
Streamline-based topological graph construction
with application to self-animated images

Renata Nascimento, Thomas Lewiner

Department of Mathematics
Pontifı́cia Universidade Católica do Rio de Janeiro

Rio de Janeiro, Brazil
zeus.mat.puc-rio.br/∼{renata,tomlew}

Fig. 1. The topological graph of a vector field is built from a set of its streamlines (left) by grouping streamlines with similar behavior. This partition
captures the global behavior of the vector field (middle). This information can then be used directly to improve visualization techniques using streamlines,
such as optimizing self-animated images generation (right).

Abstract—Vector field analysis and visualization is a funda-
mental tool in science and engineering applications, raising the
need for robust methods to capture and represent the global
vector field behavior. One such representation, the topological
graph, partitions the domain into regions where the flow of the
vector field is homogeneous. This work introduces a topological
graph construction based on streamlines. It is guaranteed to
produce a coherent result even when some singularities are not
detected. This work also details an application of topological
graphs to improve the generation of self-animated images. In
this application, the streamline-based approach carries almost no
overhead, since self-animated images already rely on streamlines,
but leads to a threefold speed-up of the core processing.

Keywords-Vector Field ; Vector Field Topology ; Visualization
; Streamline ; Topological Graph ; Segmentation ; Topological
Method ; Self-Animated Image ;

I. INTRODUCTION

Vector field analysis and visualization became a fundamen-
tal tool in science and engineering, raising interest not only
from the visualization community [1], but also from many
applications as fluid mechanics [2] or medicine [3]. While
understanding the global dynamics of a complex vector field
remains a challenge, in particular for turbulent flows, there has
been significant improvements on the visualization of vector
fields, for example using glyphs [4], streamlines [5,6,7,8,9],
or illustrative images [10,11,12].

Most of those advances heavily rely on a better under-
standing and more robust computing of the vector field
topology [13,14]. This topology splits into the vector field’s
singularities and the behavior in-between them, which is es-
sentially tubular, i.e. locally equivalent to a constant field [15].
Thus, a simple way to capture the field behavior consists in
partitioning the domain into regions of tubular flow (Fig. 1).
This segmentation is called the topological graph of the
vector field [16]. This work introduces a construction of the
topological graph on top of a set of streamlines. Depending
on the density of streamlines used, our construction may not
be exact, but it is guaranteed to be coherent, i.e. it builds the
topological graph of some simplified version of the field. This
streamline-based method can be benefited from the advances
in streamline generation [8,9].

Moreover the topological information extracted with this
strategy is directly useable to streamline-based applications.
This work explores one example of such use, integrating the
streamline-based topological graph construction to accelerate
the generation of self-animated image [12]. This visualization
technique uses optical illusions to create a movement effect
that follows a vector field (Fig. 1(right)). However, it relies on
a slow brute force optimization. For this application, the use
of the topological graph speeds up the original optimization
by a factor above 3, almost without overhead since the self-
animated image generation already relies on streamlines.

http://zeus.mat.puc-rio.br

II. RELATED WORK

In this section we review some work related to streamline
generation, vector field topology visualization and self-image
images. We refer to the book of Hansen and Johnson [1] for
a greater review of vector field visualization.

Streamlines placement: The global behavior of a vector
field is described by its flow and the associated stream-
lines. The efficiency of vector field analysis and visualization
through streamlines highly depends on their density and place-
ment: too many streamlines generate clutter and redundant
analysis, while too few may lead to a incomplete representa-
tion. Turk and Banks [5] pioneered this area by progressively
placing streamlines to evenly distribute them. This method was
later improved using a single pass [6], to favor long [7] or
more uniform [8] streamlines. The present work can use any
streamline placement method and can benefits from further
improvements in that area.

Topological methods: Another way to analyze the vector
field relies on topological methods to classify and localize
the different flow behaviors, in particular at the singular
points [17]. The dynamic in-between singular points can be
segmented into regions of tubular flow. Tricoche [16] proposed
to represent this segmentation through the topological graph,
computed from a few specific streamlines. Such methods can
be extended to produce simplified representations that capture
the more persistent behaviors [13]. The topological informa-
tion can also be used to assist the user for understanding [4] or
smoothing [14] the vector field. The computations of topolog-
ical information, in particular the topological graph may suffer
from numerical imprecision [16], motivating error-controlled
streamline integrators [9]. This work proposes a topological
graph construction based on streamlines that always generate
a coherent result, even if the streamline set is too sparse to
capture all the singularities.

