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Fig. 1. A set of 48 successive shapes enhanced, from λ = 0.0 in blue to λ = −240.0 in red, with steps of −5.0.

Abstract—This paper proposes a novel modeling method for a
hybrid quad/triangle mesh that allows to set a family of possible
shapes by controlling a single parameter, the global curvature.
The method uses an original extension of the Laplace Beltrami
operator that efficiently estimates a curvature parameter which
is used to define an inflated shape after a particular operation
performed in certain mesh points. Along with the method, this
work presents new applications in sculpting and modeling, with
subdivision of surfaces and weight vertex groups. A series of
graphics examples demonstrates the quality, predictability and
flexibility of the method in a real production environment with
software Blender.
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I. INTRODUCTION

Over the last years several, modeling techniques able to
generate a variety of realistic shapes, have been developed [1].
Editing techniques have evolved from affine transformations
to advanced tools like sculpting [2], [3], [4], editing, creation
from sketches [5], [6], and complex interpolation techniques
[7], [8]. Catmull-Clark based methods however require to
interact with a small number of control points for any op-
eration to be efficient, or in other words, a unicity condition
is introduced by demanding a smooth surface after any of
these shape operations. Hence, traditional modeling methods
for subdividing surfaces from coarse geometry have become
widely popular [9], [10]. These works have generalized a
uniform B-cubic spline knot insertion to meshes, some of
them adding some type of control, for instance with the use
of creases to produce sharp edges [11], or the modification of
some vertex weights to locally control the zone of influence

[12]. Nevertheless these methods are difficult to deal with
since they require a large number of parameters and a very
tedious customization. Instead, the presented method requires
a single parameter that controls the global curvature, which is
used to maintain realistic shapes, creating a family of different
versions of the same object and therefore preserving the detail
of the original model and a realistic appearance.

Interest in meshes composed of triangles and quads has
lately increased because of the flexibility of modeling tools
such as Blender 3D [13]. Nowadays, many artists use a manual
connection of a couple of vertices to perform animation
processes and interpolation [14]. It is then of paramount
importance to develop operators that easily interact with such
meshes, eliminating the need of preprocessing the mesh to
convert it to triangles. The shape inflation and shape exagger-
ation can thus be used as such brush in the sculpting process,
when inflating a shape since current brushes end up by losing
detail when moving vertices [4]. In contrast, the presented
method inflates a mesh by moving the vertices towards the
reverse curvature direction, conserving the shape and sharp
features of the model.

Contributions: This work presents an extension of the
Laplace Beltrami operator for hybrid quad/triangle meshes,
representing a larger mesh spectrum from what has been pre-
sented so far. The method eliminates the need of preprocessing
and allows preservation of the original topology. Likewise,
along with this operator, it is proposed a method to generate a
family of parametrized shapes, in a robust and predictable way.
This method enables customization of the smoothness and
curvature, obtained during the subdivision surfaces process.



Finally, it is proposed a new brush for inflating the silhouette
mesh features in modeling and sculpting.

This work is organized as follows: Section I-A presents
works related to the Laplacian mesh processing, digital sculpt-
ing, and offsetting methods for polygonal meshes; In section
II , it is described the theoretical framework of the Laplacian
operator for polygon meshes; In section III, it is presented the
method for shape inflation and applications of subdivision of
surfaces and sculpting; finally some Laplacian operator results,
to hybrid quad/triangle meshes are graphically shown as well
as results of the shape inflation applications in sculpting,
subdivision and modeling.

A. Related work

Many tools have been developed for modeling, based on the
Laplacian mesh processing. Thanks to the advantages of the
Laplacian operator, these different tools preserve the surface
geometric details when using them for different processes
such as free-form deformation, fusion, morphing and other
applications [7].

Offset methods for polygon meshing, based on the curvature
defined by the Laplace Beltrami operator, have been devel-
oped. These methods adjust the shape offset by a constant
distance, with enough precision. Nevertheless, these methods
fail to conserve sufficient detail because of the smoothing,
a crucial issue which depends on the offset size [15]. In
volumetric approaches, in case of point-based representations,
the offset boundary computation is based on the distance field
and therefore when calculating such offset, the topology of the
model may be different to the original [16].

