comparing x

for each column c do
run an insertion sort on c, comparing y

if matrix is sorted then
sorted← true

This algorithm, dubbed SSI, arrived at a stable spatially
sorted state faster than any other tested variation of the general
approach (Algorithm 1). That is, it performed far better than
repeatedly running a standard linear sorting algorithm (like
quicksort) on each row and then on each column. For SSI,
we have tested with the gap sequence suggested by [11],
where G = {1750, 701, 301, 132, 57, 23, 10, 4, 1}. The partic-
ular complexity lower bound for this sequence has not yet
been established in the literature, but we did run extensive
experimental tests that confirm the efficiency of the SSI
algorithm in the average case, against other strategies.

In order to standardize the experimental tests, we employed
1, 000, 000 randomly generated points inside the [0, 1]× [0, 1]
domain, which were then sorted by using different algorithms

into a 1000 × 1000 matrix. For each sort, a fixed set of
100 distinct point distributions was used, measuring the CPU
running time of the sorting process in each case. The running
time was averaged, with the standard deviation shown as a red
error bar in the figure (with the amplitude equal to 2σ).

The test programs were implemented in C++ on a Ubuntu
12.04 Linux system. The test machine is powered by an Intel
Core i7-4500U CPU running at 1.80 GHz. Later on, parallel
tests were done in the same configuration, but using an NVidia
GeForce GT 750M GPU, with 384 CUDA cores, 2 Gb of
GDDR5 RAM and with CUDA runtime 7.0.
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Fig. 7. Average running time for a million points, for a uniform point
distribution.

Besides the SIMPLE, SOE and SSI algorithms, other vari-
ations were tested. Of interest, we will only mention SQI,
which performs one row pass followed by one column pass
of quicksort as the initial rough step, and then iterates until
convergence with alternated passes of insertion sort. SQI
performs marginally slower than SSI, but has the benefits of
being simpler to implement, by reusing available quicksort
routines. Furthermore, it is best fit for parallelization. As the
matrix gets sorted, the number of performed swaps decays
exponentially, where most of the last steps do very small
changes to the matrix. Thus, for both SSI and SQI, we skipped
ordering rows and columns that were not changed since the
previous step, which gave a performance improvement.

To estimate the complexity of the iterated algorithms, we
evaluated the mean number of comparisons for ten different
uniform point distributions. This process was repeated for
matrices with sizes ranging from 200 × 200 to 1200 × 1200.
Then the resulting series were non-linearly fitted. We found as
best fit a n1.497 curve for SOE, which matches the previously
estimated worst-case complexity of O(n1.5). We also found
a n1.126 curve for SQI, and a n1.088 curve for SSI, being
n the total number of points. Although empirical, these last
two curves hint at an average comparison complexity close to
O(n log n). Similar curves were also found for running time.

B. Point distributions

We have performed experimental tests in many synthetic 2D
point distributions, to assess how well the spatial sorting and
neighbor gathering algorithms performed in typical and not-so-
common cases. We have evaluated 12 different distributions.

The first set of distributions is shown in Figure 8, which con-
tains both continuous arrangements over the domain [0, 1] ×
[0, 1]. The uniform distribution generates random points with
x and y coordinates within the interval [0, 1]. The gradient dis-
tribution uniformly varies the density of points along the x = y



diagonal. The gaussian distribution generates coordinates with
mean 0.5 and standard deviation 0.2. The shuffle distribution
arranges points into a regular grid, and then randomly shuffles
them inside the matrix.

Figure 9 exemplifies some discrete distributions. The inside
distribution selects points uniformly scattered inside a circle
centered on (0.5, 0.5) with radius 0.5. The clusters distribution
generates five random and non-overlapping circles within the
domain, evenly picking points that lie inside one of these
circles, whereas the holes distribution picks points outside all
those circles. The streets distribution places all points evenly
distributed inside overlapping axis-aligned rectangles.