Self-animated images: Wei [11] proposed the use of
optical illusion to visualize vector fields. The perceptual mo-
tion is caused by an asymmetric pattern of repeated colors.
Chi et al. [12] extended this approach by using the pattern
along the streamlines, optimizing the pattern placement. As
an application of this work, the streamline-based topological
graph is exploited to speed up the generation of self-animated
images, accelerating its core optimization by a factor above 3.

III. CONTINUOUS VECTOR FIELD TOPOLOGY

This section reviews the basic concepts of vector field
topology. We refer the reader to the books of Andronov [18]
and Hirsch and Smale [15] for a complete discussion, and
to the work of Tricoche [16] for the definition of topological
graph.

A. Vector field, flow and streamline

Definition 1 (Vector field). A vector field v in a planar domain
D ∈ R2 is a function that maps each point x = (x, y) ∈ D to
a bi-dimensional vector v (x) = (vx (x, y) , vy (x, y)) ∈ R2.

A vector field is usually understood as a steady velocity
field, where particles are advected by the flow [18].

Definition 2 (Flow). The flow φ : U ⊂ R2 × R → R2

associated to a vector field v is defined for all time t ∈ R
by the following differential equation.

∂

∂t
φ (x, t) |t=τ = v (φ (x, τ)) .

The flow maps the position x of a particle to its position
after being advected during a given period of time t. Varying
time t, we obtain the trajectory of the particle, referred as the
streamline passing through x.

Definition 3 (Streamline). The streamline sl(x), passing
through x with v (x) 6= 0, is defined as:

sl(x) =
∞⋃

t=−∞
φ(x, t) .

If the vector field vanishes at x0, i.e.
∂

∂t
φ(x0, t) = v(x0) = 0,

then sl(x0) = {x0}.

B. Singular point

Definition 4 (Singular point). A point x0 ∈ D is called
singular for v if v vanishes at x, i.e. v(x0) = (0, 0).

A streamline can converge when t → ±∞, in which case
its endpoint is a singular point. Since streamlines are integral
lines of the flow differential equation (Def. 2), they do not
intersect except at singular points [18].

Assuming that the vector field v is differentiable, Hartman-
Grobman theorem [15] partially classifies the local behavior
around a singular point x0 from the eigenvalues of the Jacobian
matrix of v at x0:

Jv(x0) =

[
∂
∂xv

x(x0)
∂
∂y v

x(x0)
∂
∂xv

y(x0) ∂
∂y v

y(x0)

]
.

Throughout this work, we will consider that the vector field
is well approximated by its Jacobian at the singular points,
i.e. the real parts of its eigenvalues does not vanish. We will
also not consider closed streamlines. For the bi-dimensional
case, this linear classification of singular points is illustrated
in Fig. 2.

C. Separatrix, topological graph

In-between singular points, the flow is essentially tubu-
lar [15], where adjacent streamlines generally start from the
same source and end at the same sink. This constant behavior
changes at the separatrices, where the source or the sink
suddenly changes for a saddle.

Definition 5 (Separatrix). A separatrix is a streamline that
starts or end at a saddle x0. At the singular point x0, the
separatrix is tangent to an eigenvector of Jv(x0).

When the vector field is defined in the whole plane, its
global behavior can be summarized in its topological graph.

Definition 6 (Topological graph). The topological graph of a
vector field v is a graph whose nodes are the singular points
of v and whose arcs are its separatrices.

(a) R1, R2 < 0 and
I1=I2=0: sink.

(b) R1>0, R2<0 and
I1=I2=0: saddle.

(c) R1, R2 > 0 and
I1=I2=0: source.

(d) R1, R2 < 0 and
I1, I2 6=0: spiral sink.

(e) R1, R2 > 0 and
I1,I2 6=0: spiral source.

Fig. 2. Singularities classification following Hartman-Grobman theorem,
where (R1 + i I1) and (R2 + i I2) are the complex eigenvalues of Jv(x0).

In particular, without closed streamline or non-linear sin-
gularities, the topological graph arcs bound regions with two
saddles, a source and a sink. We will refer to this property as
the coherence of the topological graph.

boundary saddle

boundary saddle

boundary sinksource

sink

bo
un

da
ry

 so
ur

ce

Fig. 3. Topological graph of a bounded domain D: the boundary of D is
split into boundary sources, sinks and saddles.