[17] propose automatic feature detection and shape edi-
tion with feature inter-relationship preservation. They define
salient surface features like ridges and valleys, characerized
by their first and second order curvature derivatives, see [18],
and angle-based threshold. Likewise, curves have been also
classified as planar or non-planar, approximated by lines,
circles, ellipses and other complex shapes. In such case, the
user defines an initial change over several features which
is propagated towards other features, based on the classified
shapes and the inter-relationships between them. This method
works well with objects that have sharp edges, composed
of basic geometric shapes such as lines, circles or ellipses.
However, the method is very limited when models are smooth
since it cannot find the proper features to edit.

Digital sculpting have been traditionally approached either
under a polygonal representation or a voxel grid-based method.
Brushes for inflation operations only depend on the vertex nor-
mal [4]. In grid-based sculpting, some other operations have
allowed to add or remove voxels since production of polygonal
meshes require a processing of isosurfaces from a volume [3].
The drawback comes from the difficulty of maintaining the
surface details during larger scale deformations.

II. LAPLACIAN SMOOTH

Computer objects, reconstructed from the real world, are
usually noisy. Laplacian Smooth techniques allow a proper

noise reduction on the mesh surface with minimal shape
changes, while still preserving a desirable geometry as well
as the original shape.

Many smoothing Laplacian functionals regularize the sur-
face energy by controlling the total surface curvature S.

E (S) =
∫
S
κ21 + κ22dS

Where κ1 and κ2 are the two principal curvatures of the
surface S.

A. Gradient of Voronoi Area
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Fig. 2. Area of the Voronoi region around vi in dark blue.
vj belong to the first neighborhood around vi. αj and βj opposite angles to
edge
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vj − vi.

Consider a surface S composed of a set of triangles around
vertex vi. Let us define the Voronoi region of vi as show in
figure 2, The area change produced by the movement of vi is
called the gradient of Voronoi region [19], [20], [21].

∇A =
1

2

∑
j

(cotαj + cotβj) (vi − vj) (1)

If the gradient in equation (1) is normalized by the total
area of the 1-ring neighborhood around vi, the discrete mean
curvature normal of a surface S is obtained, as shown in
equation (2).

2κn =
∇A
A

(2)

B. Laplace Beltrami Operator

The Laplace Beltrami operator LBO noted as 4 is used for
measuring the mean curvature normal to the Surface S [19].

4S = 2κn (3)

The LBO has desirable properties: the LBO points out to
the direction of the minimal surface area.

III. PROPOSED METHOD

This method exaggerates a shape using a Laplacian smooth-
ing operator in the reverse direction, i.e., the new shape is a
modified version in which those areas with larger curvature
are magnified. The operator amounts to a generator of a set of
models which conserves the basic silhouette of the original
shape. In addition, the presented approach can be easily
mixed with traditional or uniform subdivision of surfaces.
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Fig. 3. The 5 basic triangle-quad cases with common vertex Vi and the relationship with Vj and V ′j . (a) Two triangles [Desbrun 1999]. (b) (c) Two quads
and one quad [Xiong 2011]. (d) (e) Triangles and quads (TQLBO).

This method is based on an original extension of the Laplace
Beltrami operator for hybrid quad/triangle meshes, mixing
arbitrary types of meshes, exploiting the basic geometrical
relationships and ensuring good results with few algorithm
iterations.

A. Laplace Beltrami Operator for Hybrid Quad/Triangle
Meshes TQLBO

Given a mesh M = (V,Q, T ), with vertices V , quads Q,
triangles T . The area of 1-ring neighborhood A (vi) corre-
sponds to a sum of the quad faces A (Qvi) and the areas of
the triangular faces A (Tvi) adjacent to vertex vi

A (vi) = A (Qvi) +A (Tvi).
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tions of the quad with common vertex vi proposed by [Xiong 2011] to define
Mean LBO.