Another set of distributions is shown in Figure 10, which
illustrates some problematic cases for nearest neighbor queries.
The compact distribution places all points evenly distributed
in one fifth of the normalized domain, with y coordinates lim-
ited to the interval [0, 0.2]. The triangle distribution generates
points in half of the domain. The tilted distribution applies
random rotations to an arrangement identical to streets and
finally, the diagonal distribution places points arranged into a
thin rectangle tilted by 45 degrees.

Fig. 8. Color-coded spatially sorted matrices (top row) for some continuous
point distributions (bottom row), using SSI. The distributions are, from left
to right, respectively: uniform, gradient, gaussian, and shuffle.

Fig. 9. Color-coded spatially sorted matrices (top row) for some discrete
point distributions (bottom row), using SSI. The distributions are, from left
to right, respectively: inside, clusters, holes, and streets.

Figure 11 shows the average running time for sorting several
distributions with algorithms SQI (shown in blue) and SSI
(in orange), using 100 different random seeds each. The
SOE algorithm is not pictured as it performed in average
20 times slower than the other two. As we can see, most
of the distributions have a similar sorting performance, with
continuous distributions being faster to sort spatially. The

Fig. 10. Color-coded matrices (top row) for some unusual point distributions
(bottom row), using SSI. The distributions are, from left to right, respectively:
compact, triangle, tilted, and diagonal.
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Fig. 11. Average running time for different distributions: SQI (blue) and SSI
(orange).

exception is the diagonal distribution, which was found to
be the pathological case for the SSI algorithm.

C. Updating the matrix

If the points stored in the matrix change, like in a typical
simulation iteration, it is straightforward to return to the sorted
state by simply running a spatial sorting algorithm again.
Depending on the magnitude d of changes, it may be cheaper
to run a few steps of alternating insertion sort (dubbed SI),
as parts of the matrix could still be in ordered state. Table I
lists the update times for the SI and SSI algorithms, given the
number of points changed and their change intensity.

TABLE I
UPDATE TIME (MS) FOR TWO SPATIAL SORTING ALGORITHMS, GIVEN

PERCENT OF POINTS CHANGED AND MAGNITUDE OF CHANGE.

SI SSI
0.01 0.1 0.2 0.01 0.1 0.2

1% 32.98 52.63 64.71 65.72 91.32 103.08
2% 37.78 65.71 82.38 70.66 104.64 123.78
10% 57.55 108.38 137.34 88.95 149.63 170.15
25% 74.39 143.68 193.37 107.24 174.35 190.83
50% 92.89 176.07 237.81 121.98 189.90 206.36

IV. GENERAL DATA STRUCTURE

This section provides a brief discussion of the issues that
have to be handled when using spatial sorting as part of a
general data structure. Such operations are needed to support



the ongoing research into a massive biological cell simulation,
as we strive to keep the memory overhead at a minimum and
also handle the dynamic creation of cells by division. Previous
works ([9], [10], [1]) only cover the situation where the matrix
is filled with a constant number of points.

The typical matrix arrangement is a square, but its aspect
should match the point distribution. We thus need the matrix
dimensions to reflect an adequate rectangle placed on the
plane. The general approach is to find the ratio of the number
of columns and rows that better approximates the ratio of x
and y intervals in the domain. Otherwise, the precision when
searching for neighbors would be negatively affected.

It should be clear by now that all points must lie in a domain
which is topologically equivalent to a square. The case of
points on the entire surface of a sphere, for example, cannot
be handled by the current approach. In this case, even if the
point coordinates are stored as a pair of angles, the proximity
of points on the poles will not be correctly identified.

On most situations, it is not possible to exactly fit all
points into a rectangular matrix. Instead, at least an extra row
or column will be needed, with some elements left empty.
Empty elements are easy to handle, as they need to store the
maximum floating point value for both the x and y coordinates.
They are then compared with other points as usual by the
spatial sorting algorithms, which will make them accumulate
on both the topmost row and the rightmost column. When
testing candidates, such empty positions should be ignored.

Fig. 12. Matrix with empty
elements, shown in white.