The definition of a topological graph for bounded domains
is slightly more delicate, since some streamlines are cut by
the boundary. In this case, Tricoche [16] proposed to add
extra nodes to the topological graph for the endpoints of the
streamlines cut by the boundary. If two adjacent streamlines
cut the boundary in the same manner (pointing in- or outwards,
or being tangent), their nodes are merged, as illustrated in
Fig. 3. The merged extra nodes then correspond to segments
of the boundary of D, and are called boundary source when
the adjacent streamlines point out of D, boundary sink when
they point to the inside of D and boundary saddle when a
streamline is tangent to the boundary of D. This construction
respects the definition of coherence in the case of bounded
domain.

For a bounded domain, the topological graph also induces
a decomposition of the domain into regions of equivalent
streamlines, bounded by separatrices and the domain bound-
ary. Throughout this work we will refer to the topological
graph as this domain decomposition, since it contains more
information on the boundary of the domain than the graph.

IV. TOPOLOGICAL GRAPH CONSTRUCTION FROM
STREAMLINES CLUSTERING

Tricoche [16] proposed to construct the topological graph
by first computing all the singular points. The separatrices are
obtained by integrating the flow equation starting tangent to
every saddle x0 in the direction of the eigenvectors of Jv(x0),
as in Def. 5.

Although those elements are topologically stable, they may
be hard to compute numerically. In particular, detecting all
singularities of an analytic field may require infinite precision.
If a saddle is not detected, and its separatrices missing, then
the topological graph may become incoherent.

In this work, we propose to build on the existing work
on streamlines generation to construct the topological graph.
The streamlines are clustered in order to obtain the same
decomposition of the domain as the topological graph. On the
one hand, the result will depend on the streamline generation
method, in particular on the generated streamline density. On
the other hand, the topological graph is always coherent, even
if some singular points are not detected.

The streamline clustering is straightforward for unbounded
domains. For bounded domains, we propose to progressively
partition the boundary, increasing the complexity of the cap-
tured interactions between boundary singularities, as follows.

Step 0: Streamline extensions. We first generate a set of
streamlines. Most vector field visualization methods try to
capture the complexity of a given vector field, so we can
use any streamline placement and generation technique. In
particular, they tend to approximate the separatrices, which
helps our generation of the topological graph, although it is
not necessary. Usually, those methods do not fully integrate
the streamlines to avoid clutter, but here we extend those
streamlines until we reach a singular point, the boundary, or
eventually loop. Although we do not display those extensions,
we use it to assign to each streamline its start and end, those
being singular point or boundary.

1

2

Fig. 4. Step 1: segmentation of the streamlines considering the boundary as
a single singularity. The streamlines are segmented into three groups: orange,
purple, and blue.

Step 1: Boundary as a single singularity. We first create
a single node for the boundary and a node for every source
and sink. We group the streamlines with the same starting
and ending node. For simple examples, this already gives
the correct domain partition, as in Fig. 3, with three groups
of similar streamlines: source 2 to sink 1, source 2 to the
boundary and boundary to sink 1.

Step 2: Boundary subdivision into connected components.
Among the streamlines crossing the boundary, the previous
step distinguishes those originating or ending at different
singularities (Fig. 5). However, the regions delimited by the
topological graph are simply connected. Therefore, the inter-
section of a group of streamlines with the boundary should be
a (connected) segment. To ensure this property, each group is
subdivided along the connected components of the boundary.
For example in Fig. 6, the streamlines of Group 1 are split
into Groups 1 and 4 depending on whether they cross the
boundary through the top and sides of the domain (Group 1)
or through the bottom of the domain (Group 4). This step is
efficiently performed by first storing at the boundary pixels
which streamlines are crossing, together with its other end-
node (that may be a boundary segment). Then we walk along
the boundary and split the group of streamlines each time the
other end-node changes.

1

2 3

4
1

2 3

Fig. 6. Step 2: the streamlines of Group 1 (left) all start at the same singularity
and all cross the boundary. However, the intersection of Group 1 and the
boundary is disconnected, and new groups (here Groups 1 and 4) are created
for each connected component (right).