Applying the mean average area, according to [22], from
all possible triangulations, as show in figure 4, the area for
quads A (Qvi) and triangles A (Tvi) is

A (vi) =
1
2m

m∑
j=1

2m−1A (qj) +
r∑

k=1

A (tk),

Where q1, q2, ..., qj , ..., qm ∈ Qvi and t1, t2, ..., tk, ..., tr ∈
Tvi

A (vi) =
1

2

m∑
j=1

[
A
(
t∗j1
)
+A

(
t∗j2
)
+A

(
t∗j3
)]

+

r∑
k=1

A (tk)

(4)
Applying the gradient operator to (4)

∇A (vi) =
1

2

m∑
j=1

[
∇A

(
t∗j1
)
+∇A

(
t∗j2
)
+∇A

(
t∗j3
)]
+

r∑
k=1

∇A (tk)

(5)
According to (1), we have

∇A
(
t∗j1
)
=

cot θj3(vj−vi)+cot θj2(v′j−vi)
2

∇A
(
t∗j2
)
=

cot θj5(v′j−vi)+cot θj4(vj+1−vi)
2

∇A
(
t∗j3
)
=

cot θj6(vj−vi)+cot θj1(vj+1−vi)
2

∇A (tk) =
cotαk(vk−vi)+cot βk+1(vk+1−vi)

2

Triangle and quad configurations of the 1-ring neighborhood
faces, adjacent to vi, can be simplified to five cases, as shown
in figure 3.

According to equation (2), (3), and five simple cases defined
in figure 3 the TQLBO (Triangle-Quad LBO) of vi is

4S (vi) = 2κn =
∇A
A

=
1

2A

∑
vj∈N1(vi)

wij (vj − vi) (6)

wij =



(cotαj + cotβj) case a.
1
2

(
cot θ(j−1)1 + cot θ(j−1)4 + cot θj3 + cot θj6

)
case b.

(cot θj2 + cot θj5) case c.
1
2
(cot θj3 + cot θj6) + cotβj case d .

1
2

(
cot θ(j−1)1 + cot θ(j−1)4

)
+ cotαj case e .

(7)
We define a TQLBO as a matrix equation

L (i, j) =


− 1

2Ai
wij if j ∈ N (vi)

1
2Ai

∑
k∈N(vi)

wik if i = j

0 otherwise

(8)

Where L is a n× n matrix, n is the number of vertices of
a given mesh M , wij is the TQLBO defined in equation (7),
N (vi) is the 1-ring neighborhood with shared face to vi, Ai
is the ring area around vi.

Normalized equation of the TQLBO

L (i, j) =

−
wij∑

k∈N(vi)
wik

if j ∈ N (vi)

δij otherwise
(9)



Where δij being the Kronecker delta function.

B. The Shape Inflation

The shape is inflated by using the reverse direction of
the curvature flow, moving the vertices towards those mesh
portions with larger curvature. A standard diffusion process is
applied:

∂V
∂t = λL (V )

To solve this equation, implicit integration is used as well
as a normalized version of TQLBO matrix

(I − |λdt|WpL)V
′ = V t (10)

V t+1 = V t + sign (λ) (V ′ − V t)

The vertices V t+1 are inflated, along their reverse curvature
direction, by solving the linear system: Ax = b, where
A = I − |λdt|WpL, L is the Normalized TQLBO defined in
the equation (9), x = V ′ are the smoothing vertices, b = V t

are the actual vertices positions, Wp is a diagonal matrix
with vertex weights, and λdt is the inflate factor that supports
negative and positive values: negative for inflation and positive
for smoothing.

The method was devised to use with weighted vertex groups,
which specify the final shape inflation of the solution, meaning
0 as no changes and 1 when a maximal change is applied. The
weights modify the influence zones, where the Laplacian is
applied, as shown in equation 10. Interestingly, the generated
family of shapes may change substantially with the weights
of specific control points.

The curvature cannot be calculated at the boundary of
the meshes that are not closed, for that reason we use the
scale-dependent operator proposed by Desbrun et al. [20], the
inflation factor for boundary is represented by λe.