We may allocate all matrix ele-
ments sequentially in memory, ei-
ther in row-major or column-major
order. A size extension would in-
crease the row or column count,
filling the newly “uncovered” posi-
tions (at the end of allocated mem-
ory) with empty elements, as in
Figure 12. After that, a full spatial
sort is needed, otherwise all points
would get shifted along the matrix
by the size change. This scheme pro-
vides the minimum memory usage.

After we created some empty elements inside the matrix,
there are several ways in which a new point can be inserted.
The simpler approach is just to select one of the available
empty elements and set its x and y coordinates to the new
point to be added. A good choice would be the leftmost empty
element or the bottommost one, as the new point will already
be with lower coordinate values than the empty one, which
will “slide” to the correct matrix element during the next sort.

Point removal is straightforward. We should mark as empty
the associated position, and after a sorting update is run, such
element will move to the top or to the right of the matrix.

Point location happens when the query point is not already
associated to a element inside the matrix, which is not the
recommended usage for this approach. Still, such operation
may be necessary, and therefore we need to employ a search
scheme that can locate the rough placement of the query point,

and then perform a local search using a Moore neighborhood.
As we only have independent ordering of rows and columns,

we cannot use a spatial bisecting algorithm like a k-d tree. We
also cannot walk on the matrix towards a minimum distance
regarding the query point (qx, qy), as the relative sorting
creates several local minima. Thus, we need to perform a more
extensive search to locate the center for a “good” candidate
neighborhood. We have experimented with a procedure com-
prised of three steps. First, for each row of the matrix, we
perform a binary search on the x coordinate, to locate the
element closer to qx. From the elements selected in each row,
we pick the point C that has the closest y coordinate to qy . As
this is not enough to accurately pinpoint the nearest neighbor
for all situations, we finalize by analyzing candidates inside a
Moore neighborhood centered at C. It can be shown that this
algorithm has time complexity O(

√
n log n).

V. RESULTS

In this section, we evaluate the sorting algorithms proposed
using both CPU and GPU implementations. We first access the
performance and precision of the neighbor gathering phase.
Then we compare the neighborhood matrix to state-of-the-art
k-d tree and index sort implementations.

A. Neighbor gathering

Once a full sort is established, we can select candidates to
test for nearest neighbors in the vicinity of a given matrix
element. We then perform neighbor gathering, where the
query point is already in the dataset. For a typical simulation
application, this phase tends to be more computationally
expensive than the sorting phase, because we need to test all
candidates and then perform the actual calculation between
near points, like collision of particles or interaction between
agents. Therefore, the neighborhood size and shape must be
chosen carefully. Several strategies are possible, and tradi-
tionally a Moore neighborhood is used to collect candidate
points. The choice of a small neighborhood may not find all
the correct nearest points on the plane, but would be more
efficient because fewer tests would be needed. On the other
hand, a large neighborhood could adversely impact on the
computing time as many candidates could turn into points
not near enough. In [1] is suggested an adaptive approach to
collect all required points, but in our work we opted to use the
fixed square Moore-like neighborhoods with m = {8, 24, 48,
80, 120} neighbors.

We have measured the running time of the neighbor gath-
ering phase in the typical situation that, for each point in
the dataset, all k nearest neighbors are collected. Then we
compare the found set of nearest points to a “ground truth”:
an exact k-d tree algorithm run on the same set of points. This
comparison makes possible to identify precisely the number of
misses for each combination of spatial sorting and candidate
neighborhood size. It is also helpful to compare the total time
taken, comprised of the setup time (spatial sorting or k-d tree
construction) added with the query time (neighbor gathering
or k-d tree point query).



We have also measured the precision of other approaches, to
compare their effectiveness against spatial sorting. We tested
the approximate k-d tree search from CGAL, which takes an
epsilon parameter specifying the error margin to be applied
when searching for nearest neighbors (we used 1.0 as it
achieves a similar precision to SOE). We also tested against
a partial sort, as done in [1], where a single spatial quicksort
step is run before the gathering phase.