Step 3: Boundary to boundary streamlines. After Step 2,
adjacent streamlines crossing the boundary at their beginning
and end belong to the same group. However, a separatrix may
exist between them, so that they should belong to different
groups (Fig. 5). We prefer to avoid marking the streamlines
crossing the boundary as entering or going out of the domain,
which is subject to numerical instabilities near boundary
saddles. Therefore, we walk again (or simultaneously with
Step 2) along the boundary, queue each new streamline we
cross and pop it the second time it is crossed. Since the
streamline group we would like to refine cross the boundary
twice, and since those streamlines do not intersect inside the
boundary, the queue will necessarily pop a whole group before
entering the next one. We thus create a new group each time
the queue size passes a minimum. As a comparison, Fig. 5

shows our construction and the topological graph computed
from the separatrices, following Tricoche’s approach [13].

Guarantees. A generated streamline may cross the bound-
ary zero, one or two times. Step 1 guarantees at least the
classification for streamlines that do not cross the boundary.
Step 2 guarantees the classification of streamlines crossing the
boundary once, and may correctly classify the boundary-to-
boundary streamlines. Step 3 guarantees the classification of
the latter, grouping streamlines in a coherent manner. Finally,
if all the singularities are detected and if enough streamlines
are generated, the groups of streamlines correspond to the
decomposition of the domain induced by the topological graph.

V. A SIMPLE IMPLEMENTATION

In order to show the feasibility of the topological graph
computation proposed in the previous section, we describe
here a very simple implementation for vector fields sampled
on regular bi-dimensional grids with bilinear interpolation and
equally-spaced streamlines [6].

In that case, vector values associated to points (xi, yj) of
a regular grid is denoted vij = (vxij , v

y
ij) = v(xi, yj). The

bilinear interpolation bij returns the value inside a grid cell.
Up to a translation of vector (−xi,−yj) and a scaling of

1
xi+1−xi

along the x axis and of 1
yi+1−yi along the y axis,

we can assume that coordinates x and y both vary from 0 to 1
inside grid cell (i, j) = (0, 0), which simplifies the expression
for b:

b00 : [0, 1]
2 → R2,

b00(x, y) = (1− x)(1− y)·v00 + x(1− y)·v10

+(1− x) y ·v01 + x y ·v11 .

The singularities can be detected based on the bilinear
interpolation based on a direct solution of v(x, y) = 0, the
winding number or noise-tolerant methods [14].

For example, the first option is equivalent to solving system
b00(x, y) = (0, 0), which is equivalent to finding the roots of
the polynomial in y:

(−vx01 v
y
00 + vx01 v

y
10 + vx11 v

y
00 − vx11 v

y
10+

+vx00 v
y
01 − vx00 v

y
11 − vx10 v

y
01 + vx10 v

y
11) · y2

+ (2 vx01 v
y
00 − 2 vx00 v

y
01 − vx11 v

y
00−

−vx01 v
y
10 + vx10 v

y
01 + vx00 v

y
11) · y

+ vx00 v
y
01 − vx01 v

y
00 .

For each root y, the associated coordinate x value is:

x =
(vy00 − v

y
01) · y − v

y
00

(vy00 − v
y
10 − v

y
01 + vy11) · y − v

y
00 + vy10

.

If both the root y and the associated x are inside [0, 1], there
is a singular point in the cell at (x, y). The singularity type is
computed from the eigenvalues of the Jacobian according to
Sec. III-B.

We use one of the first and most simple streamline gener-
ation algorithm due to Jobard and Lefer [6], which produces
evenly-spaced streamlines. Starting from a random seed, a

42

3
1

10
56

98
7

1
2

3

4

567 8 9 10

Fig. 5. Three steps of the topological graph refinement (left), matching the one generated from the separatrices [13] (right). Observe that at Step 3 (middle
left to middle right), adjacent boundary to boundary streamlines may be separated by a separatrix (here at the right side of the domain).

streamline is integrated, leaving seeds on both sides at a fixed
distance d and filling an occupation grid of width d

2 . From
those seeds, streamlines are integrated in the same fashion, but
the integration stops when the streamline enters the occupied
cells of the grid. We use a Runge-Kutta scheme of fourth-order
with the bilinear interpolation for the streamline integration.

In order to capture the topological graph even with a sparse
set of streamlines (i.e. a large value of d), we put seeds near
the saddles, in the direction given by the eigenvectors of the
Jacobian matrix at the saddle point. This is not enough to
guarantee the generation of all separatrices as discussed earlier,
but even without all of them, the topological graph will be
coherent.