The model volume increases as the lambda is larger and
negative, this can be counteracted with a simple volume preser-
vation. However, the mesh may suffer large displacements
when λ < −1.0 or after multiple iterations. A simple volume
conservation algorithm is: If vt+1

i is a mesh vertex of V t+1

in the t+ 1 iteration, we define v as:

v = 1
n

∑
vi∈V

vi,

v is the mesh center, volini is an initial volume, and volt+1

is the volume at the iteration t+1, n is the number of vertices,
then the scale factor

β =
(
volini

volt+1

) 1
3

allows to scale the vertices to:

vt+1
i new = β

(
vt+1
i − v

)
+ v

The shape inflation use a negative curvature flow that is an
unstable process when performing many iterations, however,
our method uses less than 3 iterations to get good results, and
with 3 iterations or less the method behaves stable.

C. Sculpting

A new sculpting brush is herein proposed and aims to inflate
the shape, magnifying the shape curvatures of a polygon mesh
in real time. This brush works properly with the stroke method
Drag Dot, allowing to pre-visualize the model changes before
the mouse is released. Also, it allows to move the mouse along
the model to match the shape zone which is supposed to be
inflated.

Brushes that perform a similar inflation can introduce mesh
distortions or produce mesh self-intersections, provided these
brushes only move the vertices along the normal without any
global information. In contrast, the present method searches
for a proper inflation while preserving the global curvature,
retaining the original shape and main model features. In addi-
tion, this method simplifies the work required for the inflation
since it needs not different brushes for inflating, softening or
styling. The inflated brush can make all these operation in a
single step. Real-time brushes require the Laplacian matrix is
constructed with the vertices that are within the sphere radius
defined by the user, reducing the matrix to be processed, the
center of this sphere depending on the place where the user
clicks on the canvas and the three-dimensional mesh placed
where the click is projected. Special handling is required for
the boundary vertices with neighbors that are not within the
brush radius: these vertices are marked as boundary and the
curvature is not there calculated, but they must be included
in the matrix so that every vertex has their corresponding
neighbors within the selection. The sculpting Laplacian matrix
reads as.

L (i, j) =


− wij∑

j∈N(vi)
wij

if ‖vi − u‖ < r ∧ ‖vj − u‖ < r

0 if ‖vi − u‖ < r ∧ ‖vj − u‖ ≥ r
δij otherwise

Where vj ∈ N (vi), u is the sphere center of radius r. The
matrices should remove rows and columns of vertices that are
not within the radius.

D. Subdivision surfaces

The Catmull-Clark subdivision transformation is used to
smooth a surface, as the limit of a sequence of subdivision
steps [10]. This process is governed by a B-spline curve
[23], performing a recursive subdivision transformation that
refines the model into a linear interpolation that approximates
a smooth surface. The model smoothness is automatically
guaranteed [11].

Catmull-Clark subdivision surface methods generate smooth
and continuous models from a coarse model and produce
quick results because of the simplicity of implementation.
Nevertheless, changes to the global curvature are hardly im-
plantable. The Catmull-Clark subdivision surfaces together
with shape inflation can easily generate families of shapes by
changing a single parameter, allowing to handle a model with
very few vertices. In practice, this would allow an artist to
choose a model from a similar set of options that would meet
his/her needs without having to change each of the control
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Fig. 5. Family of cups generated with our method, from a coarse model (a), (c): the shape, obtained from the Catmull-Clark Subdivision (b), (d), is inflated.
Soft constraints, over the coarse model, is drawn in red and blue (c).
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Fig. 6. (a) Original Model, (b) Model with Catmull-Clark Subdivision. Models with Laplacian smoothing: (c) and (d). Models with a first Laplacian filtering
λ = 60.0, λe = 12.0 and before applying shape inflation: (e) and (f).

vertices. Likewise, the presented method allows the use of
vertex weight paint over the control points. The weights can
be applied to a coarse model, followed by a Catmull-Clark
subdivision where weights are interpolated, producing weights
with smooth changes in the influence zones, as shown in figure
5.c.