For the following results the matrix size is again 1000 ×
1000, with 10 different runs for each algorithm, and unless
noted, with the uniform point distribution. In Figure 13 we
list the comparison of setup and query time, for a reference
exact k-d tree search and several other algorithms, when just
one nearest neighbor is located for an m-48 neighborhood.
Precision is shown as a percent of points that had a wrong
nearest neighbor in comparison with the exact results. We see
that although the setup time for the k-d tree is very small,
most of the time is spent on the tree traversal to locate nearest
points. On the other hand, for the SQI and SSI spatial sorts
the setup time is longer and the candidate search is very
efficient, thus reducing the overall time spent. Even though
an approximate search is also employed for the k-d tree, the
performance gains are small. Also shown are the results for
the SOE and SIMPLE algorithms, which have lower precision
than SQI and SSI. Finally, it is clear that just a partial sorting
pass is not enough to guarantee a useful precision; even with
an m-120 neighborhood the miss rate would be 90.29%.
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Fig. 13. Setup time (orange), query time (yellow) and precision for several
algorithms, with k = 1 and search neighborhood m-48.

TABLE II
TOTAL TIME (MS) AND PRECISION FOR SEVERAL SPATIAL SORTING

ALGORITHMS AND SEARCH NEIGHBORHOODS, WITH k = 1.

SOE SQI SSI
type time miss% time miss% time miss%
m-8 5305 25.2408 278 15.5910 277 14.8582
m-24 5340 11.9231 313 1.6832 314 1.2017
m-48 5401 7.1885 374 0.2652 374 0.0782
m-80 5478 4.5036 450 0.0867 454 0.0051

m-120 5563 2.8363 536 0.0442 546 0.0003

A comparison between spatial sorting algorithms is shown
in Table II, again for a uniform distribution. As noted before,
the algorithms generate quite different final sorted results,
which directly affect the search precision. The SSI algorithm is
consistently the one that gives the lower miss rate. In Figure 14
a brief comparison is made of the running time for SSI and

precision when using an m-48 neighborhood, against different
point distributions. We can see that the optimal cases are
the continuous distributions, even though most other discrete
situations have a miss rate around 2.5%. The only exception
is again the pathological diagonal case.
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Fig. 14. Setup time (orange), query time (yellow) and precision for several
distributions, with m-48 neighborhood and k = 1.

TABLE III
TOTAL TIME (MS) AND PRECISION, WHEN VARYING k.

k = 4 k = 8 k = 16
type time miss% time miss% time miss%
m-8 367 75.4719 400 99.8042 439 100.0000
m-24 521 11.7654 622 42.0174 741 94.9046
m-48 685 0.8329 848 4.6112 1061 28.9598
m-80 871 0.0492 1097 0.2938 1423 2.9639

m-120 1060 0.0032 1342 0.0173 1756 0.1991

In Table III, we briefly summarize results for varying k
while using the SSI on a uniform distribution with different
candidate neighborhoods. A hit is achieved only when there
is an exact match between the set points found. Thus, the
precision measure is very strict, based on the exact k-d tree
from CGAL. That said, even for a miss, most of the nearest
points are correctly located. For example, for k = 16 and
with a m-180 search neighborhood, for all 106 points, only
0.1991% of them got a wrong set of neighbors. However,
taking into account all 106k neighbors located, only 0.0141%
were different from the correct ones.

B. Comparison with other NNS algorithms

We have evaluated our proposed spatial sorting algorithms
against current NNS strategies, in both serial (single-threaded
CPU) and parallel (CUDA) configurations1. We briefly de-
scribe the results, showing that for dense and rather homo-
geneous distribution of points, spatial sorting can outperform
both k-d tree and index sorting.