VI. APPLICATION TO SELF ANIMATED IMAGES

In this section we propose a direct application of our
streamline-based topological graph construction to improve
the generation of self-animated images. Although the original
work used a refined streamline placement [7], we generate all
the results using the method described in the previous section,
in order to maintain this paper self-contained.

 TYPE I TYPE IIa TYPE IIb TYPE III

Fig. 7. Types of Fraser-Wilcox illusion (extracted from [12]).

A. Self-animated images from streamlines

Chi et al. [12] generated self-animated images using opti-
mized Fraser-Wilcox optical illusions [19]. Such illusions rely
on Repeated Asymmetric Patterns RAP [20], which causes a
motion impression to most observers. Chi et al. apply the type
IIa pattern (Fig. 7) to render the streamlines, which creates an
illusory motion following the vector field.

To do so, each streamline is divided into segments of equal
length SegLen. The segments are colored according to a Type

II optimized Fraser-Wilcox illusion respecting the 1:2:1:2 rule.
In our results, we use such colored RAP: {Black-Blue-Blue-
White-Yellow-Yellow}. However, the illusory motion effect of
the RAP is affected by the patterns on close-by streamlines.
Bad pattern coordination produces color blocks disturbing the
illusion (Fig. 8(top)). The pattern assignment, in particular
the initial color and the segment length SegLen, must be
optimized to avoid such blocks. We propose an alternative
to the optimization proposed by Chi et al. [12] using our
streamline-based topological graph.

Fig. 8. Badly coordinated pattern (top line) gather color blocks across
streamlines. Pattern placement is optimized one streamline at a time (middle).
The quality of the pattern placement is measured rendering a red/green pattern
instead of dark/light, and counting overlapping yellow pixels (illustration
extracted from [12]).

B. Original optimization

Chi et al. [12] optimized the pattern placement by max-
imizing the difference of intensities between RAP fragments
of close-by streamlines. To compute this quality measure, they
render an optimization image blending the streamlines with
their current RAP parameters, but using red for the darker parts
of the RAP and green for the lighter ones (Fig. 8). The quality
of the RAP placement increases when more light parts of the
RAP of one streamline overlap the dark parts of its adjacent
streamlines, and vice-versa, i.e. when the optimization image
of the streamlines has more yellow pixels (Fig. 8).

There are basically two parameters in the optimization: the
initial color of the segment and the length of each segment
SegLen. To avoid large discrepancies, SegLen may vary by a

factor between 0.8 and 1.3 of the initial length. The optimiza-
tion starts with a random streamline, placing its RAP with a
random initial color and the initial SegLen. Then, several RAP
initial colors and SegLen assignments for the closest streamline
are tested in a Monte Carlo fashion, keeping the one that
maximized the quality so far. This image-based optimization
is then repeated on an adjacent streamline until processing all
the streamlines. Eventually, no RAP parameter for the current
streamline can satisfy a minimal quality, leading to a deadlock
(Fig. 9(left)). In this case, the whole process starts over with
a new streamline, randomly chosen. This rebooting of the
optimization is quite frequent in practice, and greatly harms
the performance of the optimization.

Fig. 9. Optimization performance depending on the initial streamline. (left)
Following the order from 1 to 6 creates of a vertical pattern between the first
and last one that cannot be avoided by changing the start color (from blue to
yellow), or segment length of streamline 6. (right) A different order leads to
a high contrast greedily.

C. Optimization using streamline-based topological graphs
Although Chi et al. [12] obtain high quality images, their

method is computationally intensive. Indeed, the brute force
optimization has a very slow convergence (Tab. I). Some
choices of the initial streamline surely lead to a deadlock
(Fig. 9(left)), which significantly increases the time used to
generate the self-animated image. We propose here to extract
from the topological graph an ordering of the deadlines that
usually avoids deadlocks.

In the topological graph decomposition, all the streamlines
of the same group have the same behavior, equivalent to a
tubular flow [18]. Optimizing the RAP placement inside a
group is thus straightforward and deadlock-free.

Deadlock may occur between groups, usually near sin-
gular points. With the topological graph, there is no need
to systematically start the whole optimization from scratch.
Indeed, only the RAP placement on the streamlines of one
group (preferentially the smallest) needs to be re-optimized
(Fig. 10). We thus optimize the RAP placement group by
group. Furthermore, in each group we optimize first the
separatrices (or the closest streamlines to the transition), since
those may create deadlocks if processed after the group.