In equation 10, Wp is a diagonal matrix with weights
corresponding to each vertex. Weights at each vertex produce
a different solution so that the matrix must be placed in
the diffusion equation since families that are generated may
change substantially with weighted of specific control points.

IV. RESULTS

The results of the shape inflation method with the extension
of the Laplace Beltrami operator for hybrid quad/triangle
meshes with several example models shown in figures 1, 5,
6, 7, 8, 9, 10, 11, 12. The shape inflation was assessed with
TQLBO method on a PC with AMD Quad-Core Processor @
2.40 GHz and 8 GB RAM.

Figure 7 shows the results when applying the Laplace
Beltrami Operator TQLBO of equation (8) in a model with
a simple subdivision. In column (c) the Laplacian smoothing
was applied to a model consisting of only quads. In column
(d) the model was converted to triangles and then the Lapla-
cian smoothing was applied. In column (e) the model was
randomly converted from some quads into triangles and then
the Laplacian smoothing is applied, showing similar results to
those meshes composed only of triangles or quads.

Methods using the Catmull-Clark subdivision surface and
the inflation allows to modify the curvature that is obtained

)(a )(b )(c )(d )(e

Fig. 7. (a) Original Model. (b) Simple subdivision. (c), (d) (e) Laplacian
smoothing with λ = 7 and 2 iterations: (c) for quads, (d) for triangles, (e)
for triangles and quads random chosen.

with the process of subdivision, as shown in figure (5). This
test used a coarse cup model, in which the subdivision was
performed, followed by a Laplacian smoothing and inflation.
In figure (5).c, (5).d shows also the use of weight vertex groups
over coarse models, with subdivision surfaces that allowed to
generate the weights for the new interpolated vertices. These
new weights were used for the inflation obtained on the 6 cups
that are at the right of the figure (5).d.
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Fig. 8. Top row: Original camel model in left. Shape inflation with λ =
−30.0, λ = −100.0, λ = −400.0. Bottom row: Shape inflation with weight
vertex group, λ = −50.0 and 2 iterations for the legs, λ = −200.0 and 1
iteration for the head and neck.

Laplacian smoothing applied with simple subdivision (see
figure 6.c.) may produce similar results to those obtained
with Catmull-Clark (see figure 6.b.), whose models are in
average equal triangles. The one obtained with the Laplacian
smoothing is shown in panel (c), (d) and those curvature
modified versions are in (e) and (f). As can be observed,
different versions of the original sketch can be obtained by
parameterizing a single model value, a great advantage of the
presented method. Figure 8 shows the generation of different
versions of a camel according to the λ parameter. In the top
row, it is shown the shape inflation results, as λ becomes larger
and negative, the resultant shape is observed as if the model
would inflate the more convex parts, as shown in figure 1. The
larger the λ parameter the larger the model feature inflations.
The bottom row of figure 8 shows the use of weighted vertex
groups, specifying which areas will be inflated. On the left, the
inflation of the camel legs produces an organic aspect, notice
that the border is not distorted and smooth.

The inflation of the silhouette features is predictable and
invariant under isometric transformations, as those classically
used in some animations (see Figure 12). In this figure, the
animation shows some camel poses during a walk, the inflation
is performed at the neck and legs, as shown in the bottom left
camel in figure 12. Local modifications produced by the pose
interpolation or animation rigging practically do not affect the
result. In spite of at any pose of the camel legs there is a clear
difference, the inflation method allows a flesh-like shape in
the original pattern produced by the artist. This is due to the
mesh restricted diffusion process so that small local changes
are treated without affecting the global solution. The method
therefore is rotation invariant since it depends exclusively on
the normal mesh field, which is rotation invariant.