We have built a 2048×2048 set of uniformly distributed 2D
points and averaged the setup time (to build the data structure),
the query time (to locate k = 10 nearest neighbors for all
given points), and the miss rate (strict, that is, considering

1Sample code is available at: http://github.com/mgmalheiros/spatial-sorting



TABLE IV
AVERAGE SETUP TIME, QUERY TIME, TOTAL TIME, AND MISS RATE FOR A
SET OF 222 UNIFORMLY DISTRIBUTED POINTS INSIDE A SQUARE DOMAIN,

WITH k = 10.

implementation setup (s) query (s) total (s) miss%
CGAL k-d tree 0.040 19.300 19.340 0

nanoflann k-d tree 1.598 10.974 12.572 0
SSI m-120 1.212 5.021 6.233 0.0336
SSI m-80 1.212 3.836 5.048 0.5807
SSI m-48 1.212 2.666 3.878 8.3461

CUDA m-120 0.739 0.677 1.418 0.5018
CUDA index sort 0.045 1.322 1.367 0

CUDA m-80 0.739 0.483 1.224 1.6144
CUDA m-48 0.739 0.314 1.053 10.6954

the full set of neighbors). The test hardware is the same as
described previously. We also computed the total time, which
includes both the setup and query time. The results are shown
in Table IV, ordered by average total time.

For the serial case, we tested against the Nanoflann k-d tree,
which is a highly-optimized C++ template for low-dimensional
NNS. In fact, it was the fastest 2D implementation we have
found. As a reference, we also kept the times given by the
CGAL k-d tree, as it can scale to higher dimensions.

The parallel implementation of spatial sorting used two
steps of bitonic sort, followed by several steps of spatial
insertion sort (SI). As spatial Shell sort cannot be efficiently
run in parallel because of its many alternating passes in x and
y directions, we opted to employ bitonic sort as a standard
sort. Thus, bitonic sort would be run in each row in parallel,
and then on each column, again in parallel.

As a reference parallel NNS, we used a finely-tuned imple-
mentation of index sort for a uniform grid, based on the CUDA
particles demo, which is described in [5]. In this case, we
adapted the source to provide a 2D NNS, using on a 256×256
grid of buckets. The timings are also shown in Table IV.

Although the setup time is high for spatial sorting, it starts
from an unordered matrix of points. Therefore, we can use
spatial sorting to update the matrix after positions change,
which can give significant gains for the repeated iterations of
a simulation. For example, given a change of magnitude 0.001
on 10% of the points distributed in a unit square [0, 1]× [0, 1],
the update sort would take only 0.231 s on average, against
0.739 s for the CUDA implementations, which would get a
significant edge against index sort, as the total time would
drop from 1.418 s to 0.908 s (for the m-120 case). By using
bitonic sort, we are in fact reaching a different sorted state than
SSI, which is equivalent to using quicksort for each row and
column, which reflects on the slight higher miss rates for the
parallel implementation. Finally, it should be noted that index
sort demands two complete matrices in the GPU memory, to
improve memory locality when performing the query phase.

VI. CONCLUSION

We have shown that the use of spatial sorting algorithms can
provide an efficient yet simple to implement technique for 2D
approximate nearest neighbor search. In particular, neighbor
gathering in dense arrangements of points seems to be the
best scenario.

We can highlight our major contributions as the proposal
of new spatial sorting algorithms and the establishment of a
lower bound for its time complexity. We discussed how to con-
struct a general data structure, describing how to dynamically
handle the insertion and removal of points, besides the point
location problem. We then have evaluated the performance and
accuracy of this approach in many different and representative
scenarios. We also showed that the overall results are compet-
itive with current NNS algorithms like k-d tree or index sort
based on uniform grids.

Although we did not address 3D spatial sorting in this
paper, its extension and usefulness is straightforward, having
achieved a precision similar to the 2D case on other tests
we made. However, it remains to be evaluated in higher-
dimensional situations.

As future work, we plan to assess possible optimizations
to the GPU implementation. Another venue for research is
the design of an actual spatial sorting network which could be
optimal in parallel architectures. We also would like to explore
this approach applied to other traditional NNS problems in
Computer Graphics, like global illumination. And there is also
need to evaluate how to map it to other topologies (like points
on the surface of a sphere).
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