We use the same image-based RAP optimization on a
single streamline, but the streamline-based topological graph
allows us to decouple the optimization per group, significantly
accelerating the convergence of the algorithm as shown in the
next results section.

1

2

3
Fig. 10. Optimization through the topological graph: when a conflict between
streamlines is detected (left), it can be solved by starting over only the RAP
placement on the streamline group, here Group 2 (middle), leading to a high
quality result without recomputing Group 1 (right).

VII. RESULTS

We tested our topological graph construction mainly on
analytical fields (Figs. 11, 13 and 12) where we could validate
the correctness of the result, and on a field measured by a
PIV method from fluid dynamics experiments (Fig. 14). In all
cases, the computation of the topological graph is extremely
fast (Table I). As expected, its speed decreases with the size
of the image and the complexity of the vector field.

The correctness of the result depends on the streamline
placement algorithm, in particular its density, as can be
observed in Fig. 11. However, at all the resolutions the
topological graph is coherent, even when some singular points
are not detected.

We also tested our optimization for self-animated images.
To compare with the algorithm proposed by Chi et al. [12], we
fix a target quality of the image, measured as the number of
non-yellow pixels in the optimization image. In all the results
presented here the target was 30% of yellow pixels. With this
target quality criterion, the self-animated images obtained by
both methods have very similar quality, as observed in Fig. 13.
Furthermore, the generated self-animated images capture most
of the vector field dynamics even with more singularities
(Fig. 12).

We report the time spent by each optimization to reach
the target quality in Table I. The use of the streamline-
based topological graph improves the execution time of the
optimization by a factor greater than two on simple examples.
Moreover, since self-animated images already require a set
of streamlines, the use of the topological graph has a very
little overhead. On data with more complex topology, the
gain increases substantially. For example on the PIV example
(Fig. 14), the gain reaches a factor of 3.5.

Fig. 11. Topological graph on a synthetic field with almost canceling singular points (left of each image), increasing the streamlines densities (from left to
right): d = 0.15, 0.2, 0.4, 0.9. Although the graph is not exact for low densities, it always define coherent regions delimited by two saddles (indicated with
a cross) , a source, and a sink (as a boundary segment, or indicated with a circle).

Fig. 12. Topological graph (left) and self-animated images (right) on a
synthetic field with six singularities.

VIII. DISCUSSION

Aiming at assisting vector field analysis and visualization,
this work proposes a topological segmentation built on top
of existing streamline placement technique. This domain de-
composition is equivalent to the topological graph, identifying
streamlines with similar behaviors. This construction suits
particularly for methods that already use streamlines, such as
self-animated images generation [12], where it speeds up the
image optimization time by several factors.

The current method still has some limitations and several
possible extensions. First of all, we do not consider closed
streamlines, which is a non-local type of singularities that
would affect the topological graph. Such closed streamlines
can be efficiently detected in our implementation context [21],
and require a treatment in our segmentation similar to the
boundary. We also aim to handle higher order (non-linear)
singularities for the streamline seeding. Second, the method re-
lies on a streamline generation. Although recent work provides
some topological guarantees on the streamline integration [9],
a low density of streamlines may still lead to a coherent but
incorrect result (Fig. 11). Finally, our current implementation
handles vector fields sampled on regular grid, which is well
suited for image. Most of our construction extends straight-
forwardly to our method to unstructured grid, mesh-less data
or higher dimensional vector fields.

Fig. 13. Topological graph (top) and self-animated images generated by the
original optimization (middle) and our optimization (bottom) on a synthetic
field with two singularities (left) and four singularities (right).

ACKNOWLEDGMENT

The authors would like to thank João Paixão for his contri-
bution to this work, and to CNPq, FAPERJ and CAPES for
partially financing this work.

TABLE I
EXPERIMENTAL RESULTS ON A CORE 2 DUO LAPTOP: THE TOPOLOGICAL GRAPH COMPUTATION HAS VERY LITTLE OVERHEAD, WHILE ITS USE

SIGNIFICANTLY ACCELERATES THE SELF-ANIMATED IMAGE OPTIMIZATION.