Figure 9 shows the use of a shape inflation brush for
sculpting in real time. One pass was used with the brush, as

(a) Original (b) Inflate Brush (c) Enhance Brush  

Fig. 9. Top row: (a) Leg Camel, (b) Traditional inflate brush for leg into blue
circle, (c) Shape inflation brush for leg into red circle. Bottom row: (a) Hand,
(b) Traditional inflate brush for fingers into blue circle, (c) Shape inflation
brush for fingers in red circle.

shown in the figure, with the blue and red radius. In figure 9.b
the camel foot shows the inflation intersection that looks like
two bubbles, a similar pattern to what is observed to the fingers
on the bottom of the same figure. The silhouette inflation is
observed in figure 9.c since the main shape is retained together
with its finger and foot details. Similar results can be obtained
by a user, however it would take several steps and require the
use of several brushes, while the shape inflation took a single
step. Likewise, this new method can easily inflate organic
features like muscles during the sculpting process. In figure
10 the shape inflation brush performance is illustrated, in this
experiment three models with 12K, 40K and 164K vertices,
were used. These models were sculpted with the shape inflate
brush, at each step the brush sphere containing a variable
number of vertices for processing. The processing time for 800
vertices in the camel paw (40k model) only took 0.1 seconds,
for 2600 vertices in the leg and neck (model 40k) took 0.5
seconds, these times are suitable in real applications since an
artist sculpts a model for parts.

Tests with the Laplacian operator (equation 8) and its
normalized version (equation 9), produce similar results if the
triangles or quads that compose the mesh are about the same
size. The normalized version is more stable and predictable
because it is not divided by the area of the ring which may
be very small and causes numeric problems, as shown in
figure 11.c bottom row. The shape inflation of the model
with the normalized Laplacian operator results in a more
regular pattern. The model can be deformed with a TQLBO
normalized version with large λ (λ > 400) while intersecting
itself with no peaks. Figure 11.c shows different results due
to the quads areas in the model. Quads with larger area have
smaller inflation (figure 11.c skull), and smaller quads have
larger inflations (figure 11.c chin).



Fig. 12. The method is pose insensitive. The inflation for the different poses are similar in terms of shape. Top row: Original walk cycle camel model.
Bottom row: Shape inflation with weight vertex group, λ = −400 and 2 iterations.
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Fig. 10. Performance of our dynamic shape inflation brush in terms of the
sculpted vertices per second. Three models with 12K, 40K, 164K vertices
used for sculpting in real time.
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Fig. 11. (a) Bottom row: Original Model. Top row: Original model scaled
by 4. (b) Top and bottom row: inflating with Normalized-TQLBO λ = −50
(c) Top and bottom row: inflating with TQLBO λ = −50.

A. Implementation

The method was implemented as a modifier for modeling
and brush for sculpting, on the Blender software [13] in C and
C++. Working with the Blender allowed to test the method
interactively against others, as Catmull-Clark, weight vertex
groups and sculpting system in Blender.

To improve the performance, it was worked with the Blender
mesh struct, visiting each triangle or quad and storing its
corresponding index and the sum of the Laplacian weights of
the ring in a list so that only two visits were required for the
list of mesh faces and two times the edge list, if the mesh was
not closed. This drastically reduced calculations, enabling real-

time processing. In the construction of the Laplacian matrix,
several index were locked at vertices having face areas or edge
lengths with zero value that could cause spikes and bad results.

Under these conditions, the matrix at equation 8 is sparse
since the number of neighbors per vertex, corresponding to
the number of data per row, is smaller compared to the total
number of vertices in the mesh. To solve the linear system
equation 10 was used OpenNL [24] which is a a library for
solving sparse linear system.

V. CONCLUSION AND FUTURE WORK

This work presented an extension of the Laplace Beltrami
operator for hybrid quad/triangle meshes that can be used
in production environments and provides results similar to
those obtained by working only with triangles or quads. This
paper has introduced a new way to change silhouettes in a
mesh for modeling or sculpting in a few steps by means of
the curvature model modification while preserving its overall
shape. In addition, a new modeling method has also been
presented some possible applications have been illustrated.
The method works properly with isometric transformations,
opening the possibility of introducing it on the process of
animation.

We show that this tool may work in early modeling stages,
case in which coarse models are used, allowing to modify the
shape generated by the Catmull-Clark subdivision surfaces,
and thereby avoiding edition of the vertices with change of a
single parameters.

Future work includes the analysis of theoretical relation-
ships between the Catmull-Clark subdivision surfaces and
the Laplacian smoothing since they can produce very similar
results.
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