Data Fig. Number of Number of Number of Topological Proposed Chi et. al. [12] Gain
samples singularities regions graph optimization optimization

2 singularities Fig. 13 2,500 2 5 2 ms 1.42s 3.07 s 2.2x
4 singularities Fig. 13 2,500 4 9 2 ms 1.30s 3.00 s 2.3x
6 singularities Fig. 12 2,500 6 9 3 ms 1.54s 3.77 s 2.4x
canceling singularities Fig. 11 2,500 5 4 4 ms 1.57s 3.98 s 2.5x
PIV 1 Fig. 14 15,624 9 12 300 ms 9.26s 32.45 s 3.5x
PIV 2 15,624 28 15 300 ms 6.96s 38.92 s 5.6x

REFERENCES

[1] C. D. Hansen and C. R. Johnson, The visualization handbook. Aca-
demic Press, 2005.

[2] A. J. Smits and T. Lim, Eds., Flow visualization: techniques and
examples, 2nd ed. Imperial College, 2012.

[3] B. Preim and D. Bartz, Visualization in medicine: theory, algorithms,
and applications. Morgan Kaufmann, 2007.

[4] J. Daniels II, E. Anderson, L. Nonato, and C. Silva, “Interactive vector
field feature identification,” Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 1560–1568, 2010.

[5] G. Turk and D. Banks, “Image-guided streamline placement,” in Sig-
graph, 1996, pp. 453–460.

[6] B. Jobard and W. Lefer, “Creating evenly-spaced streamlines of arbitrary
density,” in Visualization in Scientific Computing, 1997, pp. 45–55.

[7] A. Mebarki, P. Alliez, and O. Devillers, “Farthest point seeding for
placement of streamline,” Transaction on Visualization and Computer
Graphics, vol. 10, pp. 479–486, 2005.

[8] O. Rosanwo, C. Petz, S. Prohaska, H.-C. Hege, and I. Hotz, “Dual
streamline seeding,” in PacificVis, 2009, pp. 9–16.

[9] H. Bhatia, S. Jadhav, V. Pascucci, G. Chen, J. Levine, L. Nonato, and
P.-T. Bremer, “Flow visualization with quantified spatial and temporal
errors using edge maps,” Transactions on Visualization and Computer
Graphics, vol. 18, no. 9, pp. 1383–1396, 2012.

[10] B. Cabral and L. Leedom, “Imaging vector fields using line integral
convolution,” in Siggraph, 1993, pp. 263–270.

[11] L.-Y. Wei, “Visualizing flow fields by perceptual motion,” Microsoft
Research, Tech. Rep. MSR-TR 82, 2006.

[12] M. Chi, T. Lee, Y. Qu, and T. Wong, “Self-animating images: Illusory
motion using repeated asymmetric patterns,” in Siggraph, 2008, p. 62.

[13] X. Tricoche, G. Scheuermann, and H. Hagen, “Continuous topology
simplification of planar vector fields,” in IEEE Visualization, 2001, pp.
159–166.

[14] R. Nascimento, J. Paixão, H. Lopes, and T. Lewiner, “Topology aware
vector field denoising,” in Sibgrapi. IEEE, 2010, pp. 103–109.

[15] M. Hirsch and S. Smale, Differential Equations, Dynamical Systems,
and Linear Algebra. Academic Press, 1974.

[16] X. Tricoche, “Vector and tensor field topology simplification, tracking,
and visualization,” Ph.D. dissertation, Schriftenreihe Fachbereich Infor-
matik, University of Kaiserslautem, 2002.

[17] J. Helman and L. Hesselink, “Visualizing vector field topology in fluid
flows,” Computer Graphics and Applications, pp. 36–46, 1991.

[18] A. Andronov, Qualitative Theory of Second-Order Dynamic System.
Israel Program for Scientific Translations, 1973.

[19] A. Kitaoka, “Anomalous motion illusion and stereopsis,” Journal of
Three Dimensional Images, vol. 20, pp. 9–14, 2006.

[20] B. Backus and I. Oruc, “Illusory motion from change over time in the
response to contrast and luminance,” Journal of Vision, vol. 5, 2005.

[21] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Grid-
independent detection of closed stream lines in 2d vector fields,” in
Vision, Modeling and Visualization, 2004, pp. 421–428. Fig. 14. LIC view [10] (top left), topological graph (top right) and self-

animated images (bottom) on a smoothed PIV data.

	Introduction
	Related work
	Continuous vector field topology
	Vector field, flow and streamline
	Singular point
	Separatrix, topological graph

	Topological graph construction from streamlines clustering
	A simple implementation
	Application to self animated images
	Self-animated images from streamlines
	Original optimization
	Optimization using streamline-based topological graphs

	Results
	Discussion
	References

